Visible to the public Biblio

Found 913 results

Filters: Keyword is computer network security  [Clear All Filters]
2019-01-16
Shi, T., Shi, W., Wang, C., Wang, Z..  2018.  Compressed Sensing based Intrusion Detection System for Hybrid Wireless Mesh Networks. 2018 International Conference on Computing, Networking and Communications (ICNC). :11–15.
As wireless mesh networks (WMNs) develop rapidly, security issue becomes increasingly important. Intrusion Detection System (IDS) is one of the crucial ways to detect attacks. However, IDS in wireless networks including WMNs brings high detection overhead, which degrades network performance. In this paper, we apply compressed sensing (CS) theory to IDS and propose a CS based IDS for hybrid WMNs. Since CS can reconstruct a sparse signal with compressive sampling, we process the detected data and construct sparse original signals. Through reconstruction algorithm, the compressive sampled data can be reconstructed and used for detecting intrusions, which reduces the detection overhead. We also propose Active State Metric (ASM) as an attack metric for recognizing attacks, which measures the activity in PHY layer and energy consumption of each node. Through intensive simulations, the results show that under 50% attack density, our proposed IDS can ensure 95% detection rate while reducing about 40% detection overhead on average.
2018-12-10
Chen, J., Touati, C., Zhu, Q..  2017.  Heterogeneous Multi-Layer Adversarial Network Design for the IoT-Enabled Infrastructures. GLOBECOM 2017 - 2017 IEEE Global Communications Conference. :1–6.

The emerging Internet of Things (IoT) applications that leverage ubiquitous connectivity and big data are facilitating the realization of smart everything initiatives. IoT-enabled infrastructures have naturally a multi-layer system architecture with an overlaid or underlaid device network and its coexisting infrastructure network. The connectivity between different components in these two heterogeneous networks plays an important role in delivering real-time information and ensuring a high-level situational awareness. However, IoT- enabled infrastructures face cyber threats due to the wireless nature of communications. Therefore, maintaining the network connectivity in the presence of adversaries is a critical task for the infrastructure network operators. In this paper, we establish a three-player three-stage game-theoretic framework including two network operators and one attacker to capture the secure design of multi- layer infrastructure networks by allocating limited resources. We use subgame perfect Nash equilibrium (SPE) to characterize the strategies of players with sequential moves. In addition, we assess the efficiency of the equilibrium network by comparing with its team optimal solution counterparts in which two network operators can coordinate. We further design a scalable algorithm to guide the construction of the equilibrium IoT-enabled infrastructure networks. Finally, we use case studies on the emerging paradigm of Internet of Battlefield Things (IoBT) to corroborate the obtained results.

2018-11-19
Cosmas, J., Kapovits, Á.  2017.  Internet of Radio Light: Unleashing Innovation in Building Networks. 2017 Global Wireless Summit (GWS). :257–261.

Wireless networks in buildings suffer from congestion, interference, security and safety concerns, restricted propagation and poor in-door location accuracy. The Internet of Radio-Light (IoRL) project develops a safer, more secure, customizable and intelligent building network that reliably delivers increased throughput (greater than lOGbps) from access points pervasively located within buildings, whilst minimizing interference and harmful EM exposure and providing location accuracy of less than 10 cm. It thereby shows how to solve the problem of broadband wireless access in buildings and promotes the establishment of a global standard in ITU.

Ali, S., Khan, M. A., Ahmad, J., Malik, A. W., ur Rehman, A..  2018.  Detection and Prevention of Black Hole Attacks in IOT Amp;Amp; WSN. 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC). :217–226.

Wireless Sensor Network is the combination of small devices called sensor nodes, gateways and software. These nodes use wireless medium for transmission and are capable to sense and transmit the data to other nodes. Generally, WSN composed of two types of nodes i.e. generic nodes and gateway nodes. Generic nodes having the ability to sense while gateway nodes are used to route that information. IoT now extended to IoET (internet of Everything) to cover all electronics exist around, like a body sensor networks, VANET's, smart grid stations, smartphone, PDA's, autonomous cars, refrigerators and smart toasters that can communicate and share information using existing network technologies. The sensor nodes in WSN have very limited transmission range as well as limited processing speed, storage capacities and low battery power. Despite a wide range of applications using WSN, its resource constrained nature given birth to a number severe security attacks e.g. Selective Forwarding attack, Jamming-attack, Sinkhole attack, Wormhole attack, Sybil attack, hello Flood attacks, Grey Hole, and the most dangerous BlackHole Attacks. Attackers can easily exploit these vulnerabilities to compromise the WSN network.

Nasr, E., Shahrour, I..  2017.  Evaluating Wireless Network Vulnerabilities and Attack Paths in Smart Grid Comprehensive Analysis and Implementation. 2017 Sensors Networks Smart and Emerging Technologies (SENSET). :1–4.

Quantifying vulnerability and security levels for smart grid diversified link of networks have been a challenging task for a long period of time. Security experts and network administrators used to act based on their proficiencies and practices to mitigate network attacks rather than objective metrics and models. This paper uses the Markov Chain Model [1] to evaluate quantitatively the vulnerabilities associated to the 802.11 Wi-Fi network in a smart grid. Administrator can now assess the level of severity of potential attacks based on determining the probability density of the successive states and thus, providing the corresponding security measures. This model is based on the observed vulnerabilities provided by the Common Vulnerabilities and Exposures (CVE) database explored by MITRE [2] to calculate the Markov processes (states) transitions probabilities and thus, deducing the vulnerability level of the entire attack paths in an attack graph. Cumulative probabilities referring to high vulnerability level in a specific attack path will lead the system administrator to apply appropriate security measures a priori to potential attacks occurrence.

Rabie, R., Drissi, M..  2018.  Applying Sigmoid Filter for Detecting the Low-Rate Denial of Service Attacks. 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). :450–456.

This paper focuses on optimizing the sigmoid filter for detecting Low-Rate DoS attacks. Though sigmoid filter could help for detecting the attacker, it could severely affect the network efficiency. Unlike high rate attacks, Low-Rate DoS attacks such as ``Shrew'' and ``New Shrew'' are hard to detect. Attackers choose a malicious low-rate bandwidth to exploit the TCP's congestion control window algorithm and the re-transition timeout mechanism. We simulated the attacker traffic by editing using NS3. The Sigmoid filter was used to create a threshold bandwidth filter at the router that allowed a specific bandwidth, so when traffic that exceeded the threshold occurred, it would be dropped, or it would be redirected to a honey-pot server, instead. We simulated the Sigmoid filter using MATLAB and took the attacker's and legitimate user's traffic generated by NS-3 as the input for the Sigmoid filter in the MATLAB. We run the experiment three times with different threshold values correlated to the TCP packet size. We found the probability to detect the attacker traffic as follows: the first was 25%, the second 50% and the third 60%. However, we observed a drop in legitimate user traffic with the following probabilities, respectively: 75%, 50%, and 85%.

Huang, X., Du, X., Song, B..  2017.  An Effective DDoS Defense Scheme for SDN. 2017 IEEE International Conference on Communications (ICC). :1–6.

In this paper, we propose a scheme to protect the Software Defined Network(SDN) controller from Distributed Denial-of-Service(DDoS) attacks. We first predict the amount of new requests for each openflow switch periodically based on Taylor series, and the requests will then be directed to the security gateway if the prediction value is beyond the threshold. The requests that caused the dramatic decrease of entropy will be filtered out and rules will be made in security gateway by our algorithm; the rules of these requests will be sent to the controller. The controller will send the rules to each switch to make them direct the flows matching with the rules to the honey pot. The simulation shows the averages of both false positive and false negative are less than 2%.

Pomsathit, A..  2017.  Performance Analysis of IDS with Honey Pot on New Media Broadcasting. 2017 International Conference on Circuits, Devices and Systems (ICCDS). :201–204.

This research was an experimental analysis of the Intrusion Detection Systems(IDS) with Honey Pot conducting through a study of using Honey Pot in tricking, delaying or deviating the intruder to attack new media broadcasting server for IPTV system. Denial of Service(DoS) over wire network and wireless network consisted of three types of attacks: TCP Flood, UDP Flood and ICMP Flood by Honey Pot, where the Honeyd would be used. In this simulation, a computer or a server in the network map needed to be secured by the inactivity firewalls or other security tools for the intrusion of the detection systems and Honey Pot. The network intrusion detection system used in this experiment was SNORT (www.snort.org) developed in the form of the Open Source operating system-Linux. The results showed that, from every experiment, the internal attacks had shown more threat than the external attacks. In addition, attacks occurred through LAN network posted 50% more disturb than attacks occurred on WIFI. Also, the external attacks through LAN posted 95% more attacks than through WIFI. However, the number of attacks presented by TCP, UDP and ICMP were insignificant. This result has supported the assumption that Honey Pot was able to help detecting the intrusion. In average, 16% of the attacks was detected by Honey Pot in every experiment.

2018-11-14
Fayyad, S., Noll, J..  2017.  A Framework for Measurability of Security. 2017 8th International Conference on Information and Communication Systems (ICICS). :302–309.

Having an effective security level for Embedded System (ES), helps a reliable and stable operation of this system. In order to identify, if the current security level for a given ES is effective or not, we need a proactive evaluation for this security level. The evaluation of the security level for ESs is not straightforward process, things like the heterogeneity among the components of ES complicate this process. One of the productive approaches, which overcame the complexity of evaluation for Security, Privacy and Dependability (SPD) is the Multi Metrics (MM). As most of SPD evaluation approaches, the MM approach bases on the experts knowledge for the basic evaluation. Regardless of its advantages, experts evaluation has some drawbacks, which foster the need for less experts-dependent evaluation. In this paper, we propose a framework for security measurability as a part of security, privacy and dependability evaluation. The security evaluation based on Multi Metric (MM) approach as being an effective approach for evaluations, thus, we call it MM framework. The art of evaluation investigated within MM framework, based also on systematic storing and retrieving of experts knowledge. Using MM framework, the administrator of the ES could evaluate and enhance the S-level of their system, without being an expert in security.

Teoh, T. T., Zhang, Y., Nguwi, Y. Y., Elovici, Y., Ng, W. L..  2017.  Analyst Intuition Inspired High Velocity Big Data Analysis Using PCA Ranked Fuzzy K-Means Clustering with Multi-Layer Perceptron (MLP) to Obviate Cyber Security Risk. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). :1790–1793.
The growing prevalence of cyber threats in the world are affecting every network user. Numerous security monitoring systems are being employed to protect computer networks and resources from falling victim to cyber-attacks. There is a pressing need to have an efficient security monitoring system to monitor the large network datasets generated in this process. A large network datasets representing Malware attacks have been used in this work to establish an expert system. The characteristics of attacker's IP addresses can be extracted from our integrated datasets to generate statistical data. The cyber security expert provides to the weight of each attribute and forms a scoring system by annotating the log history. We adopted a special semi supervise method to classify cyber security log into attack, unsure and no attack by first breaking the data into 3 cluster using Fuzzy K mean (FKM), then manually label a small data (Analyst Intuition) and finally train the neural network classifier multilayer perceptron (MLP) base on the manually labelled data. By doing so, our results is very encouraging as compare to finding anomaly in a cyber security log, which generally results in creating huge amount of false detection. The method of including Artificial Intelligence (AI) and Analyst Intuition (AI) is also known as AI2. The classification results are encouraging in segregating the types of attacks.
Repp, P..  2017.  Diagnostics and Assessment of the Industrial Network Security Expert System. 2017 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1–5.
The paper dwells on the design of a diagnostic system and expert assessment of the significance of threats to the security of industrial networks. The proposed system is based on a new cyber-attacks classification and presupposes the existence of two structural blocks: the industrial network virtual model based on the scan selected nodal points and the generator of cyber-attacks sets. The diagnostic and expert assessment quality is improved by the use of the Markov chains or the Monte Carlo numerical method. The numerical algorithm of generating cyber-attacks sets is based on the LP$\tau$-sequence.
Krishna, M. B., Rodrigues, J. J. P. C..  2017.  Two-Phase Incentive-Based Secure Key System for Data Management in Internet of Things. 2017 IEEE International Conference on Communications (ICC). :1–6.

Internet of Things (IoT) distributed secure data management system is characterized by authentication, privacy policies to preserve data integrity. Multi-phase security and privacy policies ensure confidentiality and trust between the users and service providers. In this regard, we present a novel Two-phase Incentive-based Secure Key (TISK) system for distributed data management in IoT. The proposed system classifies the IoT user nodes and assigns low-level, high-level security keys for data transactions. Low-level secure keys are generic light-weight keys used by the data collector nodes and data aggregator nodes for trusted transactions. TISK phase-I Generic Service Manager (GSM-C) module verifies the IoT devices based on self-trust incentive and server-trust incentive levels. High-level secure keys are dedicated special purpose keys utilized by data manager nodes and data expert nodes for authorized transactions. TISK phase-II Dedicated Service Manager (DSM-C) module verifies the certificates issued by GSM-C module. DSM-C module further issues high-level secure keys to data manager nodes and data expert nodes for specific purpose transactions. Simulation results indicate that the proposed TISK system reduces the key complexity and key cost to ensure distributed secure data management in IoT network.

Wakenshaw, S. Y. L., Maple, C., Schraefel, M. C., Gomer, R., Ghirardello, K..  2018.  Mechanisms for Meaningful Consent in Internet of Things. Living in the Internet of Things: Cybersecurity of the IoT - 2018. :1–10.

Consent is a key measure for privacy protection and needs to be `meaningful' to give people informational power. It is increasingly important that individuals are provided with real choices and are empowered to negotiate for meaningful consent. Meaningful consent is an important area for consideration in IoT systems since privacy is a significant factor impacting on adoption of IoT. Obtaining meaningful consent is becoming increasingly challenging in IoT environments. It is proposed that an ``apparency, pragmatic/semantic transparency model'' adopted for data management could make consent more meaningful, that is, visible, controllable and understandable. The model has illustrated the why and what issues regarding data management for potential meaningful consent [1]. In this paper, we focus on the `how' issue, i.e. how to implement the model in IoT systems. We discuss apparency by focusing on the interactions and data actions in the IoT system; pragmatic transparency by centring on the privacy risks, threats of data actions; and semantic transparency by focusing on the terms and language used by individuals and the experts. We believe that our discussion would elicit more research on the apparency model' in IoT for meaningful consent.

2018-10-26
Arzhakov, A. V..  2018.  Usage of game theory in the internet wide scan. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :5–8.

This article examines Usage of Game Theory in The Internet Wide Scan. There is compiled model of “Network Scanning” game. There is described process of players interaction in the coalition antagonistic and network games. The concept of target system's cost is suggested. Moreover, there is suggested its application in network scanning, particularly, when detecting honeypot/honeynet systems.

Rauf, A., Shaikh, R. A., Shah, A..  2018.  Security and privacy for IoT and fog computing paradigm. 2018 15th Learning and Technology Conference (L T). :96–101.

In the past decade, the revolution in miniaturization (microprocessors, batteries, cameras etc.) and manufacturing of new type of sensors resulted in a new regime of applications based on smart objects called IoT. Majority of such applications or services are to ease human life and/or to setup efficient processes in automated environments. However, this convenience is coming up with new challenges related to data security and human privacy. The objects in IoT are resource constrained devices and cannot implement a fool-proof security framework. These end devices work like eyes and ears to interact with the physical world and collect data for analytics to make expedient decisions. The storage and analysis of the collected data is done remotely using cloud computing. The transfer of data from IoT to the computing clouds can introduce privacy issues and network delays. Some applications need a real-time decision and cannot tolerate the delays and jitters in the network. Here, edge computing or fog computing plays its role to settle down the mentioned issues by providing cloud-like facilities near the end devices. In this paper, we discuss IoT, fog computing, the relationship between IoT and fog computing, their security issues and solutions by different researchers. We summarize attack surface related to each layer of this paradigm which will help to propose new security solutions to escalate it acceptability among end users. We also propose a risk-based trust management model for smart healthcare environment to cope with security and privacy-related issues in this highly un-predictable heterogeneous ecosystem.

Deepali, Bhushan, K..  2017.  DDoS attack defense framework for cloud using fog computing. 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT). :534–538.

Cloud is the requirement of today's competitive world that demand flexible, agile and adaptable technology to be at par with rapidly changing IT industry. Cloud offers scalable, on-demand, pay-as-you-go services to enterprise and has hence become a part of growing trend of organizations IT service model. With emerging trend of cloud the security concerns have further increased and one of the biggest concerns related to cloud is DDoS attack. DDoS attack tends to exhaust all the available resources and leads to unavailability of services in cloud to legitimate users. In this paper the concept of fog computing is used, it is nothing but an extension to cloud computing that performs analysis at the edge of the network, i.e. bring intelligence at the edge of the network for quick real time decision making and reducing the amount of data that is forwarded to cloud. We have proposed a framework in which DDoS attack traffic is generated using different tools which is made to pass through fog defender to cloud. Furthermore, rules are applied on fog defender to detect and filter DDoS attack traffic targeted to cloud.

Alharbi, S., Rodriguez, P., Maharaja, R., Iyer, P., Subaschandrabose, N., Ye, Z..  2017.  Secure the internet of things with challenge response authentication in fog computing. 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC). :1–2.

As the Internet of Things (IoT) continues to grow, there arises concerns and challenges with regard to the security and privacy of the IoT system. In this paper, we propose a FOg CompUting-based Security (FOCUS) system to address the security challenges in the IoT. The proposed FOCUS system leverages the virtual private network (VPN) to secure the access channel to the IoT devices. In addition, FOCUS adopts a challenge-response authentication to protect the VPN server against distributed denial of service (DDoS) attacks, which can further enhance the security of the IoT system. FOCUS is implemented in fog computing that is close to the end users, thus achieving a fast and efficient protection. We demonstrate FOCUS in a proof-of-concept prototype, and conduct experiments to evaluate its performance. The results show that FOCUS can effectively filter out malicious attacks with a very low response latency.

2018-09-28
Husak, M., Čermák, M..  2017.  A graph-based representation of relations in network security alert sharing platforms. 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :891–892.

In this paper, we present a framework for graph-based representation of relation between sensors and alert types in a security alert sharing platform. Nodes in a graph represent either sensors or alert types, while edges represent various relations between them, such as common type of reported alerts or duplicated alerts. The graph is automatically updated, stored in a graph database, and visualized. The resulting graph will be used by network administrators and security analysts as a visual guide and situational awareness tool in a complex environment of security alert sharing.

Melnikov, D. A., Durakovsky, A. P., Dvoryankin, S. V., Gorbatov, V. S..  2017.  Concept for Increasing Security of National Information Technology Infrastructure and Private Clouds. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :155–160.

This paper suggests a conceptual mechanism for increasing the security level of the global information community, national information technology infrastructures (e-governments) and private cloud structures, which uses the logical characteristic of IPv6-protocol. The mechanism is based on the properties of the IPv6-header and, in particular, rules of coding IPv6-addresses.

2018-09-12
Khazankin, G. R., Komarov, S., Kovalev, D., Barsegyan, A., Likhachev, A..  2017.  System architecture for deep packet inspection in high-speed networks. 2017 Siberian Symposium on Data Science and Engineering (SSDSE). :27–32.

To solve the problems associated with large data volume real-time processing, heterogeneous systems using various computing devices are increasingly used. The characteristic of solving this class of problems is related to the fact that there are two directions for improving methods of real-time data analysis: the first is the development of algorithms and approaches to analysis, and the second is the development of hardware and software. This article reviews the main approaches to the architecture of a hardware-software solution for traffic capture and deep packet inspection (DPI) in data transmission networks with a bandwidth of 80 Gbit/s and higher. At the moment there are software and hardware tools that allow designing the architecture of capture system and deep packet inspection: 1) Using only the central processing unit (CPU); 2) Using only the graphics processing unit (GPU); 3) Using the central processing unit and graphics processing unit simultaneously (CPU + GPU). In this paper, we consider these key approaches. Also attention is paid to both hardware and software requirements for the architecture of solutions. Pain points and remedies are described.

Domínguez, A., Carballo, P. P., Núñez, A..  2017.  Programmable SoC platform for deep packet inspection using enhanced Boyer-Moore algorithm. 2017 12th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC). :1–8.

This paper describes the work done to design a SoC platform for real-time on-line pattern search in TCP packets for Deep Packet Inspection (DPI) applications. The platform is based on a Xilinx Zynq programmable SoC and includes an accelerator that implements a pattern search engine that extends the original Boyer-Moore algorithm with timing and logical rules, that produces a very complex set of rules. Also, the platform implements different modes of operation, including SIMD and MISD parallelism, which can be configured on-line. The platform is scalable depending of the analysis requirement up to 8 Gbps. High-Level synthesis and platform based design methodologies have been used to reduce the time to market of the completed system.

Özer, E., İskefiyeli, M..  2017.  Detection of DDoS attack via deep packet analysis in real time systems. 2017 International Conference on Computer Science and Engineering (UBMK). :1137–1140.

One of the biggest problems of today's internet technologies is cyber attacks. In this paper whether DDoS attacks will be determined by deep packet inspection. Initially packets are captured by listening of network traffic. Packet filtering was achieved at desired number and type. These packets are recorded to database to be analyzed, daily values and average values are compared by known attack patterns and will be determined whether a DDoS attack attempts in real time systems.

Renukadevi, B., Raja, S. D. M..  2017.  Deep packet inspection Management application in SDN. 2017 2nd International Conference on Computing and Communications Technologies (ICCCT). :256–259.

DPI Management application which resides on the north-bound of SDN architecture is to analyze the application signature data from the network. The data being read and analyzed are of format JSON for effective data representation and flows provisioned from North-bound application is also of JSON format. The data analytic engine analyzes the data stored in the non-relational data base and provides the information about real-time applications used by the network users. Allows the operator to provision flows dynamically with the data from the network to allow/block flows and also to boost the bandwidth. The DPI Management application allows decoupling of application with the controller; thus providing the facility to run it in any hyper-visor within network. Able to publish SNMP trap notifications to the network operators with application threshold and flow provisioning behavior. Data purging from non-relational database at frequent intervals to remove the obsolete analyzed data.

Lin, Z., Tong, L., Zhijie, M., Zhen, L..  2017.  Research on Cyber Crime Threats and Countermeasures about Tor Anonymous Network Based on Meek Confusion Plug-in. 2017 International Conference on Robots Intelligent System (ICRIS). :246–249.

According to the new Tor network (6.0.5 version) can help the domestic users easily realize "over the wall", and of course criminals may use it to visit deep and dark website also. The paper analyzes the core technology of the new Tor network: the new flow obfuscation technology based on meek plug-in and real instance is used to verify the new Tor network's fast connectivity. On the basis of analyzing the traffic confusion mechanism and the network crime based on Tor, it puts forward some measures to prevent the using of Tor network to implement network crime.

2018-09-05
King, Z., Yu, Shucheng.  2017.  Investigating and securing communications in the Controller Area Network (CAN). 2017 International Conference on Computing, Networking and Communications (ICNC). :814–818.
The Controller Area Network (CAN) is a broadcast communications network invented by Robert Bosch GmbH in 1986. CAN is the standard communication network found in automobiles, industry equipment, and many space applications. To be used in these environments, CAN is designed for efficiency and reliability, rather than security. This research paper closely examines the security risks within the CAN protocol and proposes a feasible solution. In this research, we investigate the problems with implementing certain security features in the CAN protocol, such as message authentication and protections against replay and denial-of-service (DoS) attacks. We identify the restrictions of the CAN bus, and we demonstrate how our proposed implementation meets these restrictions. Many previously proposed solutions lack security, feasibility, and/or efficiency; however, a solution must not drastically hinder the real-time operation speed of the network. The solution proposed in this research is tested with a simulative CAN environment. This paper proposes an alteration to the standard CAN bus nodes and the CAN protocol to better protect automobiles and other CAN-related systems from attacks.