Biblio
Attacks on airport information network services in the form of Denial of Service (DoS), Distributed DoS (DDoS), and hijacking are the most effective schemes mostly explored by cyber terrorists in the aviation industry running Mission Critical Services (MCSs). This work presents a case for Airport Information Resource Management Systems (AIRMS) which is a cloud based platform proposed for the Nigerian aviation industry. Granting that AIRMS is susceptible to DoS attacks, there is need to develop a robust counter security network model aimed at pre-empting such attacks and subsequently mitigating the vulnerability in such networks. Existing works in literature regarding cyber security DoS and other schemes have not explored embedded Stateful Packet Inspection (SPI) based on OpenFlow Application Centric Infrastructure (OACI) for securing critical network assets. As such, SPI-OACI was proposed to address the challenge of Vulnerability Bandwidth Depletion DDoS Attacks (VBDDA). A characterization of the Cisco 9000 router firewall as an embedded network device with support for Virtual DDoS protection was carried out in the AIRMS threat mitigation design. Afterwards, the mitigation procedure and the initial phase of the design with Riverbed modeler software were realized. For the security Quality of Service (QoS) profiling, the system response metrics (i.e. SPI-OACI delay, throughput and utilization) in cloud based network were analyzed only for normal traffic flows. The work concludes by offering practical suggestion for securing similar enterprise management systems running on cloud infrastructure against cyber terrorists.
This paper argues the need for considering mitigating circumstances in cybercrime. Mitigating circumstances are conditions which moderate the culpability of an offender of a committed offence. Our argument is based on several observations. The cyberspace introduces a new family of communication and interaction styles and designs which could facilitate, make available, deceive, and in some cases persuade, a user to commit an offence. User's lack of awareness could be a valid mitigation when using software features introduced without a proper management of change and enough precautionary mechanisms, e.g. warning messages. The cyber behaviour of users may not be necessarily a reflection of their real character and intention. Their irrational and unconscious actions may result from their immersed and prolonged presence in a particular cyber context. Hence, the consideration of the cyberspace design, the "cyber psychological" status of an offender and their inter-relation could form a new family of mitigating circumstances inherent and unique to cybercrime. This paper elaborates on this initial argument from different perspectives including software engineering, cyber psychology, digital forensics, social responsibility and law.
Language vector space models (VSMs) have recently proven to be effective across a variety of tasks. In VSMs, each word in a corpus is represented as a real-valued vector. These vectors can be used as features in many applications in machine learning and natural language processing. In this paper, we study the effect of vector space representations in cyber security. In particular, we consider a passive traffic analysis attack (Website Fingerprinting) that threatens users' navigation privacy on the web. By using anonymous communication, Internet users (such as online activists) may wish to hide the destination of web pages they access for different reasons such as avoiding tyrant governments. Traditional website fingerprinting studies collect packets from the users' network and extract features that are used by machine learning techniques to reveal the destination of certain web pages. In this work, we propose the packet to vector (P2V) approach where we model website fingerprinting attack using word vector representations. We show how the suggested model outperforms previous website fingerprinting works.
As the centers of knowledge, discovery, and intellectual exploration, US universities provide appealing cybersecurity targets. Cyberattack origin patterns and relationships are not evident until data is visualized in maps and tested with statistical models. The current cybersecurity threat detection software utilized by University of North Florida's IT department records large amounts of attacks and attempted intrusions by the minute. This paper presents GIS mapping and spatial analysis of cybersecurity attacks on UNF. First, locations of cyberattack origins were detected by geographic Internet Protocol (GEO-IP) software. Second, GIS was used to map the cyberattack origin locations. Third, we used advanced spatial statistical analysis functions (exploratory spatial data analysis and spatial point pattern analysis) and R software to explore cyberattack patterns. The spatial perspective we promote is novel because there are few studies employing location analytics and spatial statistics in cyber-attack detection and prevention research.
In recent years, cyber security threats have become increasingly dangerous. Hackers have fabricated fake emails to spoof specific users into clicking on malicious attachments or URL links in them. This kind of threat is called a spear-phishing attack. Because spear-phishing attacks use unknown exploits to trigger malicious activities, it is difficult to effectively defend against them. Thus, this study focuses on the challenges faced, and we develop a Cloud-threat Inspection Appliance (CIA) system to defend against spear-phishing threats. With the advantages of hardware-assisted virtualization technology, we use the CIA to develop a transparent hypervisor monitor that conceals the presence of the detection engine in the hypervisor kernel. In addition, the CIA also designs a document pre-filtering algorithm to enhance system performance. By inspecting PDF format structures, the proposed CIA was able to filter 77% of PDF attachments and prevent them from all being sent into the hypervisor monitor for deeper analysis. Finally, we tested CIA in real-world scenarios. The hypervisor monitor was shown to be a better anti-evasion sandbox than commercial ones. During 2014, CIA inspected 780,000 mails in a company with 200 user accounts, and found 65 unknown samples that were not detected by commercial anti-virus software.
Massive online social networks with hundreds of millions of active users are increasingly being used by Cyber criminals to spread malicious software (malware) to exploit vulnerabilities on the machines of users for personal gain. Twitter is particularly susceptible to such activity as, with its 140 character limit, it is common for people to include URLs in their tweets to link to more detailed information, evidence, news reports and so on. URLs are often shortened so the endpoint is not obvious before a person clicks the link. Cyber criminals can exploit this to propagate malicious URLs on Twitter, for which the endpoint is a malicious server that performs unwanted actions on the person's machine. This is known as a drive-by-download. In this paper we develop a machine classification system to distinguish between malicious and benign URLs within seconds of the URL being clicked (i.e. `real-time'). We train the classifier using machine activity logs created while interacting with URLs extracted from Twitter data collected during a large global event - the Superbowl - and test it using data from another large sporting event - the Cricket World Cup. The results show that machine activity logs produce precision performances of up to 0.975 on training data from the first event and 0.747 on a test data from a second event. Furthermore, we examine the properties of the learned model to explain the relationship between machine activity and malicious software behaviour, and build a learning curve for the classifier to illustrate that very small samples of training data can be used with only a small detriment to performance.
Information threatening the security of critical infrastructures are exchanged over the Internet through communication platforms, such as online discussion forums. This information can be used by malicious hackers to attack critical computer networks and data systems. Much of the literature on the hacking of critical infrastructure has focused on developing typologies of cyber-attacks, but has not examined the communication activities of the actors involved. To address this gap in the literature, the language of hackers was analyzed to identify potential threats against critical infrastructures using automated analysis tools. First, discussion posts were collected from a selected hacker forum using a customized web-crawler. Posts were analyzed using a parts of speech tagger, which helped determine a list of keywords used to query the data. Next, a sentiment analysis tool scored these keywords, which were then analyzed to determine the effectiveness of this method.
Denial of Service (DoS) attacks is one of the major threats and among the hardest security problems in the Internet world. Of particular concern are Distributed Denial of Service (DDoS) attacks, whose impact can be proportionally severe. With little or no advance warning, an attacker can easily exhaust the computing resources of its victim within a short period of time. In this paper, we study the impact of a UDP flood attack on TCP throughput, round-trip time, and CPU utilization for a Web Server with the new generation of Linux platform, Linux Ubuntu 13. This paper also evaluates the impact of various defense mechanisms, including Access Control Lists (ACLs), Threshold Limit, Reverse Path Forwarding (IP Verify), and Network Load Balancing. Threshold Limit is found to be the most effective defense.
Cultivation of Smart Grid refurbish with brisk and ingenious. The delinquent breed and sow mutilate in massive. This state of affair coerces security as a sapling which incessantly is to be irrigated with Research and Analysis. The Cyber Security is endowed with resiliency to the SYN flooding induced Denial of Service attack in this work. The proposed secure web server algorithm embedded in the LPC1768 processor ensures the smart resources to be precluded from the attack.
Cyber security operations centre (CSOC) is an essential business control aimed to protect ICT systems and support an organisation's Cyber Defense Strategy. Its overarching purpose is to ensure that incidents are identified and managed to resolution swiftly, and to maintain safe & secure business operations and services for the organisation. A CSOC framework is proposed comprising Log Collection, Analysis, Incident Response, Reporting, Personnel and Continuous Monitoring. Further, a Cyber Defense Strategy, supported by the CSOC framework, is discussed. Overlaid atop the strategy is the well-known Her Majesty's Government (HMG) Protective Monitoring Controls (PMCs). Finally, the difficulty and benefits of operating a CSOC are explained.
To establish a secure connection between a mobile user and a remote server, this paper presents a session key agreement scheme through remote mutual authentication protocol by using mobile application software(MAS). We analyzed the security of our protocol informally, which confirms that the protocol is secure against all the relevant security attacks including off-line identity-password guessing attacks, user-server impersonation attacks, and insider attack. In addition, the widely accepted simulator tool AVISPA simulates the proposed protocol and confirms that the protocol is SAFE under the OFMC and CL-AtSe back-ends. Our protocol not only provide strong security against the relevant attacks, but it also achieves proper mutual authentication, user anonymity, known key secrecy and efficient password change operation. The performance comparison is also performed, which ensures that the protocol is efficient in terms of computation and communication costs.
The rate at which cyber-attacks are increasing globally portrays a terrifying picture upfront. The main dynamics of such attacks could be studied in terms of the actions of attackers and defenders in a cyber-security game. However currently little research has taken place to study such interactions. In this paper we use behavioral game theory and try to investigate the role of certain actions taken by attackers and defenders in a simulated cyber-attack scenario of defacing a website. We choose a Reinforcement Learning (RL) model to represent a simulated attacker and a defender in a 2×4 cyber-security game where each of the 2 players could take up to 4 actions. A pair of model participants were computationally simulated across 1000 simulations where each pair played at most 30 rounds in the game. The goal of the attacker was to deface the website and the goal of the defender was to prevent the attacker from doing so. Our results show that the actions taken by both the attackers and defenders are a function of attention paid by these roles to their recently obtained outcomes. It was observed that if attacker pays more attention to recent outcomes then he is more likely to perform attack actions. We discuss the implication of our results on the evolution of dynamics between attackers and defenders in cyber-security games.
Information and Communications Technologies (ICTs), especially the Internet, have become a key enabler for government organisations, businesses and individuals. With increasing growth in the adoption and use of ICT devices such as smart phones, personal computers and the Internet, Cybersecurity is one of the key concerns facing modern organisations in both developed and developing countries. This paper presents an overview of cybersecurity challenges in Bhutan, within the context that the nation is emerging as an ICT developing country. This study examines the cybersecurity incidents reported both in national media and government reports, identification and analysis of different types of cyber threats, understanding of the characteristics and motives behind cyber-attacks, and their frequency of occurrence since 1999. A discussion on an ongoing research study to investigate cybersecurity management and practices for Bhutan's government organisations is also highlighted.
In cyberspace, availability of the resources is the key component of cyber security along with confidentiality and integrity. Distributed Denial of Service (DDoS) attack has become one of the major threats to the availability of resources in computer networks. It is a challenging problem in the Internet. In this paper, we present a detailed study of DDoS attacks on the Internet specifically the attacks due to protocols vulnerabilities in the TCP/IP model, their countermeasures and various DDoS attack mechanisms. We thoroughly review DDoS attacks defense and analyze the strengths and weaknesses of different proposed mechanisms.
Distributed Denial of Service (DoS) attacks is one of the major threats and among the hardest security problems in the Internet world. In this paper, we study the impact of a UDP flood attack on TCP throughputs, round-trip time, and CPU utilization on the latest version of Windows and Linux platforms, namely, Windows Server 2012 and Linux Ubuntu 13. This paper also evaluates several defense mechanisms including Access Control Lists (ACLs), Threshold Limit, Reverse Path Forwarding (IP Verify), and Network Load Balancing. Threshold Limit defense gave better results than the other solutions.
The explosive growth of IT infrastructures, cloud systems, and Internet of Things (IoT) have resulted in complex systems that are extremely difficult to secure and protect against cyberattacks that are growing exponentially in the complexity and also in the number. Overcoming the cybersecurity challenges require cybersecurity environments supporting the development of innovative cybersecurity algorithms and evaluation of the experiments. In this paper, we present the design, analysis, and evaluation of the Cybersecurity Lab as a Service (CLaaS) which offers virtual cybersecurity experiments as a cloud service that can be accessed from anywhere and from any device (desktop, laptop, tablet, smart mobile device, etc.) with Internet connectivity. We exploit cloud computing systems and virtualization technologies to provide isolated and virtual cybersecurity experiments for vulnerability exploitation, launching cyberattacks, how cyber resources and services can be hardened, etc. We also present our performance evaluation and effectiveness of CLaaS experiments used by students.
Presents a collection of slides covering the following topics: advanced attack; threat analysis; remote information gathering; on-site reconnaissance; spear phishing plan; spear phishing exercise; branch office attack plan; branch office attack exercise; head office attack plan; head office attack exercise.
During the last years, criminals have become aware of how digital evidences that lead them to courts and jail are collected and analyzed. Hence, they have started to develop antiforensic techniques to evade, hamper, or nullify their evidences. Nowadays, these techniques are broadly used by criminals, causing the forensic analysis to be in a state of decay. To defeat against these techniques, forensic analyst need to first identify them, and then to mitigate somehow their effects. In this paper, wereview the anti-forensic techniques and propose a new taxonomy that relates them to the initial phase of a forensic process mainly affected by each technique. Furthermore, we introduce mitigation techniques for these anti-forensic techniques, considering the chance to overcome the anti-forensic techniques and the difficulty to apply them.
Sony in United States and KHNP in South Korea were hit by a series of cyberattacks late in 2014 that were blamed on North Korea. U.S. president Obama responded strongly and positively as control tower, and led Sony do not surrender to hacker's demand. U.S government demonstrated retaliatory action against North Korea under the proportional principle, blacklisted 3 North Korean entities and 10 officials. That days, there was the outrage of internet of North Korea. In order to enhance the cyber security response capability, U.S created a new office, CTIIC and encouraged the development of ISAOs, and made Sanctions EO, Information Sharing EO etc. KHNP and the Ministry of Industry rectified incidents itself early period when cyber incident arose, and the situation did not recovered as quickly as desired. S. Korea had not retaliation actions, otherwise called for closer global cooperation against cyber-attacks. To enhance national cyber security and resilience, S. Korea government created the new post of presidential secretary for cyber security and draw up `Strengthening National Cyber Security Posture' initiative.
Attributing the culprit of a cyber-attack is widely considered one of the major technical and policy challenges of cyber-security. The lack of ground truth for an individual responsible for a given attack has limited previous studies. Here, we overcome this limitation by leveraging DEFCON capture-the-flag (CTF) exercise data where the actual ground-truth is known. In this work, we use various classification techniques to identify the culprit in a cyberattack and find that deceptive activities account for the majority of misclassified samples. We also explore several heuristics to alleviate some of the misclassification caused by deception.
The issue of security has become ever more prevalent in the analysis and design of cyber-physical systems. In this paper, we analyze a consensus network in the presence of Denial-of-Service (DoS) attacks, namely attacks that prevent communication among the network agents. By introducing a notion of Persistency-of-Communication (PoC), we provide a characterization of DoS frequency and duration such that consensus is not destroyed. An example is given to substantiate the analysis.
Data mining has been used as a technology in various applications of engineering, sciences and others to analysis data of systems and to solve problems. Its applications further extend towards detecting cyber-attacks. We are presenting our work with simple and less efforts similar to data mining which detects email based phishing attacks. This work digs html contents of emails and web pages referred. Also domains and domain related authority details of these links, script codes associated to web pages are analyzed to conclude for the probability of phishing attacks.
Cyber-physical systems combine data processing and physical interaction. Therefore, security in cyber-physical systems involves more than traditional information security. This paper surveys recent research on security in cloud-based cyber-physical systems. In addition, this paper especially analyzes the security issues in modern production devices and smart mobility services, which are examples of cyber-physical systems from different application domains.
Cloud computing is a technological breakthrough in computing. It has affected each and every part of the information technology, from infrastructure to the software deployment, from programming to the application maintenance. Cloud offers a wide array of solutions for the current day computing needs aided with benefits like elasticity, affordability and scalability. But at the same time, the incidence of malicious cyber activity is progressively increasing at an unprecedented rate posing critical threats to both government and enterprise IT infrastructure. Account or service hijacking is a kind of identity theft and has evolved to be one of the most rapidly increasing types of cyber-attack aimed at deceiving end users. This paper presents an in depth analysis of a cloud security incident that happened on The New York Times online using account hijacking. Further, we present incident prevention methods and detailed incident prevention plan to stop future occurrence of such incidents.
There has been a rampant surge in compromise of consumer grade small scale routers in the last couple of years. Attackers are able to manipulate the Domain Name Space (DNS) settings of these devices hence making them capable of initiating different man-in-the-middle attacks. By this study we aim to explore and comprehend the current state of these attacks. Focusing on the Indian Autonomous System Number (ASN) space, we performed scans over 3 months to successfully find vulnerable routers and extracted the DNS information from these vulnerable routers. In this paper we present the methodology followed for scanning, a detailed analysis report of the information we were able to collect and an insight into the current trends in the attack patterns. We conclude by proposing recommendations for mitigating these attacks.