Visible to the public Biblio

Found 309 results

Filters: Keyword is performance evaluation  [Clear All Filters]
2020-06-01
Utomo, Subroto Budhi, Hendradjaya, Bayu.  2018.  Multifactor Authentication on Mobile Secure Attendance System. 2018 International Conference on ICT for Smart Society (ICISS). :1–5.
BYOD (Bring Your Own Device) trends allows employees to use the smartphone as a tool in everyday work and also as an attendance device. The security of employee attendance system is important to ensure that employees do not commit fraud in recording attendance and when monitoring activities at working hours. In this paper, we propose a combination of fingerprint, secure android ID, and GPS as authentication factors, also addition of anti emulator and anti fake location module turn Mobile Attendance System into Mobile Secure Attendance System. Testing based on scenarios that have been adapted to various possible frauds is done to prove whether the system can minimize the occurrence of fraud in attendance recording and monitoring of employee activities.
2020-05-15
Ascia, Giuseppe, Catania, Vincenzo, Monteleone, Salvatore, Palesi, Maurizio, Patti, Davide, Jose, John.  2019.  Networks-on-Chip based Deep Neural Networks Accelerators for IoT Edge Devices. 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS). :227—234.
The need for performing deep neural network inferences on resource-constrained embedded devices (e.g., Internet of Things nodes) requires specialized architectures to achieve the best trade-off among performance, energy, and cost. One of the most promising architectures in this context is based on massive parallel and specialized cores interconnected by means of a Network-on-Chip (NoC). In this paper, we extensively evaluate NoC-based deep neural network accelerators by exploring the design space spanned by several architectural parameters including, network size, routing algorithm, local memory size, link width, and number of memory interfaces. We show how latency is mainly dominated by the on-chip communication whereas energy consumption is mainly accounted by memory (both on-chip and off-chip). The outcome of the analysis, thus, pushes toward a research line devoted to the optimization of the on-chip communication fabric and the memory subsystem for performance improvement and energy efficiency, respectively.
J.Y.V., Manoj Kumar, Swain, Ayas Kanta, Kumar, Sudeendra, Sahoo, Sauvagya Ranjan, Mahapatra, Kamalakanta.  2018.  Run Time Mitigation of Performance Degradation Hardware Trojan Attacks in Network on Chip. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :738—743.
Globalization of semiconductor design and manufacturing has led to several hardware security issues. The problem of Hardware Trojans (HT) is one such security issue discussed widely in industry and academia. Adversary design engineer can insert the HT to leak confidential data, cause a denial of service attack or any other intention specific to the design. HT in cryptographic modules and processors are widely discussed. HT in Multi-Processor System on Chips (MPSoC) are also catastrophic, as most of the military applications use MPSoCs. Network on Chips (NoC) are standard communication infrastructure in modern day MPSoC. In this paper, we present a novel hardware Trojan which is capable of inducing performance degradation and denial of service attacks in a NoC. The presence of the Hardware Trojan in a NoC can compromise the crucial details of packets communicated through NoC. The proposed Trojan is triggered by a particular complex bit pattern from input messages and tries to mislead the packets away from the destined addresses. A mitigation method based on bit shuffling mechanism inside the router with a key directly extracted from input message is proposed to limit the adverse effects of the Trojan. The performance of a 4×4 NoC is evaluated under uniform traffic with the proposed Trojan and mitigation method. Simulation results show that the proposed mitigation scheme is useful in limiting the malicious effect of hardware Trojan.
2020-04-03
Gerl, Armin, Becher, Stefan.  2019.  Policy-Based De-Identification Test Framework. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:356—357.
Protecting privacy of individuals is a basic right, which has to be considered in our data-centered society in which new technologies emerge rapidly. To preserve the privacy of individuals de-identifying technologies have been developed including pseudonymization, personal privacy anonymization, and privacy models. Each having several variations with different properties and contexts which poses the challenge for the proper selection and application of de-identification methods. We tackle this challenge proposing a policy-based de-identification test framework for a systematic approach to experimenting and evaluation of various combinations of methods and their interplay. Evaluation of the experimental results regarding performance and utility is considered within the framework. We propose a domain-specific language, expressing the required complex configuration options, including data-set, policy generator, and various de-identification methods.
2020-03-16
Zhou, Yaqiu, Ren, Yongmao, Zhou, Xu, Yang, Wanghong, Qin, Yifang.  2019.  A Scientific Data Traffic Scheduling Algorithm Based on Software-Defined Networking. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :62–67.
Compared to ordinary Internet applications, the transfer of scientific data flows often has higher requirements for network performance. The network security devices and systems often affect the efficiency of scientific data transfer. As a new type of network architecture, Software-defined Networking (SDN) decouples the data plane from the control plane. Its programmability allows users to customize the network transfer path and makes the network more intelligent. The Science DMZ model is a private network for scientific data flow transfer, which can improve performance under the premise of ensuring network security. This paper combines SDN with Science DMZ, designs and implements an SDN-based traffic scheduling algorithm considering the load of link. In addition to distinguishing scientific data flow from common data flow, the algorithm further distinguishes the scientific data flows of different applications and performs different traffic scheduling of scientific data for specific link states. Experiments results proved that the algorithm can effectively improve the transmission performance of scientific data flow.
Kholidy, Hisham A..  2019.  Towards A Scalable Symmetric Key Cryptographic Scheme: Performance Evaluation and Security Analysis. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
In most applications, security attributes are pretty difficult to meet but it becomes even a bigger challenge when talking about Grid Computing. To secure data passes in Grid Systems, we need a professional scheme that does not affect the overall performance of the grid system. Therefore, we previously developed a new security scheme “ULTRA GRIDSEC” that is used to accelerate the performance of the symmetric key encryption algorithms for both stream and block cipher encryption algorithms. The scheme is used to accelerate the security of data pass between elements of our newly developed pure peer-to-peer desktop grid framework, “HIMAN”. It also enhances the security of the encrypted data resulted from the scheme and prevents the problem of weak keys of the encryption algorithms. This paper covers the analysis and evaluation of this scheme showing the different factors affecting the scheme performance, and covers the efficiency of the scheme from the security prospective. The experimental results are highlighted for two types of encryption algorithms, TDES as an example for the block cipher algorithms, and RC4 as an example for the stream cipher algorithms. The scheme speeds up the former algorithm by 202.12% and the latter one by 439.7%. These accelerations are also based on the running machine's capabilities.
2020-03-09
Babu, T. Kishore, Guruprakash, C. D..  2019.  A Systematic Review of the Third Party Auditing in Cloud Security: Security Analysis, Computation Overhead and Performance Evaluation. 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). :86–91.
Cloud storage offers a considerable efficiency and security to the user's data and provide high flexibility to the user. The hackers make attempt of several attacks to steal the data that increase the concern of data security in cloud. The Third Party Auditing (TPA) method is introduced to check the data integrity. There are several TPA methods developed to improve the privacy and efficiency of the data integrity checking method. Various methods involved in TPA, have been analyzed in this review in terms of function, security and overall performance. Merkel Hash Tree (MHT) method provides efficiency and security in checking the integrity of data. The computational overhead of the proof verify is also analyzed in this review. The communication cost of the most TPA methods observed as low and there is a need of improvement in security of the public auditing.
2020-02-26
Tandon, Aditya, Srivastava, Prakash.  2019.  Trust-Based Enhanced Secure Routing against Rank and Sybil Attacks in IoT. 2019 Twelfth International Conference on Contemporary Computing (IC3). :1–7.

The Internet of Things (IoT) is an emerging technology that plays a vital role in interconnecting various objects into a network to provide desired services within its resource constrained characteristics. In IoT, the Routing Protocol for Low power and Lossy network (RPL) is the standardized proactive routing protocol that achieves satisfying resource consumption, but it does not consider the node's routing behavior for forwarding data packets. The malicious intruders exploit these loopholes for launching various forms of routing attacks. Different security mechanisms have been introduced for detecting these attacks singly. However, the launch of multiple attacks such as Rank attack and Sybil attacks simultaneously in the IoT network is one of the devastating and destructive situations. This problem can be solved by establishing secure routing with trustworthy nodes. The trustworthiness of the nodes is determined using trust evaluation methods, where the parameters considered are based on the factors that influence in detecting the attacks. In this work, Providing Routing Security using the Technique of Collective Trust (PROTECT) mechanism is introduced, and it aims to provide a secure RPL routing by simultaneously detecting both Rank and Sybil attacks in the network. The advantage of the proposed scheme is highlighted by comparing its performance with the performance of the Sec-Trust protocol in terms of detection accuracy, energy consumption, and throughput.

2020-02-17
Hiller, Jens, Komanns, Karsten, Dahlmanns, Markus, Wehrle, Klaus.  2019.  Regaining Insight and Control on SMGW-based Secure Communication in Smart Grids. 2019 AEIT International Annual Conference (AEIT). :1–6.
Smart Grids require extensive communication to enable safe and stable energy supply in the age of decentralized and dynamic energy production and consumption. To protect the communication in this critical infrastructure, public authorities mandate smart meter gateways (SMGWs) to be in control of the communication security. To this end, the SMGW intercepts all inbound and outbound communication of its premise, e.g., a factory or smart home, and forwards it on secure channels that the SMGW established itself. However, using the SMGW as proxy, local devices can neither review the security of these remote connections established by the SMGW nor enforce higher security guarantees than established by the all in one configuration of the SMGW which does not allow for use case-specific security settings. We present mechanisms that enable local devices to regain this insight and control over the full connection, i.e., up to the final receiver, while retaining the SMGW's ability to ensure a suitable security level. Our evaluation shows modest computation and transmission overheads for this increased security in the critical smart grid infrastructure.
2020-02-10
Naseem, Faraz, Babun, Leonardo, Kaygusuz, Cengiz, Moquin, S.J., Farnell, Chris, Mantooth, Alan, Uluagac, A. Selcuk.  2019.  CSPoweR-Watch: A Cyber-Resilient Residential Power Management System. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :768–775.

Modern Energy Management Systems (EMS) are becoming increasingly complex in order to address the urgent issue of global energy consumption. These systems retrieve vital information from various Internet-connected resources in a smart grid to function effectively. However, relying on such resources results in them being susceptible to cyber attacks. Malicious actors can exploit the interconnections between the resources to perform nefarious tasks such as modifying critical firmware, sending bogus sensor data, or stealing sensitive information. To address this issue, we propose a novel framework that integrates PowerWatch, a solution that detects compromised devices in the smart grid with Cyber-secure Power Router (CSPR), a smart energy management system. The goal is to ascertain whether or not such a device has operated maliciously. To achieve this, PowerWatch utilizes a machine learning model that analyzes information from system and library call lists extracted from CSPR in order to detect malicious activity in the EMS. To test the efficacy of our framework, a number of unique attack scenarios were performed on a realistic testbed that comprises functional versions of CSPR and PowerWatch to monitor the electrical environment for suspicious activity. Our performance evaluation investigates the effectiveness of this first-of-its-kind merger and provides insight into the feasibility of developing future cybersecure EMS. The results of our experimental procedures yielded 100% accuracy for each of the attack scenarios. Finally, our implementation demonstrates that the integration of PowerWatch and CSPR is effective and yields minimal overhead to the EMS.

Yao, Chuhao, Wang, Jiahong, Kodama, Eiichiro.  2019.  A Spam Review Detection Method by Verifying Consistency among Multiple Review Sites. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :2825–2830.

In recent years, websites that incorporate user reviews, such as Amazon, IMDB and YELP, have become exceedingly popular. As an important factor affecting users purchasing behavior, review information has been becoming increasingly important, and accordingly, the reliability of review information becomes an important issue. This paper proposes a method to more accurately detect the appearance period of spam reviews and to identify the spam reviews by verifying the consistency of review information among multiple review sites. Evaluation experiments were conducted to show the accuracy of the detection results, and compared the newly proposed method with our previously proposed method.

2020-01-27
Li, Zhangtan, Cheng, Liang, Zhang, Yang.  2019.  Tracking Sensitive Information and Operations in Integrated Clinical Environment. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :192–199.
Integrated Clinical Environment (ICE) is a standardized framework for achieving device interoperability in medical cyber-physical systems. The ICE utilizes high-level supervisory apps and a low-level communication middleware to coordinate medical devices. The need to design complex ICE systems that are both safe and effective has presented numerous challenges, including interoperability, context-aware intelligence, security and privacy. In this paper, we present a data flow analysis framework for the ICE systems. The framework performs the combination of static and dynamic analysis for the sensitive data and operations in the ICE systems. Our experiments demonstrate that the data flow analysis framework can record how the medical devices transmit sensitive data and perform misuse detection by tracing the runtime context of the sensitive operations.
Inayoshi, Hiroki, Kakei, Shohei, Takimoto, Eiji, Mouri, Koichi, Saito, Shoichi.  2019.  Prevention of Data Leakage due to Implicit Information Flows in Android Applications. 2019 14th Asia Joint Conference on Information Security (AsiaJCIS). :103–110.
Dynamic Taint Analysis (DTA) technique has been developed for analysis and understanding behavior of Android applications and privacy policy enforcement. Meanwhile, implicit information flows (IIFs) are major concern of security researchers because IIFs can evade DTA technique easily and give attackers an advantage over the researchers. Some researchers suggested approaches to the issue and developed analysis systems supporting privacy policy enforcement against IIF-accompanied attacks; however, there is still no effective technique of comprehensive analysis and privacy policy enforcement against IIF-accompanied attacks. In this paper, we propose an IIF detection technique to enforce privacy policy against IIF-accompanied attacks in Android applications. We developed a new analysis tool, called Smalien, that can discover data leakage caused by IIF-contained information flows as well as explicit information flows. We demonstrated practicability of Smalien by applying it to 16 IIF tricks from ScrubDroid and two IIF tricks from DroidBench. Smalien enforced privacy policy successfully against all the tricks except one trick because the trick loads code dynamically from a remote server at runtime, and Smalien cannot analyze any code outside of a target application. The results show that our approach can be a solution to the current attacker-superior situation.
2020-01-20
Zhu, Lipeng, Fu, Xiaotong, Yao, Yao, Zhang, Yuqing, Wang, He.  2019.  FIoT: Detecting the Memory Corruption in Lightweight IoT Device Firmware. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :248–255.
The IoT industry has developed rapidly in recent years, which has attracted the attention of security researchers. However, the researchers are hampered by the wide variety of IoT device operating systems and their hardware architectures. Especially for the lightweight IoT devices, many manufacturers do not provide the device firmware images, embedded firmware source code or even the develop documents. As a result, it hinders traditional static analysis and dynamic analysis techniques. In this paper, we propose a novel dynamic analysis framework, called FIoT, which aims at finding memory corruption vulnerabilities in lightweight IoT device firmware images. The key idea is dynamically run the binary code snippets through symbolic execution with carrying out a fuzzing test. Specifically, we generate code snippets through traversing the control-flow graph (CFG) in a backward manner. We improved the CFG recovery approach and backward slice approach for better performance. To reduce the influence of the binary firmware, FIoT leverages loading address determination analysis and library function identification approach. We have implemented a prototype of FIoT and conducted experiments. Our results show that FIoT can complete the Fuzzing test within 40 seconds in average. Considering 170 seconds for static analysis, FIoT can load and analyze a lightweight IoT firmware within 210 seconds in total. Furthermore, we illustrate the effectiveness of FIoT by applying it over 115 firmware images from 17 manufacturers. We have found 35 images exist memory corruptions, which are all zero-day vulnerabilities.
Noura, Hassan, Couturier, Raphael, Pham, Congduc, Chehab, Ali.  2019.  Lightweight Stream Cipher Scheme for Resource-Constrained IoT Devices. 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.

The Internet of Things (IoT) systems are vulnerable to many security threats that may have drastic impacts. Existing cryptographic solutions do not cater for the limitations of resource-constrained IoT devices, nor for real-time requirements of some IoT applications. Therefore, it is essential to design new efficient cipher schemes with low overhead in terms of delay and resource requirements. In this paper, we propose a lightweight stream cipher scheme, which is based, on one hand, on the dynamic key-dependent approach to achieve a high security level, and on the other hand, the scheme involves few simple operations to minimize the overhead. In our approach, cryptographic primitives change in a dynamic lightweight manner for each input block. Security and performance study as well as experimentation are performed to validate that the proposed cipher achieves a high level of efficiency and robustness, making it suitable for resource-constrained IoT devices.

Wang, Qihua, Lv, Gaoyan, Sun, Xiuling.  2019.  Distributed Access Control with Outsourced Computation in Fog Computing. 2019 Chinese Control And Decision Conference (CCDC). :2446–2450.

With the rapid development of Internet of things (IOT) and big data, the number of network terminal devices and big data transmission are increasing rapidly. Traditional cloud computing faces a great challenge in dealing with this massive amount of data. Fog computing which extends the computing at the edge of the network can provide computation and data storage. Attribute based-encryption can effectively achieve the fine-grained access control. However, the computational complexity of the encryption and decryption is growing linearly with the increase of the number of attributes. In order to reduce the computational cost and guarantee the confidentiality of data, distributed access control with outsourced computation in fog computing is proposed in this paper. In our proposed scheme, fog device takes most of computational cost in encryption and decryption phase. The computational cost of the receiver and sender can be reduced. Moreover, the private key of the user is generated by multi-authority which can enhance the security of data. The analysis of security and performance shows that our proposed scheme proves to be effective and secure.

2020-01-13
Li, Nan, Varadharajan, Vijay, Nepal, Surya.  2019.  Context-Aware Trust Management System for IoT Applications with Multiple Domains. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1138–1148.
The Internet of Things (IoT) provides connectivity between heterogeneous devices in different applications, such as smart wildlife, supply chain and traffic management. Trust management system (TMS) assesses the trustworthiness of service with respect to its quality. Under different context information, a service provider may be trusted in one context but not in another. The existing context-aware trust models usually store trust values under different contexts and search the closest (to a given context) record to evaluate the trustworthiness of a service. However, it is not suitable for distributed resource-constrained IoT devices which have small memory and low power. Reputation systems are applied in many trust models where trustor obtains recommendations from others. In context-based trust evaluation, it requires interactive queries to find relevant information from remote devices. The communication overhead and energy consumption are issues in low power networks like 6LoWPAN. In this paper, we propose a new context-aware trust model for lightweight IoT devices. The proposed model provides a trustworthiness overview of a service provider without storing past behavior records, that is, constant size storage. The proposed model allows a trustor to decide the significance of context items. This could result in distinctive decisions under the same trustworthiness record. We also show the performance of the proposed model under different attacks.
Vasilev, Rusen Vasilev, Haka, Aydan Mehmed.  2019.  Enhanced Simulation Framework for Realisation of Mobility in 6LoWPAN Wireless Sensor Networks. 2019 IEEE XXVIII International Scientific Conference Electronics (ET). :1–4.
The intense incursion of the Internet of Things (IoT) into all areas of modern life has led to a need for a more detailed study of these technologies and their mechanisms of work. It is necessary to study mechanisms in order to improve QoS, security, identifying shortest routes, mobility, etc. This paper proposes an enhanced simulation framework that implements an improved mechanism for prioritising traffic on 6LoWPAN networks and the realisation of micro-mobility.
2019-12-17
Wang, Ziyan, Dong, Xinghua, Li, Yi, Fang, Li, Chen, Ping.  2018.  IoT Security Model and Performance Evaluation: A Blockchain Approach. 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC). :260-264.

It is a research hotspot that using blockchain technology to solve the security problems of the Internet of Things (IoT). Although many related ideas have been proposed, there are very few literatures with theoretical and data support. This paper focuses on the research of model construction and performance evaluation. First, an IoT security model is established based on blockchain and InterPlanetary File System (IPFS). In this model, many security risks of traditional IoT architectures can be avoided, and system performance is significantly improved in distributed large capacity storage, concurrency and query. Secondly, the performance of the proposed model is evaluated through the average latency and throughput, which are meaningful for further research and optimization of this direction. Analysis and test results demonstrate the effectiveness of the blockchain-based security model.

2019-12-05
Ngomane, I., Velempini, M., Dlamini, S. V..  2018.  The Detection of the Spectrum Sensing Data Falsification Attack in Cognitive Radio Ad Hoc Networks. 2018 Conference on Information Communications Technology and Society (ICTAS). :1-5.

Cognitive radio technology addresses the spectrum scarcity challenges by allowing unlicensed cognitive devices to opportunistically utilize spectrum band allocated to licensed devices. However, the openness of the technology has introduced several attacks to cognitive radios, one which is the spectrum sensing data falsification attack. In spectrum sensing data falsification attack, malicious devices share incorrect spectrum observations to other cognitive radios. This paper investigates the spectrum sensing data falsification attack in cognitive radio networks. We use the modified Z-test to isolate extreme outliers in the network. The q-out-of-m rule scheme is implemented to mitigate the spectrum sensing data falsification attack, where a random number m is selected from the sensing results and q is the final decision from m. The scheme does not require the services of a fusion Centre for decision making. This paper presents the theoretical analysis of the proposed scheme.

2019-11-11
Al-Hasnawi, Abduljaleel, Mohammed, Ihab, Al-Gburi, Ahmed.  2018.  Performance Evaluation of the Policy Enforcement Fog Module for Protecting Privacy of IoT Data. 2018 IEEE International Conference on Electro/Information Technology (EIT). :0951–0957.
The rapid development of the Internet of Things (IoT) results in generating massive amounts of data. Significant portions of these data are sensitive since they reflect (directly or indirectly) peoples' behaviors, interests, lifestyles, etc. Protecting sensitive IoT data from privacy violations is a challenge since these data need to be communicated, processed, analyzed, and stored by public networks, servers, and clouds; most of them are untrusted parties for data owners. We propose a solution for protecting sensitive IoT data called Policy Enforcement Fog Module (PEFM). The major task of the PEFM solution is mandatory enforcement of privacy policies for sensitive IoT data-wherever these data are accessed throughout their entire lifecycle. The key feature of PEFM is its placement within the fog computing infrastructure, which assures that PEFM operates as closely as possible to data sources within the edge. PEFM enforces policies directly for local IoT applications. In contrast, for remote applications, PEFM provides a self-protecting mechanism based on creating and disseminating Active Data Bundles (ADBs). ADBs are software constructs bundling inseparably sensitive data, their privacy policies, and an execution engine able to enforce privacy policies. To prove effectiveness and efficiency of the proposed module, we developed a smart home proof-of-concept scenario. We investigate privacy threats for sensitive IoT data. We run simulation experiments, based on network calculus, for testing performance of the PEFM controls for different network configurations. The results of the simulation show that-even with using from 1 to 5 additional privacy policies for improved data privacy-penalties in terms of execution time and delay are reasonable (approx. 12-15% and 13-19%, respectively). The results also show that PEFM is scalable regarding the number of the real-time constraints for real-time IoT applications.
2019-11-04
Alomari, Mohammad Ahmed, Hafiz Yusoff, M., Samsudin, Khairulmizam, Ahmad, R. Badlishah.  2019.  Light Database Encryption Design Utilizing Multicore Processors for Mobile Devices. 2019 IEEE 15th International Colloquium on Signal Processing Its Applications (CSPA). :254–259.

The confidentiality of data stored in embedded and handheld devices has become an urgent necessity more than ever before. Encryption of sensitive data is a well-known technique to preserve their confidentiality, however it comes with certain costs that can heavily impact the device processing resources. Utilizing multicore processors, which are equipped with current embedded devices, has brought a new era to enhance data confidentiality while maintaining suitable device performance. Encrypting the complete storage area, also known as Full Disk Encryption (FDE) can still be challenging, especially with newly emerging massive storage systems. Alternatively, since the most user sensitive data are residing inside persisting databases, it will be more efficient to focus on securing SQLite databases, through encryption, where SQLite is the most common RDBMS in handheld and embedded systems. This paper addresses the problem of ensuring data protection in embedded and mobile devices while maintaining suitable device performance by mitigating the impact of encryption. We presented here a proposed design for a parallel database encryption system, called SQLite-XTS. The proposed system encrypts data stored in databases transparently on-the-fly without the need for any user intervention. To maintain a proper device performance, the system takes advantage of the commodity multicore processors available with most embedded and mobile devices.

2019-10-30
Ghose, Nirnimesh, Lazos, Loukas, Li, Ming.  2018.  Secure Device Bootstrapping Without Secrets Resistant to Signal Manipulation Attacks. 2018 IEEE Symposium on Security and Privacy (SP). :819-835.
In this paper, we address the fundamental problem of securely bootstrapping a group of wireless devices to a hub, when none of the devices share prior associations (secrets) with the hub or between them. This scenario aligns with the secure deployment of body area networks, IoT, medical devices, industrial automation sensors, autonomous vehicles, and others. We develop VERSE, a physical-layer group message integrity verification primitive that effectively detects advanced wireless signal manipulations that can be used to launch man-in-the-middle (MitM) attacks over wireless. Without using shared secrets to establish authenticated channels, such attacks are notoriously difficult to thwart and can undermine the authentication and key establishment processes. VERSE exploits the existence of multiple devices to verify the integrity of the messages exchanged within the group. We then use VERSE to build a bootstrapping protocol, which securely introduces new devices to the network. Compared to the state-of-the-art, VERSE achieves in-band message integrity verification during secure pairing using only the RF modality without relying on out-of-band channels or extensive human involvement. It guarantees security even when the adversary is capable of fully controlling the wireless channel by annihilating and injecting wireless signals. We study the limits of such advanced wireless attacks and prove that the introduction of multiple legitimate devices can be leveraged to increase the security of the pairing process. We validate our claims via theoretical analysis and extensive experimentations on the USRP platform. We further discuss various implementation aspects such as the effect of time synchronization between devices and the effects of multipath and interference. Note that the elimination of shared secrets, default passwords, and public key infrastructures effectively addresses the related key management challenges when these are considered at scale.
2019-09-26
Elliott, A. S., Ruef, A., Hicks, M., Tarditi, D..  2018.  Checked C: Making C Safe by Extension. 2018 IEEE Cybersecurity Development (SecDev). :53-60.

This paper presents Checked C, an extension to C designed to support spatial safety, implemented in Clang and LLVM. Checked C's design is distinguished by its focus on backward-compatibility, incremental conversion, developer control, and enabling highly performant code. Like past approaches to a safer C, Checked C employs a form of checked pointer whose accesses can be statically or dynamically verified. Performance evaluation on a set of standard benchmark programs shows overheads to be relatively low. More interestingly, Checked C introduces the notions of a checked region and bounds-safe interfaces.

2019-05-20
Prokofiev, A. O., Smirnova, Y. S., Surov, V. A..  2018.  A method to detect Internet of Things botnets. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :105–108.

The main security problems, typical for the Internet of Things (IoT), as well as the purpose of gaining unauthorized access to the IoT, are considered in this paper. Common characteristics of the most widespread botnets are provided. A method to detect compromised IoT devices included into a botnet is proposed. The method is based on a model of logistic regression. The article describes a developed model of logistic regression which allows to estimate the probability that a device initiating a connection is running a bot. A list of network protocols, used to gain unauthorized access to a device and to receive instructions from common and control (C&C) server, is provided too.