Visible to the public Biblio

Found 309 results

Filters: Keyword is performance evaluation  [Clear All Filters]
2023-01-05
Chen, Ye, Lai, Yingxu, Zhang, Zhaoyi, Li, Hanmei, Wang, Yuhang.  2022.  Malicious attack detection based on traffic-flow information fusion. 2022 IFIP Networking Conference (IFIP Networking). :1–9.
While vehicle-to-everything communication technology enables information sharing and cooperative control for vehicles, it also poses a significant threat to the vehicles' driving security owing to cyber-attacks. In particular, Sybil malicious attacks hidden in the vehicle broadcast information flow are challenging to detect, thereby becoming an urgent issue requiring attention. Several researchers have considered this problem and proposed different detection schemes. However, the detection performance of existing schemes based on plausibility checks and neighboring observers is affected by the traffic and attacker densities. In this study, we propose a malicious attack detection scheme based on traffic-flow information fusion, which enables the detection of Sybil attacks without neighboring observer nodes. Our solution is based on the basic safety message, which is broadcast by vehicles periodically. It first constructs the basic features of traffic flow to reflect the traffic state, subsequently fuses it with the road detector information to add the road fusion features, and then classifies them using machine learning algorithms to identify malicious attacks. The experimental results demonstrate that our scheme achieves the detection of Sybil attacks with an accuracy greater than 90 % at different traffic and attacker densities. Our solutions provide security for achieving a usable vehicle communication network.
2022-12-23
Rodríguez, Elsa, Fukkink, Max, Parkin, Simon, van Eeten, Michel, Gañán, Carlos.  2022.  Difficult for Thee, But Not for Me: Measuring the Difficulty and User Experience of Remediating Persistent IoT Malware. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :392–409.
Consumer IoT devices may suffer malware attacks, and be recruited into botnets or worse. There is evidence that generic advice to device owners to address IoT malware can be successful, but this does not account for emerging forms of persistent IoT malware. Less is known about persistent malware, which resides on persistent storage, requiring targeted manual effort to remove it. This paper presents a field study on the removal of persistent IoT malware by consumers. We partnered with an ISP to contrast remediation times of 760 customers across three malware categories: Windows malware, non-persistent IoT malware, and persistent IoT malware. We also contacted ISP customers identified as having persistent IoT malware on their network-attached storage devices, specifically QSnatch. We found that persistent IoT malware exhibits a mean infection duration many times higher than Windows or Mirai malware; QSnatch has a survival probability of 30% after 180 days, whereby most if not all other observed malware types have been removed. For interviewed device users, QSnatch infections lasted longer, so are apparently more difficult to get rid of, yet participants did not report experiencing difficulty in following notification instructions. We see two factors driving this paradoxical finding: First, most users reported having high technical competency. Also, we found evidence of planning behavior for these tasks and the need for multiple notifications. Our findings demonstrate the critical nature of interventions from outside for persistent malware, since automatic scan of an AV tool or a power cycle, like we are used to for Windows malware and Mirai infections, will not solve persistent IoT malware infections.
2022-12-09
Han, Wendie, Zhang, Rui, Zhang, Lei, Wang, Lulu.  2022.  A Secure and Receiver-Unrestricted Group Key Management Scheme for Mobile Ad-hoc Networks. 2022 IEEE Wireless Communications and Networking Conference (WCNC). :986—991.

Mobile Ad-hoc Networks (MANETs) have attracted lots of concerns with its widespread use. In MANETs, wireless nodes usually self-organize into groups to complete collaborative tasks and communicate with one another via public channels which are vulnerable to attacks. Group key management is generally employed to guarantee secure group communication in MANETs. However, most existing group key management schemes for MANETs still suffer from some issues, e.g., receiver restriction, relying on a trusted dealer and heavy certificates overheads. To address these issues, we propose a group key management scheme for MANETs based on an identity-based authenticated dynamic contributory broadcast encryption (IBADConBE) protocol which builds on an earlier work. Our scheme abandons the certificate management and does not need a trusted dealer to distribute a secret key to each node. A set of wireless nodes are allowed to negotiate the secret keys in one round while forming a group. Besides, our scheme is receiver-unrestricted which means any sender can flexibly opt for any favorable nodes of a group as the receivers. Further, our scheme satisfies the authentication, confidentiality of messages, known-security, forward security and backward security concurrently. Performance evaluation shows our scheme is efficient.

Moualla, Ghada, Bolle, Sebastien, Douet, Marc, Rutten, Eric.  2022.  Self-adaptive Device Management for the IoT Using Constraint Solving. 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS). :641—650.
In the context of IoT (Internet of Things), Device Management (DM), i.e., remote administration of IoT devices, becomes essential to keep them connected, updated and secure, thus increasing their lifespan through firmware and configuration updates and security patches. Legacy DM solutions are adequate when dealing with home devices (such as Television set-top boxes) but need to be extended to adapt to new IoT requirements. Indeed, their manual operation by system administrators requires advanced knowledge and skills. Further, the static DM platform — a component above IoT platforms that offers advanced features such as campaign updates / massive operation management — is unable to scale and adapt to IoT dynamicity. To cope with this, this work, performed in an industrial context at Orange, proposes a self-adaptive architecture with runtime horizontal scaling of DM servers, with an autonomic Auto-Scaling Manager, integrating in the loop constraint programming for decision-making, validated with a meaningful industrial use-case.
2022-12-06
Kiran, Usha.  2022.  IDS To Detect Worst Parent Selection Attack In RPL-Based IoT Network. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :769-773.

The most widely used protocol for routing across the 6LoWPAN stack is the Routing Protocol for Low Power and Lossy (RPL) Network. However, the RPL lacks adequate security solutions, resulting in numerous internal and external security vulnerabilities. There is still much research work left to uncover RPL's shortcomings. As a result, we first implement the worst parent selection (WPS) attack in this paper. Second, we offer an intrusion detection system (IDS) to identify the WPS attack. The WPS attack modifies the victim node's objective function, causing it to choose the worst node as its preferred parent. Consequently, the network does not achieve optimal convergence, and nodes form the loop; a lower rank node selects a higher rank node as a parent, effectively isolating many nodes from the network. In addition, we propose DWA-IDS as an IDS for detecting WPS attacks. We use the Contiki-cooja simulator for simulation purposes. According to the simulation results, the WPS attack reduces system performance by increasing packet transmission time. The DWA-IDS simulation results show that our IDS detects all malicious nodes that launch the WPS attack. The true positive rate of the proposed DWA-IDS is more than 95%, and the detection rate is 100%. We also deliberate the theoretical proof for the false-positive case as our DWA-IDS do not have any false-positive case. The overhead of DWA-IDS is modest enough to be set up with low-power and memory-constrained devices.

2022-12-02
Rethfeldt, Michael, Brockmann, Tim, Eckhardt, Richard, Beichler, Benjamin, Steffen, Lukas, Haubelt, Christian, Timmermann, Dirk.  2022.  Extending the FLExible Network Tester (Flent) for IEEE 802.11s WLAN Mesh Networks. 2022 IEEE International Symposium on Measurements & Networking (M&N). :1—6.
Mesh networks based on the wireless local area network (WLAN) technology, as specified by the standards amendment IEEE 802.11s, provide for a flexible and low-cost interconnection of devices and embedded systems for various use cases. To assess the real-world performance of WLAN mesh networks and potential optimization strategies, suitable testbeds and measurement tools are required. Designed for highly automated transport-layer throughput and latency measurements, the software FLExible Network Tester (Flent) is a promising candidate. However, so far Flent does not integrate information specific to IEEE 802.11s networks, such as peer link status data or mesh routing metrics. Consequently, we propose Flent extensions that allow to additionally capture IEEE 802.11s information as part of the automated performance tests. For the functional validation of our extensions, we conduct Flent measurements in a mesh mobility scenario using the network emulation framework Mininet-WiFi.
Nihtilä, Timo, Berg, Heikki.  2022.  Energy Consumption of DECT-2020 NR Mesh Networks. 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). :196—201.
ETSI DECT-2020 New Radio (NR) is a new flexible radio interface targeted to support a broad range of wireless Internet of Things (IoT) applications. Recent reports have shown that DECT-2020 NR achieves good delay performance and it has been shown to fulfill both massive machine-type communications (mMTC) and ultra-reliable low latency communications (URLLC) requirements for 5th generation (5G) networks. A unique aspect of DECT-2020 as a 5G technology is that it is an autonomous wireless mesh network (WMN) protocol where the devices construct and uphold the network independently without the need for base stations or core network architecture. Instead, DECT-2020 NR relies on part of the network devices taking the role of a router to relay data through the network. This makes deployment of a DECT-2020 NR network affordable and extremely easy, but due to the nature of the medium access protocol, the routing responsibility adds an additional energy consumption burden to the nodes, who in the IoT domain are likely to be equipped with a limited battery capacity. In this paper, we analyze by system level simulations the energy consumption of DECT-2020 NR networks with different network sizes and topologies and how the reported low latencies can be upheld given the energy constraints of IoT devices.
2022-12-01
Dave, Avani, Banerjee, Nilanjan, Patel, Chintan.  2021.  CARE: Lightweight Attack Resilient Secure Boot Architecture with Onboard Recovery for RISC-V based SOC. 2021 22nd International Symposium on Quality Electronic Design (ISQED). :516–521.
Recent technological advancements have proliferated the use of small embedded devices for collecting, processing, and transferring the security-critical information. The Internet of Things (IoT) has enabled remote access and control of these network-connected devices. Consequently, an attacker can exploit security vulnerabilities and compromise these devices. In this context, the secure boot becomes a useful security mechanism to verify the integrity and authenticity of the software state of the devices. However, the current secure boot schemes focus on detecting the presence of potential malware on the device but not on disinfecting and restoring the software to a benign state. This manuscript presents CARE - the first secure boot framework that provides malicious code modification attack detection, resilience, and onboard recovery mechanism for the compromised devices. The framework uses a prototype hybrid CARE: Code Authentication and Resilience Engine to verify the integrity and authenticity of the software and restore it to a benign state. It uses Physical Memory Protection (PMP) and other security enchaining techniques of RISC-V processor to provide resilience from modern attacks. The state-of-the-art comparison and performance analysis results indicate that the proposed secure boot framework provides promising resilience and recovery mechanism with very little (8%) performance and resource overhead.
2022-11-18
Dubasi, Yatish, Khan, Ammar, Li, Qinghua, Mantooth, Alan.  2021.  Security Vulnerability and Mitigation in Photovoltaic Systems. 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). :1—7.
Software and firmware vulnerabilities pose security threats to photovoltaic (PV) systems. When patches are not available or cannot be timely applied to fix vulnerabilities, it is important to mitigate vulnerabilities such that they cannot be exploited by attackers or their impacts will be limited when exploited. However, the vulnerability mitigation problem for PV systems has received little attention. This paper analyzes known security vulnerabilities in PV systems, proposes a multi-level mitigation framework and various mitigation strategies including neural network-based attack detection inside inverters, and develops a prototype system as a proof-of-concept for building vulnerability mitigation into PV system design.
Alkhafajee, A. R., Al-Muqarm, Abbas M. Ali, Alwan, Ali H., Mohammed, Zaid Rajih.  2021.  Security and Performance Analysis of MQTT Protocol with TLS in IoT Networks. 2021 4th International Iraqi Conference on Engineering Technology and Their Applications (IICETA). :206—211.
Internet of Things (IoT) is a sophisticated concept of the traditional internet. In IoT, all things in our lives can be connected with the internet or with each other to exchange data and perform specific functions through the network. However, combining several devices-especially by unskilled users-may pose a number of security risks. In addition, some commonly used communication protocols in the IoT area are not secure. Security, on the other hand, increases overhead by definition, resulting in performance degradation. The Message Queuing Telemetry Transport (MQTT) protocol is a lightweight protocol and can be considered as one of the most popular IoT protocols, it is a publish/subscribe messaging transport protocol that uses a client-server architecture. MQTT is built to run over TCP protocol, thus it does not provide any level of security by default. Therefore, Transport Layer Security (TLS) can be used to ensure the security of the MQTT protocol. This paper analyzed the impact on the performance and security of the MQTT protocol in two cases. The first case, when using TLS protocol to support the security of the MQTT protocol. The second case, using the traditional MQTT without providing any level of security for the exchanged data. The results indicated that there is a tradeoff between the performance and the security when using MQTT protocol with and without the presence of TLS protocol.
2022-10-03
Tomasin, Stefano, Hidalgo, Javier German Luzon.  2021.  Virtual Private Mobile Network with Multiple Gateways for B5G Location Privacy. 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall). :1–6.
In a beyond-5G (B5G) scenario, we consider a virtual private mobile network (VPMN), i.e., a set of user equipments (UEs) directly communicating in a device-to-device (D2D) fashion, and connected to the cellular network by multiple gateways. The purpose of the VPMN is to hide the position of the VPMN UEs to the mobile network operator (MNO). We investigate the design and performance of packet routing inside the VPMN. First, we note that the routing that maximizes the rate between the VPMN and the cellular network leads to an unbalanced use of the gateways by each UE. In turn, this reveals information on the location of the VPMN UEs. Therefore, we derive a routing algorithm that maximizes the VPMN rate, while imposing for each UE the same data rate at each gateway, thus hiding the location of the UE. We compare the performance of the resulting solution, assessing the location privacy achieved by the VPMN, and considering both the case of single hop and multihop in the transmissions from the UEs to the gateways.
2022-09-30
Robert Doebbert, Thomas, Krush, Dmytro, Cammin, Christoph, Jockram, Jonas, Heynicke, Ralf, Scholl, Gerd.  2021.  IO-Link Wireless Device Cryptographic Performance and Energy Efficiency. 2021 22nd IEEE International Conference on Industrial Technology (ICIT). 1:1106–1112.
In the context of the Industry 4.0 initiative, Cyber-Physical Production Systems (CPPS) or Cyber Manufacturing Systems (CMS) can be characterized as advanced networked mechatronic production systems gaining their added value by interaction with different systems using advanced communication technologies. Appropriate wired and wireless communication technologies and standards need to add timing in combination with security concepts to realize the potential improvements in the production process. One of these standards is IO-Link Wireless, which is used for sensor/actuator network operation. In this paper cryptographic performance and energy efficiency of an IO-Link Wireless Device are analyzed. The power consumption and the influence of the cryptographic operations on the trans-mission timing of the IO-Link Wireless protocol are exemplary measured employing a Phytec module based on a CC2650 system-on-chip (SoC) radio transceiver [2]. Confidentiality is considered in combination with the cryptographic performance as well as the energy efficiency. Different cryptographic algorithms are evaluated using the on chip hardware accelerator compared to a cryptographic software implementation.
Priya, Ratna, Utsav, Ankur, Zabeen, Ashiya, Abhishek, Amit.  2021.  Multiple Security Threats with Its Solution in Internet of Things (IoT). 2021 4th International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE). :221–223.
This paper deals with the different security issues and their probable solution related to the Internet of things (IoT). We firstly examine and found out the basic possible threats and security attacks in IoT. As we all are familiar with the fact that IoT had its impact in today’s era. We are very much dependent on smart technologies these days. Security is always an immense challenge in the IoT domain. We had tried to focus on some of the most common possible attacks and also examined the layer of the system model of IoT in which it had happened. In the later section of the paper, we had proposed all the possible solutions for the issues and attacks. This work will be used for giving some possible solutions for the attacks in different layers and we can stop them at the earliest.
Kumar, Vinod, Jha, Rakesh Kumar, Jain, Sanjeev.  2021.  Security Issues in Narrowband-IoT: Towards Green Communication. 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS). :369–371.
In the security platform of Internet of Things (IoT), a licensed Low Power Wide Area Network (LPWAN) technology, named Narrowband Internet of Things (NB-IoT) is playing a vital role in transferring the information between objects. This technology is preferable for applications having a low data rate. As the number of subscribers increases, attack possibilities raise simultaneously. So securing the transmission between the objects becomes a big task. Bandwidth spoofing is one of the most sensitive attack that can be performed on the communication channel that lies between the access point and user equipment. This research proposal objective is to secure the system from the attack based on Unmanned Aerial vehicles (UAVs) enabled Small Cell Access (SCA) device which acts as an intruder between the user and valid SCA and investigating the scenario when any intruder device comes within the communication range of the NB-IoT enabled device. Here, this article also proposed a mathematical solution for the proposed scenario.
2022-09-29
Wei, Song, Zhang, Kun, Tu, Bibo.  2021.  Performance Impact of Host Kernel Page Table Isolation on Virtualized Servers. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :912–919.
As Meltdown mitigation, Kernel Page Table I solation (KPTI) was merged into Linux kernel mainline, and the performance impact is significant on x86 processors. Most of the previous work focuses on how KPTI affects Linux kernel performance within the scope of virtual machines or physical machines on x86. However, whether host KPTI affects virtual machines has not been well studied. What's more, there is relatively little research on ARM CPUs. This paper presents an in-depth study of how KPTI on the host affects the virtualized server performance and compares ARMv8 and x86. We first run several application benchmarks to demonstrate the performance impact does exist. The reason is that with a para-virtual I/O scheme, guest offloads I/O requests to the host side, which may incur user/kernel transitions. For the network I/O, when using QEMU as the back-end device, we saw a 1.7% and 5.5% slowdown on ARMv8 and x86, respectively. vhost and vhost-user, originally proposed to optimize performance, inadvertently mitigate the performance impact introduced by host KPTI. For CPU and memory-intensive benchmarks, the performance impact is trivial. We also find that virtual machines on ARMv8 are less affected by KPTI. To diagnose the root cause, we port HyperBench to the ARM virtualization platform. The final results show that swapping the translation table pointer register on ARMv8 is about 3.5x faster than x86. Our findings have significant implications for tuning the x86 virtualization platform's performance and helping ARMv8 administrators enable KPTI with confidence.
2022-09-20
Wang, Xuelei, Fidge, Colin, Nourbakhsh, Ghavameddin, Foo, Ernest, Jadidi, Zahra, Li, Calvin.  2021.  Feature Selection for Precise Anomaly Detection in Substation Automation Systems. 2021 13th IEEE PES Asia Pacific Power & Energy Engineering Conference (APPEEC). :1—6.
With the rapid advancement of the electrical grid, substation automation systems (SASs) have been developing continuously. However, with the introduction of advanced features, such as remote control, potential cyber security threats in SASs are also increased. Additionally, crucial components in SASs, such as protection relays, usually come from third-party vendors and may not be fully trusted. Untrusted devices may stealthily perform harmful or unauthorised behaviours which could compromise or damage SASs, and therefore, bring adverse impacts to the primary plant. Thus, it is necessary to detect abnormal behaviours from an untrusted device before it brings about catastrophic impacts. Anomaly detection techniques are suitable to detect anomalies in SASs as they only bring minimal side-effects to normal system operations. Many researchers have developed various machine learning algorithms and mathematical models to improve the accuracy of anomaly detection. However, without prudent feature selection, it is difficult to achieve high accuracy when detecting attacks launched from internal trusted networks, especially for stealthy message modification attacks which only modify message payloads slightly and imitate patterns of benign behaviours. Therefore, this paper presents choices of features which improve the accuracy of anomaly detection within SASs, especially for detecting “stealthy” attacks. By including two additional features, Boolean control data from message payloads and physical values from sensors, our method improved the accuracy of anomaly detection by decreasing the false-negative rate from 25% to 5% approximately.
Rajput, Prashant Hari Narayan, Sarkar, Esha, Tychalas, Dimitrios, Maniatakos, Michail.  2021.  Remote Non-Intrusive Malware Detection for PLCs based on Chain of Trust Rooted in Hardware. 2021 IEEE European Symposium on Security and Privacy (EuroS&P). :369—384.
Digitization has been rapidly integrated with manufacturing industries and critical infrastructure to increase efficiency, productivity, and reduce wastefulness, a transition being labeled as Industry 4.0. However, this expansion, coupled with the poor cybersecurity posture of these Industrial Internet of Things (IIoT) devices, has made them prolific targets for exploitation. Moreover, modern Programmable Logic Controllers (PLC) used in the Operational Technology (OT) sector are adopting open-source operating systems such as Linux instead of proprietary software, making such devices susceptible to Linux-based malware. Traditional malware detection approaches cannot be applied directly or extended to such environments due to the unique restrictions of these PLC devices, such as limited computational power and real-time requirements. In this paper, we propose ORRIS, a novel lightweight and out-of-the-device framework that detects malware at both kernel and user-level by processing the information collected using the Joint Test Action Group (JTAG) interface. We evaluate ORRIS against in-the-wild Linux malware achieving maximum detection accuracy of ≈99.7% with very few false-positive occurrences, a result comparable to the state-of-the-art commercial products. Moreover, we also develop and demonstrate a real-time implementation of ORRIS for commercial PLCs.
Afzal-Houshmand, Sam, Homayoun, Sajad, Giannetsos, Thanassis.  2021.  A Perfect Match: Deep Learning Towards Enhanced Data Trustworthiness in Crowd-Sensing Systems. 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom). :258—264.
The advent of IoT edge devices has enabled the collection of rich datasets, as part of Mobile Crowd Sensing (MCS), which has emerged as a key enabler for a wide gamut of safety-critical applications ranging from traffic control, environmental monitoring to assistive healthcare. Despite the clear advantages that such unprecedented quantity of data brings forth, it is also subject to inherent data trustworthiness challenges due to factors such as malevolent input and faulty sensors. Compounding this issue, there has been a plethora of proposed solutions, based on the use of traditional machine learning algorithms, towards assessing and sifting faulty data without any assumption on the trustworthiness of their source. However, there are still a number of open issues: how to cope with the presence of strong, colluding adversaries while at the same time efficiently managing this high influx of incoming user data. In this work, we meet these challenges by proposing the hybrid use of Deep Learning schemes (i.e., LSTMs) and conventional Machine Learning classifiers (i.e. One-Class Classifiers) for detecting and filtering out false data points. We provide a prototype implementation coupled with a detailed performance evaluation under various (attack) scenarios, employing both real and synthetic datasets. Our results showcase how the proposed solution outperforms various existing resilient aggregation and outlier detection schemes.
2022-09-16
Ogundoyin, Sunday Oyinlola, Kamil, Ismaila Adeniyi.  2021.  A Lightweight Authentication and Key Agreement Protocol for Secure Fog-to-Fog Collaboration. 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom). :348—353.
The fusion of peer-to-peer (P2P) fog network and the traditional three-tier fog computing architecture allows fog devices to conjointly pool their resources together for improved service provisioning and better bandwidth utilization. However, any unauthorized access to the fog network may have calamitous consequences. In this paper, a new lightweight two-party authenticated and key agreement (AKA) protocol is proposed for fog-to-fog collaboration. The security analysis of the protocol reveals that it is resilient to possible attacks. Moreover, the validation of the protocol conducted using the broadly-accepted Automated Verification of internet Security Protocols and Applications (AVISPA) shows that it is safe for practical deployment. The performance evaluation in terms of computation and communication overheads demonstrates its transcendence over the state-of-the-art protocols.
2022-09-09
Tan, Mingtian, Wan, Junpeng, Zhou, Zhe, Li, Zhou.  2021.  Invisible Probe: Timing Attacks with PCIe Congestion Side-channel. 2021 IEEE Symposium on Security and Privacy (SP). :322—338.
PCIe (Peripheral Component Interconnect express) protocol is the de facto protocol to bridge CPU and peripheral devices like GPU, NIC, and SSD drive. There is an increasing demand to install more peripheral devices on a single machine, but the PCIe interfaces offered by Intel CPUs are fixed. To resolve such contention, PCIe switch, PCH (Platform Controller Hub), or virtualization cards are installed on the machine to allow multiple devices to share a PCIe interface. Congestion happens when the collective PCIe traffic from the devices overwhelm the PCIe link capacity, and transmission delay is then introduced.In this work, we found the PCIe delay not only harms device performance but also leaks sensitive information about a user who uses the machine. In particular, as user’s activities might trigger data movement over PCIe (e.g., between CPU and GPU), by measuring PCIe congestion, an adversary accessing another device can infer the victim’s secret indirectly. Therefore, the delay resulted from I/O congestion can be exploited as a side-channel. We demonstrate the threat from PCIe congestion through 2 attack scenarios and 4 victim settings. Specifically, an attacker can learn the workload of a GPU in a remote server by probing a RDMA NIC that shares the same PCIe switch and measuring the delays. Based on the measurement, the attacker is able to know the keystroke timings of the victim, what webpage is rendered on the GPU, and what machine-learning model is running on the GPU. Besides, when the victim is using a low-speed device, e.g., an Ethernet NIC, an attacker controlling an NVMe SSD can launch a similar attack when they share a PCH or virtualization card. The evaluation result shows our attack can achieve high accuracy (e.g., 96.31% accuracy in inferring webpage visited by a victim).
Liu, Xu, Fang, Dongxu, Xu, Peng.  2021.  Automated Performance Benchmarking Platform of IaaS Cloud. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1402—1405.
With the rapid development of cloud computing, IaaS (Infrastructure as a Service) becomes more and more popular. IaaS customers may not clearly know the actual performance of each cloud platform. Moreover, there are no unified standards in performance evaluation of IaaS VMs (virtual machine). The underlying virtualization technology of IaaS cloud is transparent to customers. In this paper, we will design an automated performance benchmarking platform which can automatically install, configure and execute each benchmarking tool with a configuration center. This platform can easily visualize multidimensional benchmarking parameters data of each IaaS cloud platform. We also rented four IaaS VMs from AliCloud-Beijing, AliCloud-Qingdao, UCloud and Huawei to validate our benchmarking system. Performance comparisons of multiple parameters between multiple platforms were shown in this paper. However, in practice, customers' applications running on VMs are often complex. Performance of complex applications may not depend on single benchmarking parameter (e.g. CPU, memory, disk I/O etc.). We ran a TPC-C test for example to get overall performance in MySQL application scenario. The effects of different benchmarking parameters differ in this specific scenario.
Guo, Shaoying, Xu, Yanyun, Huang, Weiqing, Liu, Bo.  2021.  Specific Emitter Identification via Variational Mode Decomposition and Histogram of Oriented Gradient. 2021 28th International Conference on Telecommunications (ICT). :1—6.
Specific emitter identification (SEI) is a physical-layer-based approach for enhancing wireless communication network security. A well-done SEI method can be widely applied in identifying the individual wireless communication device. In this paper, we propose a novel specific emitter identification method based on variational mode decomposition and histogram of oriented gradient (VMD-HOG). The signal is decomposed into specific temporal modes via VMD and HOG features are obtained from the time-frequency spectrum of temporal modes. The performance of the proposed method is evaluated both in single hop and relaying scenarios and under three channels with the number of emitters varying. Results depict that our proposed method provides great identification performance for both simulated signals and realistic data of Zigbee devices and outperforms the two existing methods in identification accuracy and computational complexity.
2022-08-26
Pande, Prateek, Mallaiah, Kurra, Gandhi, Rishi Kumar, Medatiya, Amit Kumar, Srinivasachary, S.  2021.  Fine Grained Confinement of Untrusted Third-Party Applications in Android. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :372—376.
Third party mobile applications are dominating the business strategies of organisations and have become an integral part of personal life of individuals. These applications are used for financial transactions, sharing of sensitive data etc. The recent breaches in Android clearly indicate that use of third party applications have become a serious security threat. By design, Android framework keeps all these applications in untrusted domain. Due to this a common policy of resource control exists for all such applications. Further, user discretion in granting permissions to specific applications is not effective because users are not always aware of deep functionalities, mala fide intentions (in case of spywares) and bugs/flaws in these third-party applications. In this regard, we propose a security scheme to mitigate unauthorised access of resources by third party applications. Our proposed scheme is based on SEAndroid policies and achieves fine grained confinement with respect to access control for the third party applications. To the best of our knowledge, the proposed scheme is unique and first of its kind. The proposed scheme is integrated with Android Oreo 8.1.0 for performance and security analysis. It is compatible with any Android device with AOSP support.
Xu, Chao, Cheng, Yiqing, Cheng, Weihua, Ji, Shen, Li, Wei.  2021.  Security Protection Scheme of Embedded System Running Environment based on TCM. 2021 2nd International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT). :636–641.
Mobile embedded terminals widely applied in individual lives, but its security threats become more and more serious. Malicious attacker can steal sensitive information such as user’s phonebook, credit card information by instrumenting malicious programs, or compromising vulnerable software. Against these problems, this paper proposes a scheme for trusted protection system on the embedded platform. The system uses SM algorithms and hardware security chip as the root of trust to establish security mechanisms, including trusted boot of system image, trusted monitoring of the system running environment, disk partition encryption and verification, etc. These security mechanisms provide comprehensive protection to embedded system boot, runtime and long-term storage devices. This paper introduces the architecture and principles of the system software, design system security functions and implement prototype system for protection of embedded OS. The experiments results indicates the promotion of embedded system security and the performance test shows that encryption performance can meet the practical application.
Mamushiane, Lusani, Shozi, Themba.  2021.  A QoS-based Evaluation of SDN Controllers: ONOS and OpenDayLight. 2021 IST-Africa Conference (IST-Africa). :1–10.
SDN marks a paradigm shift towards an externalized and logically centralized controller, unlike the legacy networks where control and data planes are tightly coupled. The controller has a comprehensive view of the network, offering flexibility to enforce new traffic engineering policies and easing automation. In SDN, a high performance controller is required for efficient traffic management. In this paper, we conduct a performance evaluation of two distributed SDN controllers, namely ONOS and OpenDayLight. Specifically, we use the Mininet emulation environment to emulate different topologies and the D-ITG traffic generator to evaluate aforementioned controllers based on metrics such as delay, jitter and packet loss. The experimental results show that ONOS provides a significantly higher latency, jitter and low packet loss than OpenDayLight in all topologies. We attribute the poor performance of OpenDayLight to its excessive CPU utilization and propose the use of Hyper-threading to improve its performance. This work provides practitioners in the telecoms industry with guidelines towards making informed controller selection decisions