Visible to the public Biblio

Found 309 results

Filters: Keyword is performance evaluation  [Clear All Filters]
2021-05-13
Ahmed, Farooq, Li, Xudong, Niu, Yukun, Zhang, Chi, Wei, Lingbo, Gu, Chengjie.  2020.  UniRoam: An Anonymous and Accountable Authentication Scheme for Cross-Domain Access. 2020 International Conference on Networking and Network Applications (NaNA). :198—205.
In recent years, cross-domain roaming through Wi-Fi is ubiquitous, and the number of roaming users has increased dramatically. It is essential to authenticate users belonging to different institutes to ensure network privacy and security. Existing systems, such as eduroam, have centralized and hierarchical structure on indorse accounts that create privacy and security issues. We have proposed UniRoam, a blockchain-based cross-domain authentication scheme that provides accountability and anonymity without any trusted authority. Unlike traditional centralized approaches, UniRoam provides access authentication for its servers and users to provide anonymity and accountability without any privacy leakage issues efficiently. By using the sovrin identifier as an anonymous identity, we integrate our system with Hyperledger and Intel SGX to authenticate users that preserves both anonymity and trust when the user connects to the network. Therefore, UniRoam is highly “faulted-tolerant” to deal with different attacks and provides an effective solution that can be deployed easily in different environments.
2021-05-03
Zhu, Fangzhou, Liu, Liang, Meng, Weizhi, Lv, Ting, Hu, Simin, Ye, Renjun.  2020.  SCAFFISD: A Scalable Framework for Fine-Grained Identification and Security Detection of Wireless Routers. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1194–1199.

The security of wireless network devices has received widespread attention, but most existing schemes cannot achieve fine-grained device identification. In practice, the security vulnerabilities of a device are heavily depending on its model and firmware version. Motivated by this issue, we propose a universal, extensible and device-independent framework called SCAFFISD, which can provide fine-grained identification of wireless routers. It can generate access rules to extract effective information from the router admin page automatically and perform quick scans for known device vulnerabilities. Meanwhile, SCAFFISD can identify rogue access points (APs) in combination with existing detection methods, with the purpose of performing a comprehensive security assessment of wireless networks. We implement the prototype of SCAFFISD and verify its effectiveness through security scans of actual products.

2021-04-27
Khalid, O., Senthilananthan, S..  2020.  A review of data analytics techniques for effective management of big data using IoT. 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA). :1—10.
IoT and big data are energetic technology of the world for quite a time, and both of these have become a necessity. On the one side where IoT is used to connect different objectives via the internet, the big data means having a large number of the set of structured, unstructured, and semi-structured data. The device used for processing based on the tools used. These tools help provide meaningful information used for effective management in different domains. Some of the commonly faced issues with the inadequate about the technologies are related to data privacy, insufficient analytical capabilities, and this issue is faced by in different domains related to the big data. Data analytics tools help discover the pattern of data and consumer preferences which is resulting in better decision making for the organizations. The major part of this work is to review different types of data analytics techniques for the effective management of big data using IoT. For the effective management of the ABD solution collection, analysis and control are used as the components. Each of the ingredients is described to find an effective way to manage big data. These components are considered and used in the validation criteria. The solution of effective data management is a stage towards the management of big data in IoT devices which will help the user to understand different types of elements of data management.
2021-04-08
Yang, Z., Li, X., Wei, L., Zhang, C., Gu, C..  2020.  SGX-ICN: A Secure and Privacy-Preserving Information-Centric Networking with SGX Enclaves. 2020 3rd International Conference on Hot Information-Centric Networking (HotICN). :142–147.
As the next-generation network architecture, Information-Centric Networking (ICN) has emerged as a novel paradigm to cope with the increasing demand for content delivery on the Internet. In contrast to the conventional host-centric architectures, ICN focuses on content retrieval based on their name rather than their storage location. However, ICN is vulnerable to various security and privacy attacks due to the inherent attributes of the ICN architectures. For example, a curious ICN node can monitor the network traffic to reveal the sensitive data issued by specific users. Hence, further research on privacy protection for ICN is needed. This paper presents a practical approach to effectively enhancing the security and privacy of ICN by utilizing Intel SGX, a commodity trusted execution environment. The main idea is to leverage secure enclaves residing on ICN nodes to do computations on sensitive data. Performance evaluations on the real-world datasets demonstrate the efficiency of the proposed scheme. Moreover, our scheme outperforms the cryptography based method.
Nasir, N. A., Jeong, S.-H..  2020.  Testbed-based Performance Evaluation of the Information-Centric Network. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :166–169.
Proliferation of the Internet usage is rapidly increasing, and it is necessary to support the performance requirements for multimedia applications, including lower latency, improved security, faster content retrieval, and adjustability to the traffic load. Nevertheless, because the current Internet architecture is a host-oriented one, it often fails to support the necessary demands such as fast content delivery. A promising networking paradigm called Information-Centric Networking (ICN) focuses on the name of the content itself rather than the location of that content. A distinguished alternative to this ICN concept is Content-Centric Networking (CCN) that exploits more of the performance requirements by using in-network caching and outperforms the current Internet in terms of content transfer time, traffic load control, mobility support, and efficient network management. In this paper, instead of using the saturated method of validating a theory by simulation, we present a testbed-based performance evaluation of the ICN network. We used several new functions of the proposed testbed to improve the performance of the basic CCN. In this paper, we also show that the proposed testbed architecture performs better in terms of content delivery time compared to the basic CCN architecture through graphical results.
2021-03-17
Sadu, A., Stevic, M., Wirtz, N., Monti, A..  2020.  A Stochastic Assessment of Attacks based on Continuous-Time Markov Chains. 2020 6th IEEE International Energy Conference (ENERGYCon). :11—16.

With the increasing interdependence of critical infrastructures, the probability of a specific infrastructure to experience a complex cyber-physical attack is increasing. Thus it is important to analyze the risk of an attack and the dynamics of its propagation in order to design and deploy appropriate countermeasures. The attack trees, commonly adopted to this aim, have inherent shortcomings in representing interdependent, concurrent and sequential attacks. To overcome this, the work presented here proposes a stochastic methodology using Petri Nets and Continuous Time Markov Chain (CTMC) to analyze the attacks, considering the individual attack occurrence probabilities and their stochastic propagation times. A procedure to convert a basic attack tree into an equivalent CTMC is presented. The proposed method is applied in a case study to calculate the different attack propagation characteristics. The characteristics are namely, the probability of reaching the root node & sub attack nodes, the mean time to reach the root node and the mean time spent in the sub attack nodes before reaching the root node. Additionally, the method quantifies the effectiveness of specific defenses in reducing the attack risk considering the efficiency of individual defenses.

2021-03-15
Chang, H.-C., Lin, C.-Y., Liao, D.-J., Koo, T.-M..  2020.  The Modbus Protocol Vulnerability Test in Industrial Control Systems. 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :375—378.

Industrial Control Systems (ICSs) are widely used in critical infrastructure around the world to provide services that sustain peoples' livelihoods and economic operations. However, compared with the critical infrastructure, the security of the ICS itself is still insufficient, and there will be a degree of damage, if it is attacked or invaded. In the past, an ICS was designed to operate in a traditional closed network, so the industrial equipment and transmission protocol lacked security verification. In addition, an ICS has high availability requirements, so that its equipment is rarely replaced and upgraded. Although many scholars have proposed the defense mechanism that is applicable to ICS in the past, there is still a lack of tested means to verify these defense technologies. The purpose of this study is to analyze the security of a system using the Modbus transmission protocol in an ICS, to establish a modular security test system based on four types of attacks that have been identified in the past literature, namely, a detection attack, a command injection attack, a response injection attack and a denial of service, to implement the attack results and to display the process in the virtual environment of Conpot and Rapid SCADA, and finally, to adopt the ICS security standards mentioned by previous scholars, namely, confidentiality, integrity and availability, as the performance evaluation criteria of this study.

2021-03-09
Liu, G., Quan, W., Cheng, N., Lu, N., Zhang, H., Shen, X..  2020.  P4NIS: Improving network immunity against eavesdropping with programmable data planes. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :91—96.

Due to improving computational capacity of supercomputers, transmitting encrypted packets via one single network path is vulnerable to brute-force attacks. The versatile attackers secretly eavesdrop all the packets, classify packets into different streams, performs an exhaustive search for the decryption key, and extract sensitive personal information from the streams. However, new Internet Protocol (IP) brings great opportunities and challenges for preventing eavesdropping attacks. In this paper, we propose a Programming Protocol-independent Packet Processors (P4) based Network Immune Scheme (P4NIS) against the eavesdropping attacks. Specifically, P4NIS is equipped with three lines of defense to improve the network immunity. The first line is promiscuous forwarding by splitting all the traffic packets in different network paths disorderly. Complementally, the second line encrypts transmission port fields of the packets using diverse encryption algorithms. The encryption could distribute traffic packets from one stream into different streams, and disturb eavesdroppers to classify them correctly. Besides, P4NIS inherits the advantages from the existing encryption-based countermeasures which is the third line of defense. Using a paradigm of programmable data planes-P4, we implement P4NIS and evaluate its performances. Experimental results show that P4NIS can increase difficulties of eavesdropping significantly, and increase transmission throughput by 31.7% compared with state-of-the-art mechanisms.

Injadat, M., Moubayed, A., Shami, A..  2020.  Detecting Botnet Attacks in IoT Environments: An Optimized Machine Learning Approach. 2020 32nd International Conference on Microelectronics (ICM). :1—4.

The increased reliance on the Internet and the corresponding surge in connectivity demand has led to a significant growth in Internet-of-Things (IoT) devices. The continued deployment of IoT devices has in turn led to an increase in network attacks due to the larger number of potential attack surfaces as illustrated by the recent reports that IoT malware attacks increased by 215.7% from 10.3 million in 2017 to 32.7 million in 2018. This illustrates the increased vulnerability and susceptibility of IoT devices and networks. Therefore, there is a need for proper effective and efficient attack detection and mitigation techniques in such environments. Machine learning (ML) has emerged as one potential solution due to the abundance of data generated and available for IoT devices and networks. Hence, they have significant potential to be adopted for intrusion detection for IoT environments. To that end, this paper proposes an optimized ML-based framework consisting of a combination of Bayesian optimization Gaussian Process (BO-GP) algorithm and decision tree (DT) classification model to detect attacks on IoT devices in an effective and efficient manner. The performance of the proposed framework is evaluated using the Bot-IoT-2018 dataset. Experimental results show that the proposed optimized framework has a high detection accuracy, precision, recall, and F-score, highlighting its effectiveness and robustness for the detection of botnet attacks in IoT environments.

Hegde, M., Kepnang, G., Mazroei, M. Al, Chavis, J. S., Watkins, L..  2020.  Identification of Botnet Activity in IoT Network Traffic Using Machine Learning. 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :21—27.

Today our world benefits from Internet of Things (IoT) technology; however, new security problems arise when these IoT devices are introduced into our homes. Because many of these IoT devices have access to the Internet and they have little to no security, they make our smart homes highly vulnerable to compromise. Some of the threats include IoT botnets and generic confidentiality, integrity, and availability (CIA) attacks. Our research explores botnet detection by experimenting with supervised machine learning and deep-learning classifiers. Further, our approach assesses classifier performance on unbalanced datasets that contain benign data, mixed in with small amounts of malicious data. We demonstrate that the classifiers can separate malicious activity from benign activity within a small IoT network dataset. The classifiers can also separate malicious activity from benign activity in increasingly larger datasets. Our experiments have demonstrated incremental improvement in results for (1) accuracy, (2) probability of detection, and (3) probability of false alarm. The best performance results include 99.9% accuracy, 99.8% probability of detection, and 0% probability of false alarm. This paper also demonstrates how the performance of these classifiers increases, as IoT training datasets become larger and larger.

Venkataramana, B., Jadhav, A..  2020.  Performance Evaluation of Routing Protocols under Black Hole Attack in Cognitive Radio Mesh Network. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). :98–102.
Wireless technology is rapidly proliferating. Devices such as Laptops, PDAs and cell-phones gained a lot of importance due to the use of wireless technology. Nowadays there is also a huge demand for spectrum allocation and there is a need to utilize the maximum available spectrum in efficient manner. Cognitive Radio (CR) Network is one such intelligent radio network, designed to utilize the maximum licensed bandwidth to un-licensed users. Cognitive Radio has the capability to understand unused spectrum at a given time at a specific location. This capability helps to minimize the interference to the licensed users and improves the performance of the network. Routing protocol selection is one of the main strategies to design any wireless or wired networks. In Cognitive radio networks the selected routing protocol should be best in terms of establishing an efficient route, addressing challenges in network topology and should be able to reduce bandwidth consumption. Performance analysis of the protocols helps to select the best protocol in the network. Objective of this study is to evaluate performance of various cognitive radio network routing protocols like Spectrum Aware On Demand Routing Protocol (SORP), Spectrum Aware Mesh Routing in Cognitive Radio Networks (SAMER) and Dynamic Source Routing (DSR) with and without black hole attack using various performance parameters like Throughput, E2E delay and Packet delivery ratio with the help of NS2 simulator.
Herrera, A. E. Hinojosa, Walshaw, C., Bailey, C..  2020.  Improving Black Box Classification Model Veracity for Electronics Anomaly Detection. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :1092–1097.
Data driven classification models are useful to assess quality of manufactured electronics. Because decisions are taken based on the models, their veracity is relevant, covering aspects such as accuracy, transparency and clarity. The proposed BB-Stepwise algorithm aims to improve the classification model transparency and accuracy of black box models. K-Nearest Neighbours (KNN) is a black box model which is easy to implement and has achieved good classification performance in different applications. In this paper KNN-Stepwise is illustrated for fault detection of electronics devices. The results achieved shows that the proposed algorithm was able to improve the accuracy, veracity and transparency of KNN models and achieve higher transparency and clarity, and at least similar accuracy than when using Decision Tree models.
2021-03-04
Nugraha, B., Nambiar, A., Bauschert, T..  2020.  Performance Evaluation of Botnet Detection using Deep Learning Techniques. 2020 11th International Conference on Network of the Future (NoF). :141—149.

Botnets are one of the major threats on the Internet. They are used for malicious activities to compromise the basic network security goals, namely Confidentiality, Integrity, and Availability. For reliable botnet detection and defense, deep learning-based approaches were recently proposed. In this paper, four different deep learning models, namely Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), hybrid CNN-LSTM, and Multi-layer Perception (MLP) are applied for botnet detection and simulation studies are carried out using the CTU-13 botnet traffic dataset. We use several performance metrics such as accuracy, sensitivity, specificity, precision, and F1 score to evaluate the performance of each model on classifying both known and unknown (zero-day) botnet traffic patterns. The results show that our deep learning models can accurately and reliably detect both known and unknown botnet traffic, and show better performance than other deep learning models.

2021-02-16
Mujib, M., Sari, R. F..  2020.  Performance Evaluation of Data Center Network with Network Micro-segmentation. 2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE). :27—32.

Research on the design of data center infrastructure is increasing, both from academia and industry, due to the rapid development of cloud-based applications such as search engines, social networks, and large-scale computing. On a large scale, data centers can consist of hundreds to thousands of servers that require systems with high-performance requirements and low downtime. To meet the network's needs in a dynamic data center, infrastructure of applications and services are growing. It takes a process of designing a network topology so that it can guarantee availability and security. One way to surmount this is by implementing the zero trust security model based on micro-segmentation. Zero trust is a security idea based on the principle of "never trust, always verify" in which no concepts of trust and untrust in network traffic. The zero trust security model implemented network traffic in the form of untrust. Micro-segmentation is a way to achieve zero trust by dividing a network into smaller logical segments to restrict the traffic. In this research, data center network performance based on software-defined networking with zero trust security model using micro-segmentation has been evaluated using a testbed simulation of Cisco Application Centric Infrastructure by measuring the round trip time, jitter, and packet loss during experiments. Performance evaluation results show that micro-segmentation adds an average round trip time of 4 μs and jitter of 11 μs without packet loss so that the security can be improved without significantly affecting network performance on the data center.

2021-02-08
Nikouei, S. Y., Chen, Y., Faughnan, T. R..  2018.  Smart Surveillance as an Edge Service for Real-Time Human Detection and Tracking. 2018 IEEE/ACM Symposium on Edge Computing (SEC). :336—337.

Monitoring for security and well-being in highly populated areas is a critical issue for city administrators, policy makers and urban planners. As an essential part of many dynamic and critical data-driven tasks, situational awareness (SAW) provides decision-makers a deeper insight of the meaning of urban surveillance. Thus, surveillance measures are increasingly needed. However, traditional surveillance platforms are not scalable when more cameras are added to the network. In this work, a smart surveillance as an edge service has been proposed. To accomplish the object detection, identification, and tracking tasks at the edge-fog layers, two novel lightweight algorithms are proposed for detection and tracking respectively. A prototype has been built to validate the feasibility of the idea, and the test results are very encouraging.

Saleh, A. H., Yousif, A. S., Ahmed, F. Y. H..  2020.  Information Hiding for Text Files by Adopting the Genetic Algorithm and DNA Coding. 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE). :220–223.
Hiding information is a process to hide data or include it in different digital media such as image, audio, video, and text. However, there are many techniques to achieve the process of hiding information in the image processing, in this paper, a new method has been proposed for hidden data mechanism (which is a text file), then a transposition cipher method has been employed for encryption completed. It can be used to build an encrypted text and also to increase security against possible attacks while sending it over the World Wide Web. A genetic algorithm has been affected in the adjustment of the encoded text and DNA in the creation of an encrypted text that is difficult to detect and then include in the image and that affected the image visual quality. The proposed method outperforms the state of arts in terms of efficiently retrieving the embedded messages. Performance evaluation has been recorded high visual quality scores for the (SNR (single to noise ratio), PSNR (peak single to noise ratio) and MSE (mean square error).
2021-01-20
Zarazaga, P. P., Bäckström, T., Sigg, S..  2020.  Acoustic Fingerprints for Access Management in Ad-Hoc Sensor Networks. IEEE Access. 8:166083—166094.

Voice user interfaces can offer intuitive interaction with our devices, but the usability and audio quality could be further improved if multiple devices could collaborate to provide a distributed voice user interface. To ensure that users' voices are not shared with unauthorized devices, it is however necessary to design an access management system that adapts to the users' needs. Prior work has demonstrated that a combination of audio fingerprinting and fuzzy cryptography yields a robust pairing of devices without sharing the information that they record. However, the robustness of these systems is partially based on the extensive duration of the recordings that are required to obtain the fingerprint. This paper analyzes methods for robust generation of acoustic fingerprints in short periods of time to enable the responsive pairing of devices according to changes in the acoustic scenery and can be integrated into other typical speech processing tools.

2021-01-11
Tiwari, P., Skanda, C. S., Sanjana, U., Aruna, S., Honnavalli, P..  2020.  Secure Wipe Out in BYOD Environment. 2020 International Workshop on Big Data and Information Security (IWBIS). :109–114.
Bring Your Own Device (BYOD) is a new trend where employees use their personal devices to connect to their organization networks to access sensitive information and work-related systems. One of the primary challenges in BYOD is to securely delete company data when an employee leaves an organization. In common BYOD programs, the personal device in use is completely wiped out. This may lead to the deletion of personal data during exit procedures. Due to performance and deletion latency, erasure of data in most file systems today results in unlinking the file location and marking data blocks as unused. This may suffice the need of a normal user trying to delete unwanted files but the file content is not erased from the data blocks and can be retrieved with the help of various data recovery and forensic tools. In this paper, we discuss: (1) existing work related to secure deletion, and (2) secure and selective deletion methods that delete only the required files or directories without tampering personal data. We present two per-file deletion methods: Overwriting data and Encryption based deletion which erase specific files securely. Our proposed per-file deletion methods reduce latency and performance overheads caused by overwriting an entire disk.
2020-12-28
Menaka, R., Mathana, J. M., Dhanagopal, R., Sundarambal, B..  2020.  Performance Evaluation of DSR Protocol in MANET Untrustworthy Environment. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :1049—1052.

In the Mobile Ad hoc Network, the entire nodes taken as routers and contribute transmission when the nodes are not in the range of transmission for the senders. Directing conventions for the ad hoc systems are intended for the indisposed system setting, on the supposition that all the hubs in the system are reliable. Dependability of the directing convention is endangered in the genuine setting as systems are assaulted by pernicious hubs which regularly will in general upset the correspondence. Right now, it is proposed to contemplate the exhibition of the DSR convention under deceitful conditions. Another strategy is proposed to recognize untrue nodes dependent on the RREQ control parcel arrangement.

Antonioli, D., Tippenhauer, N. O., Rasmussen, K..  2020.  BIAS: Bluetooth Impersonation AttackS. 2020 IEEE Symposium on Security and Privacy (SP). :549—562.
Bluetooth (BR/EDR) is a pervasive technology for wireless communication used by billions of devices. The Bluetooth standard includes a legacy authentication procedure and a secure authentication procedure, allowing devices to authenticate to each other using a long term key. Those procedures are used during pairing and secure connection establishment to prevent impersonation attacks. In this paper, we show that the Bluetooth specification contains vulnerabilities enabling to perform impersonation attacks during secure connection establishment. Such vulnerabilities include the lack of mandatory mutual authentication, overly permissive role switching, and an authentication procedure downgrade. We describe each vulnerability in detail, and we exploit them to design, implement, and evaluate master and slave impersonation attacks on both the legacy authentication procedure and the secure authentication procedure. We refer to our attacks as Bluetooth Impersonation AttackS (BIAS).Our attacks are standard compliant, and are therefore effective against any standard compliant Bluetooth device regardless the Bluetooth version, the security mode (e.g., Secure Connections), the device manufacturer, and the implementation details. Our attacks are stealthy because the Bluetooth standard does not require to notify end users about the outcome of an authentication procedure, or the lack of mutual authentication. To confirm that the BIAS attacks are practical, we successfully conduct them against 31 Bluetooth devices (28 unique Bluetooth chips) from major hardware and software vendors, implementing all the major Bluetooth versions, including Apple, Qualcomm, Intel, Cypress, Broadcom, Samsung, and CSR.
2020-12-14
Hadiansyah, R., Suryani, V., Wardana, A. A..  2020.  IoT Object Security towards the Sybil Attack Using the Trustworthiness Management. 2020 8th International Conference on Information and Communication Technology (ICoICT). :1–4.

Internet of Things (IoT), commonly referred to a physical object connected to network, refers to a paradigm in information technology integrating the advances in terms of sensing, computation and communication to improve the service in daily life. This physical object consists of sensors and actuators that are capable of changing the data to offer the improvement of service quality in daily life. When a data exchange occurs, the exchanged data become sensitive; making them vulnerable to any security attacks, one of which, for example, is Sybil attack. This paper aimed to propose a method of trustworthiness management based upon the authentication and trust value. Once performing the test on three scenarios, the system was found to be capable of detecting the Sybil attack rapidly and accurately. The average of time to detect the Sybil attacks was 9.3287 seconds and the average of time required to detect the intruder object in the system was 18.1029 seconds. The accuracy resulted in each scenario was found 100% indicating that the detection by the system to Sybil attack was 100% accurate.

2020-12-07
Islam, M. S., Verma, H., Khan, L., Kantarcioglu, M..  2019.  Secure Real-Time Heterogeneous IoT Data Management System. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :228–235.
The growing adoption of IoT devices in our daily life engendered a need for secure systems to safely store and analyze sensitive data as well as the real-time data processing system to be as fast as possible. The cloud services used to store and process sensitive data are often come out to be vulnerable to outside threats. Furthermore, to analyze streaming IoT data swiftly, they are in need of a fast and efficient system. The Paper will envision the aspects of complexity dealing with real time data from various devices in parallel, building solution to ingest data from different IOT devices, forming a secure platform to process data in a short time, and using various techniques of IOT edge computing to provide meaningful intuitive results to users. The paper envisions two modules of building a real time data analytics system. In the first module, we propose to maintain confidentiality and integrity of IoT data, which is of paramount importance, and manage large-scale data analytics with real-time data collection from various IoT devices in parallel. We envision a framework to preserve data privacy utilizing Trusted Execution Environment (TEE) such as Intel SGX, end-to-end data encryption mechanism, and strong access control policies. Moreover, we design a generic framework to simplify the process of collecting and storing heterogeneous data coming from diverse IoT devices. In the second module, we envision a drone-based data processing system in real-time using edge computing and on-device computing. As, we know the use of drones is growing rapidly across many application domains including real-time monitoring, remote sensing, search and rescue, delivery of goods, security and surveillance, civil infrastructure inspection etc. This paper demonstrates the potential drone applications and their challenges discussing current research trends and provide future insights for potential use cases using edge and on-device computing.
2020-12-01
Sunny, S. M. N. A., Liu, X., Shahriar, M. R..  2018.  Remote Monitoring and Online Testing of Machine Tools for Fault Diagnosis and Maintenance Using MTComm in a Cyber-Physical Manufacturing Cloud. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :532—539.

Existing systems allow manufacturers to acquire factory floor data and perform analysis with cloud applications for machine health monitoring, product quality prediction, fault diagnosis and prognosis etc. However, they do not provide capabilities to perform testing of machine tools and associated components remotely, which is often crucial to identify causes of failure. This paper presents a fault diagnosis system in a cyber-physical manufacturing cloud (CPMC) that allows manufacturers to perform diagnosis and maintenance of manufacturing machine tools through remote monitoring and online testing using Machine Tool Communication (MTComm). MTComm is an Internet scale communication method that enables both monitoring and operation of heterogeneous machine tools through RESTful web services over the Internet. It allows manufacturers to perform testing operations from cloud applications at both machine and component level for regular maintenance and fault diagnosis. This paper describes different components of the system and their functionalities in CPMC and techniques used for anomaly detection and remote online testing using MTComm. It also presents the development of a prototype of the proposed system in a CPMC testbed. Experiments were conducted to evaluate its performance to diagnose faults and test machine tools remotely during various manufacturing scenarios. The results demonstrated excellent feasibility to detect anomaly during manufacturing operations and perform testing operations remotely from cloud applications using MTComm.

2020-11-02
Shen, Hanji, Long, Chun, Li, Jun, Wan, Wei, Song, Xiaofan.  2018.  A Method for Performance Optimization of Virtual Network I/O Based on DPDK-SRIOV*. 2018 IEEE International Conference on Information and Automation (ICIA). :1550—1554.
Network security testing devices play important roles in Cyber security. Most of the current network security testing devices are based on proprietary hardware, however, the virtual network security tester needs high network I/O throughput performance. Therefore, the solution of the problem, which provides high-performance network I/O in the virtual scene will be explained in this paper. The method we proposed for virtualized network I/O performance optimization on a general hardware platform is able to achieve the I/O throughput performance of the proprietary hardware. The Single Root I/O Virtualization (SRIOV) of the physical network card is divided into a plurality of virtual network function of VF, furthermore, it can be added to different VF and VM. Extensive experiment illustrated that the virtualization and the physical network card sharing based on hardware are realized, and they can be used by Data Plane Development Kit (DPDK) and SRIOV technology. Consequently, the test instrument applications in virtual machines achieves the rate of 10Gps and meet the I/O requirement.
2020-10-30
Kang, Qiao, Lee, Sunwoo, Hou, Kaiyuan, Ross, Robert, Agrawal, Ankit, Choudhary, Alok, Liao, Wei-keng.  2020.  Improving MPI Collective I/O for High Volume Non-Contiguous Requests With Intra-Node Aggregation. IEEE Transactions on Parallel and Distributed Systems. 31:2682—2695.

Two-phase I/O is a well-known strategy for implementing collective MPI-IO functions. It redistributes I/O requests among the calling processes into a form that minimizes the file access costs. As modern parallel computers continue to grow into the exascale era, the communication cost of such request redistribution can quickly overwhelm collective I/O performance. This effect has been observed from parallel jobs that run on multiple compute nodes with a high count of MPI processes on each node. To reduce the communication cost, we present a new design for collective I/O by adding an extra communication layer that performs request aggregation among processes within the same compute nodes. This approach can significantly reduce inter-node communication contention when redistributing the I/O requests. We evaluate the performance and compare it with the original two-phase I/O on Cray XC40 parallel computers (Theta and Cori) with Intel KNL and Haswell processors. Using I/O patterns from two large-scale production applications and an I/O benchmark, we show our proposed method effectively reduces the communication cost and hence maintains the scalability for a large number of processes.