Haque, Md Ariful, Shetty, Sachin, Krishnappa, Bheshaj.
2019.
ICS-CRAT: A Cyber Resilience Assessment Tool for Industrial Control Systems. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :273—281.
In this work, we use a subjective approach to compute cyber resilience metrics for industrial control systems. We utilize the extended form of the R4 resilience framework and span the metrics over physical, technical, and organizational domains of resilience. We develop a qualitative cyber resilience assessment tool using the framework and a subjective questionnaire method. We make sure the questionnaires are realistic, balanced, and pertinent to ICS by involving subject matter experts into the process and following security guidelines and standards practices. We provide detail mathematical explanation of the resilience computation procedure. We discuss several usages of the qualitative tool by generating simulation results. We provide a system architecture of the simulation engine and the validation of the tool. We think the qualitative simulation tool would give useful insights for industrial control systems' overall resilience assessment and security analysis.
Bucur, Cristian, Babulak, Eduard.
2019.
Security validation testing environment in the cloud. 2019 IEEE International Conference on Big Data (Big Data). :4240—4247.
Researchers are trying to find new ways of finding and pointing out Cybersecurity vulnerabilities by using innovative metrics. New theoretical proposals need to be tested in a real environment, using Cybersecurity tools applications that can validate the applicability of those in real life. This paper presents an experimental flexible environment, which can be used for the validation of several theoretical claims based on an “easy to use” architecture implemented in a cloud environment. The framework provides a much shorter time setup in the real world as well as a much better understanding based on log analysis provided by MS Azure. As a proof of concept, we have tested three different claims and provided proves of results such as screenshots and log samples.
Huang, Angus F.M., Chi-Wei, Yang, Tai, Hsiao-Chi, Chuan, Yang, Huang, Jay J.C., Liao, Yu-Han.
2019.
Suspicious Network Event Recognition Using Modified Stacking Ensemble Machine Learning. 2019 IEEE International Conference on Big Data (Big Data). :5873—5880.
This study aims to detect genuine suspicious events and false alarms within a dataset of network traffic alerts. The rapid development of cloud computing and artificial intelligence-oriented automatic services have enabled a large amount of data and information to be transmitted among network nodes. However, the amount of cyber-threats, cyberattacks, and network intrusions have increased in various domains of network environments. Based on the fields of data science and machine learning, this paper proposes a series of solutions involving data preprocessing, exploratory data analysis, new features creation, features selection, ensemble learning, models construction, and verification to identify suspicious network events. This paper proposes a modified form of stacking ensemble machine learning which includes AdaBoost, Neural Networks, Random Forest, LightGBM, and Extremely Randomised Trees (Extra Trees) to realise a high-performance classification. A suspicious network event recognition dataset for a security operations centre, which uses real network log observations from the 2019 IEEE BigData Cup Challenge, is used as an experimental dataset. This paper investigates the possibility of integrating big-data analytics, machine learning, and data science to improve intelligent cybersecurity.
Li, Peng, Min, Xiao-Cui.
2019.
Accurate Marking Method of Network Attacking Information Based on Big Data Analysis. 2019 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :228—231.
In the open network environment, the network offensive information is implanted in big data environment, so it is necessary to carry out accurate location marking of network offensive information, to realize network attack detection, and to implement the process of accurate location marking of network offensive information. Combined with big data analysis method, the location of network attack nodes is realized, but when network attacks cross in series, the performance of attack information tagging is not good. An accurate marking technique for network attack information is proposed based on big data fusion tracking recognition. The adaptive learning model combined with big data is used to mark and sample the network attack information, and the feature analysis model of attack information chain is designed by extracting the association rules. This paper classifies the data types of the network attack nodes, and improves the network attack detection ability by the task scheduling method of the network attack information nodes, and realizes the accurate marking of the network attacking information. Simulation results show that the proposed algorithm can effectively improve the accuracy of marking offensive information in open network environment, the efficiency of attack detection and the ability of intrusion prevention is improved, and it has good application value in the field of network security defense.
Zhou, Xiaojun, Lin, Ping, Li, Zhiyong, Wang, Yunpeng, Tan, Wei, Huang, Meng.
2019.
Security of Big Data Based on the Technology of Cloud Computing. 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :703—7033.
To solve the problem of big data security and privacy protection, and expound the concept of cloud computing, big data and the relationship between them, the existing security and privacy protection method characteristic and problems were studied. A reference model is proposed which is based on cloud platform. In this model the physical level, data layer, interface layer and application layer step by step in to implement the system security risk early warning and threat perception, this provides an effective solution for the research of big data security. At the same time, a future research direction that uses the blockchain to solve cloud security and privacy protection is also pointed out.
Kolomeets, Maxim, Chechulin, Andrey, Zhernova, Ksenia, Kotenko, Igor, Gaifulina, Diana.
2020.
Augmented reality for visualizing security data for cybernetic and cyberphysical systems. 2020 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). :421—428.
The paper discusses the use of virtual (VR) and augmented (AR) reality for visual analytics in information security. Paper answers two questions: “In which areas of information security visualization VR/AR can be useful?” and “What is the difference of the VR/AR from similar methods of visualization at the level of perception of information?”. The first answer is based on the investigation of information security areas and visualization models that can be used in VR/AR security visualization. The second answer is based on experiments that evaluate perception of visual components in VR.
Ferreira, P.M.F.M., Orvalho, J.M., Boavida, F..
2005.
Large Scale Mobile and Pervasive Augmented Reality Games. EUROCON 2005 - The International Conference on "Computer as a Tool". 2:1775—1778.
Ubiquitous or pervasive computing is a new kind of computing, where specialized elements of hardware and software will have such high level of deployment that their use will be fully integrated with the environment. Augmented reality extends reality with virtual elements but tries to place the computer in a relatively unobtrusive, assistive role. To our knowledge, there is no specialized network middleware solution for large-scale mobile and pervasive augmented reality games. We present a work that focus on the creation of such network middleware for mobile and pervasive entertainment, applied to the area of large scale augmented reality games. In, this context, mechanisms are being studied, proposed and evaluated to deal with issues such as scalability, multimedia data heterogeneity, data distribution and replication, consistency, security, geospatial location and orientation, mobility, quality of service, management of networks and services, discovery, ad-hoc networking and dynamic configuration
Ferreira, Pedro, Orvalho, Joao, Boavida, Fernando.
2007.
Security and privacy in a middleware for large scale mobile and pervasive augmented reality. 2007 15th International Conference on Software, Telecommunications and Computer Networks. :1—5.
Ubiquitous or pervasive computing is a new kind of computing, where specialized elements of hardware and software will have such high level of deployment that their use will be fully integrated with the environment. Augmented reality extends reality with virtual elements but tries to place the computer in a relatively unobtrusive, assistive role. In this paper we propose, test and analyse a security and privacy architecture for a previously proposed middleware architecture for mobile and pervasive large scale augmented reality games, which is the main contribution of this paper. The results show that the security features proposed in the scope of this work do not affect the overall performance of the system.
Brinkman, Bo.
2012.
Willing to be fooled: Security and autoamputation in augmented reality. 2012 IEEE International Symposium on Mixed and Augmented Reality - Arts, Media, and Humanities (ISMAR-AMH). :89—90.
What does it mean to trust, or not trust, an augmented reality system? Froma computer security point of view, trust in augmented reality represents a real threat to real people. The fact that augmented reality allows the programmer to tinker with the user's senses creates many opportunities for malfeasance. It might be natural to think that if we warn users to be careful it will lower their trust in the system, greatly reducing risk.
Gayathri, Bhimavarapu, Yammani, Chandrasekhar.
2019.
Multi-Attacking Strategy on Smart Grid with Incomplete Network Information. 2019 8th International Conference on Power Systems (ICPS). :1—5.
The chances of cyber-attacks have been increased because of incorporation of communication networks and information technology in power system. Main objective of the paper is to prove that attacker can launch the attack vector without the knowledge of complete network information and the injected false data can't be detected by power system operator. This paper also deals with analyzing the impact of multi-attacking strategy on the power system. This false data attacks incurs lot of damage to power system, as it misguides the power system operator. Here, we demonstrate the construction of attack vector and later we have demonstrated multiple attacking regions in IEEE 14 bus system. Impact of attack vector on the power system can be observed and it is proved that the attack cannot be detected by power system operator with the help of residue check method.