Visible to the public Biblio

Found 944 results

Filters: Keyword is Internet  [Clear All Filters]
2021-02-23
Millar, K., Cheng, A., Chew, H. G., Lim, C..  2020.  Characterising Network-Connected Devices Using Affiliation Graphs. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1—6.

Device management in large networks is of growing importance to network administrators and security analysts alike. The composition of devices on a network can help forecast future traffic demand as well as identify devices that may pose a security risk. However, the sheer number and diversity of devices that comprise most modern networks have vastly increased the management complexity. Motivated by a need for an encryption-invariant device management strategy, we use affiliation graphs to develop a methodology that reveals key insights into the devices acting on a network using only the source and destination IP addresses. Through an empirical analysis of the devices on a university campus network, we provide an example methodology to infer a device's characteristics (e.g., operating system) through the services it communicates with via the Internet.

Zheng, L., Jiang, J., Pan, W., Liu, H..  2020.  High-Performance and Range-Supported Packet Classification Algorithm for Network Security Systems in SDN. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.
Packet classification is a key function in network security systems in SDN, which detect potential threats by matching the packet header bits and a given rule set. It needs to support multi-dimensional fields, large rule sets, and high throughput. Bit Vector-based packet classification methods can support multi-field matching and achieve a very high throughput, However, the range matching is still challenging. To address issue, this paper proposes a Range Supported Bit Vector (RSBV) algorithm for processing the range fields. RSBV uses specially designed codes to store the pre-computed results in memory, and the result of range matching is derived through pipelined Boolean operations. Through a two-dimensional modular architecture, the RSBV can operate at a high clock frequency and line-rate processing can be guaranteed. Experimental results show that for a 1K and 512-bit OpenFlow rule set, the RSBV can sustain a throughput of 520 Million Packets Per Second.
Gamba, J., Rashed, M., Razaghpanah, A., Tapiador, J., Vallina-Rodriguez, N..  2020.  An Analysis of Pre-installed Android Software. 2020 IEEE Symposium on Security and Privacy (SP). :1039—1055.

The open-source nature of the Android OS makes it possible for manufacturers to ship custom versions of the OS along with a set of pre-installed apps, often for product differentiation. Some device vendors have recently come under scrutiny for potentially invasive private data collection practices and other potentially harmful or unwanted behavior of the preinstalled apps on their devices. Yet, the landscape of preinstalled software in Android has largely remained unexplored, particularly in terms of the security and privacy implications of such customizations. In this paper, we present the first large- scale study of pre-installed software on Android devices from more than 200 vendors. Our work relies on a large dataset of real-world Android firmware acquired worldwide using crowd-sourcing methods. This allows us to answer questions related to the stakeholders involved in the supply chain, from device manufacturers and mobile network operators to third- party organizations like advertising and tracking services, and social network platforms. Our study allows us to also uncover relationships between these actors, which seem to revolve primarily around advertising and data-driven services. Overall, the supply chain around Android's open source model lacks transparency and has facilitated potentially harmful behaviors and backdoored access to sensitive data and services without user consent or awareness. We conclude the paper with recommendations to improve transparency, attribution, and accountability in the Android ecosystem.

Mukhametov, D. R..  2020.  Self-organization of Network Communities via Blockchain Technology: Reputation Systems and Limits of Digital Democracy. 2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). :1—7.

The article is devoted to the analysis of the use of blockchain technology for self-organization of network communities. Network communities are characterized by the key role of trust in personal interactions, the need for repeated interactions, strong and weak ties within the network, social learning as the mechanism of self-organization. Therefore, in network communities reputation is the central component of social action, assessment of the situation, and formation of the expectations. The current proliferation of virtual network communities requires the development of appropriate technical infrastructure in the form of reputation systems - programs that provide calculation of network members reputation and organization of their cooperation and interaction. Traditional reputation systems have vulnerabilities in the field of information security and prevention of abusive behavior of agents. Overcoming these restrictions is possible through integration of reputation systems and blockchain technology that allows to increase transparency of reputation assessment system and prevent attempts of manipulation the system and social engineering. At the same time, the most promising is the use of blockchain-oracles to ensure communication between the algorithms of blockchain-based reputation system and the external information environment. The popularization of blockchain technology and its implementation in various spheres of social management, production control, economic exchange actualizes the problems of using digital technologies in political processes and their impact on the formation of digital authoritarianism, digital democracy and digital anarchism. The paper emphasizes that blockchain technology and reputation systems can equally benefit both the resources of government control and tools of democratization and public accountability to civil society or even practices of avoiding government. Therefore, it is important to take into account the problems of political institutionalization, path dependence and the creation of differentiated incentives as well as the technological aspects.

Cushing, R., Koning, R., Zhang, L., Laat, C. d, Grosso, P..  2020.  Auditable secure network overlays for multi-domain distributed applications. 2020 IFIP Networking Conference (Networking). :658—660.

The push for data sharing and data processing across organisational boundaries creates challenges at many levels of the software stack. Data sharing and processing rely on the participating parties agreeing on the permissible operations and expressing them into actionable contracts and policies. Converting these contracts and policies into a operational infrastructure is still a matter of research and therefore begs the question how should a digital data market place infrastructure look like? In this paper we investigate how communication fabric and applications can be tightly coupled into a multi-domain overlay network which enforces accountability. We prove our concepts with a prototype which shows how a simple workflow can run across organisational boundaries.

2021-02-22
Haile, J., Havens, S..  2020.  Identifying Ubiquitious Third-Party Libraries in Compiled Executables Using Annotated and Translated Disassembled Code with Supervised Machine Learning. 2020 IEEE Security and Privacy Workshops (SPW). :157–162.
The size and complexity of the software ecosystem is a major challenge for vendors, asset owners and cybersecurity professionals who need to understand the security posture of these systems. Annotated and Translated Disassembled Code is a graph based datastore designed to organize firmware and software analysis data across builds, packages and systems, providing a highly scalable platform enabling automated binary software analysis tasks including corpora construction and storage for machine learning. This paper describes an approach for the identification of ubiquitous third-party libraries in firmware and software using Annotated and Translated Disassembled Code and supervised machine learning. Annotated and Translated Disassembled Code provide matched libraries, function names and addresses of previously unidentified code in software as it is being automatically analyzed. This data can be ingested by other software analysis tools to improve accuracy and save time. Defenders can add the identified libraries to their vulnerability searches and add effective detection and mitigation into their operating environment.
Lansley, M., Kapetanakis, S., Polatidis, N..  2020.  SEADer++ v2: Detecting Social Engineering Attacks using Natural Language Processing and Machine Learning. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1–6.
Social engineering attacks are well known attacks in the cyberspace and relatively easy to try and implement because no technical knowledge is required. In various online environments such as business domains where customers talk through a chat service with employees or in social networks potential hackers can try to manipulate other people by employing social attacks against them to gain information that will benefit them in future attacks. Thus, we have used a number of natural language processing steps and a machine learning algorithm to identify potential attacks. The proposed method has been tested on a semi-synthetic dataset and it is shown to be both practical and effective.
Suwannasa, A., Broadbent, M., Mauthe, A..  2020.  Vicinity-based Replica Finding in Named Data Networking. 2020 International Conference on Information Networking (ICOIN). :146–151.
In Named Data Networking (NDN) architectures, a content object is located according to the content's identifier and can be retrieved from all nodes that hold a replica of the content. The default forwarding strategy of NDN is to forward an Interest packet along the default path from the requester to the server to find a content object according to its name prefix. However, the best path may not be the default path, since content might also be located nearby. Hence, the default strategy could result in a sub-optimal delivery efficiency. To address this issue we introduce a vicinity-based replica finding scheme. This is based on the observation that content objects might be requested several times. Therefore, replicas can be often cached within a particular neighbourhood and thus it might be efficient to specifically look for them in order to improve the content delivery performance. Within this paper, we evaluate the optimal size of the vicinity within which content should be located (i.e. the distance between the requester and its neighbours that are considered within the content search). We also compare the proposed scheme with the default NDN forwarding strategy with respect to replica finding efficiency and network overhead. Using the proposed scheme, we demonstrate that the replica finding mechanism reduces the delivery time effectively with acceptable overhead costs.
Gündoğan, C., Amsüss, C., Schmidt, T. C., Wählisch, M..  2020.  IoT Content Object Security with OSCORE and NDN: A First Experimental Comparison. 2020 IFIP Networking Conference (Networking). :19–27.
The emerging Internet of Things (IoT) challenges the end-to-end transport of the Internet by low power lossy links and gateways that perform protocol translations. Protocols such as CoAP or MQTT-SN are degraded by the overhead of DTLS sessions, which in common deployment protect content transfer only up to the gateway. To preserve content security end-to-end via gateways and proxies, the IETF recently developed Object Security for Constrained RESTful Environments (OSCORE), which extends CoAP with content object security features commonly known from Information Centric Networks (ICN). This paper presents a comparative analysis of protocol stacks that protect request-response transactions. We measure protocol performances of CoAP over DTLS, OSCORE, and the information-centric Named Data Networking (NDN) protocol on a large-scale IoT testbed in single- and multi-hop scenarios. Our findings indicate that (a) OSCORE improves on CoAP over DTLS in error-prone wireless regimes due to omitting the overhead of maintaining security sessions at endpoints, and (b) NDN attains superior robustness and reliability due to its intrinsic network caches and hop-wise retransmissions.
Nour, B., Khelifi, H., Hussain, R., Moungla, H., Bouk, S. H..  2020.  A Collaborative Multi-Metric Interface Ranking Scheme for Named Data Networks. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2088–2093.
Named Data Networking (NDN) uses the content name to enable content sharing in a network using Interest and Data messages. In essence, NDN supports communication through multiple interfaces, therefore, it is imperative to think of the interface that better meets the communication requirements of the application. The current interface ranking is based on single static metric such as minimum number of hops, maximum satisfaction rate, or minimum network delay. However, this ranking may adversely affect the network performance. To fill the gap, in this paper, we propose a new multi-metric robust interface ranking scheme that combines multiple metrics with different objective functions. Furthermore, we also introduce different forwarding modes to handle the forwarding decision according to the available ranked interfaces. Extensive simulation experiments demonstrate that the proposed scheme selects the best and suitable forwarding interface to deliver content.
Doku, R., Rawat, D. B., Garuba, M., Njilla, L..  2020.  Fusion of Named Data Networking and Blockchain for Resilient Internet-of-Battlefield-Things. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–6.
Named Data Network's (NDN) data-centric approach makes it a suitable solution in a networking scenario where there are connectivity issues as a result of the dynamism of the network. Coupling of this ability with the blockchain's well-documented immutable trustworthy-distributed ledger feature, the union of blockchain and NDN in an Internet-of-Battlefield-Things (IoBT) setting could prove to be the ideal alliance that would guarantee data exchanged in an IoBT environment is trusted and less susceptible to cyber-attacks and packet losses. Various blockchain technologies, however, require that each node has a ledger that stores information or transactions in a chain of blocks. This poses an issue as nodes in an IoBT setting have varying computing and storage resources. Moreover, most of the nodes in the IoT/IoBT network are plagued with limited resources. As such, there needs to be an approach that ensures that the limited resources of these nodes are efficiently utilized. In this paper, we investigate an approach that merges blockchain and NDN to efficiently utilize the resources of these resource-constrained nodes by only storing relevant information on each node's ledger. Furthermore, we propose a sharding technique called an Interest Group and introduce a novel consensus mechanism called Proof of Common Interest. Performance of the proposed approach is evaluated using numerical results.
Abdelaal, M., Karadeniz, M., Dürr, F., Rothermel, K..  2020.  liteNDN: QoS-Aware Packet Forwarding and Caching for Named Data Networks. 2020 IEEE 17th Annual Consumer Communications Networking Conference (CCNC). :1–9.
Recently, named data networking (NDN) has been introduced to connect the world of computing devices via naming data instead of their containers. Through this strategic change, NDN brings several new features to network communication, including in-network caching, multipath forwarding, built-in multicast, and data security. Despite these unique features of NDN networking, there exist plenty of opportunities for continuing developments, especially with packet forwarding and caching. In this context, we introduce liteNDN, a novel forwarding and caching strategy for NDN networks. liteNDN comprises a cooperative forwarding strategy through which NDN routers share their knowledge, i.e. data names and interfaces, to optimize their packet forwarding decisions. Subsequently, liteNDN leverages that knowledge to estimate the probability of each downstream path to swiftly retrieve the requested data. Additionally, liteNDN exploits heuristics, such as routing costs and data significance, to make proper decisions about caching normal as well as segmented packets. The proposed approach has been extensively evaluated in terms of the data retrieval latency, network utilization, and the cache hit rate. The results showed that liteNDN, compared to conventional NDN forwarding and caching strategies, achieves much less latency while reducing the unnecessary traffic and caching activities.
Alzakari, N., Dris, A. B., Alahmadi, S..  2020.  Randomized Least Frequently Used Cache Replacement Strategy for Named Data Networking. 2020 3rd International Conference on Computer Applications Information Security (ICCAIS). :1–6.
To accommodate the rapidly changing Internet requirements, Information-Centric Networking (ICN) was recently introduced as a promising architecture for the future Internet. One of the ICN primary features is `in-network caching'; due to its ability to minimize network traffic and respond faster to users' requests. Therefore, various caching algorithms have been presented that aim to enhance the network performance using different measures, such as cache hit ratio and cache hit distance. Choosing a caching strategy is critical, and an adequate replacement strategy is also required to decide which content should be dropped. Thus, in this paper, we propose a content replacement scheme for ICN, called Randomized LFU that is implemented with respect to content popularity taking the time complexity into account. We use Abilene and Tree network topologies in our simulation models. The proposed replacement achieves encouraging results in terms of the cache hit ratio, inner hit, and hit distance and it outperforms FIFO, LRU, and Random replacement strategies.
Afanasyev, A., Ramani, S. K..  2020.  NDNconf: Network Management Framework for Named Data Networking. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
The rapid growth of the Internet is, in part, powered by the broad participation of numerous vendors building network components. All these network devices require that they be properly configured and maintained, which creates a challenge for system administrators of complex networks with a growing variety of heterogeneous devices. This challenge is true for today's networks, as well as for the networking architectures of the future, such as Named Data Networking (NDN). This paper gives a preliminary design of an NDNconf framework, an adaptation of a recently developed NETCONF protocol, to realize unified configuration and management for NDN. The presented design is built leveraging the benefits provided by NDN, including the structured naming shared among network and application layers, stateful data retrieval with name-based interest forwarding, in-network caching, data-centric security model, and others. Specifically, the configuration data models, the heart of NDNconf, the elements of the models and models themselves are represented as secured NDN data, allowing fetching models, fetching configuration data that correspond to elements of the model, and issuing commands using the standard Interest-Data exchanges. On top of that, the security of models, data, and commands are realized through native data-centric NDN mechanisms, providing highly secure systems with high granularity of control.
Li, Y., Liu, Y., Wang, Y., Guo, Z., Yin, H., Teng, H..  2020.  Synergetic Denial-of-Service Attacks and Defense in Underwater Named Data Networking. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :1569–1578.
Due to the harsh environment and energy limitation, maintaining efficient communication is crucial to the lifetime of Underwater Sensor Networks (UWSN). Named Data Networking (NDN), one of future network architectures, begins to be applied to UWSN. Although Underwater Named Data Networking (UNDN) performs well in data transmission, it still faces some security threats, such as the Denial-of-Service (DoS) attacks caused by Interest Flooding Attacks (IFAs). In this paper, we present a new type of DoS attacks, named as Synergetic Denial-of-Service (SDoS). Attackers synergize with each other, taking turns to reply to malicious interests as late as possible. SDoS attacks will damage the Pending Interest Table, Content Store, and Forwarding Information Base in routers with high concealment. Simulation results demonstrate that the SDoS attacks quadruple the increased network traffic compared with normal IFAs and the existing IFA detection algorithm in UNDN is completely invalid to SDoS attacks. In addition, we analyze the infection problem in UNDN and propose a defense method Trident based on carefully designed adaptive threshold, burst traffic detection, and attacker identification. Experiment results illustrate that Trident can effectively detect and resist both SDoS attacks and normal IFAs. Meanwhile, Trident can robustly undertake burst traffic and congestion.
Yan, Z., Park, Y., Leau, Y., Ren-Ting, L., Hassan, R..  2020.  Hybrid Network Mobility Support in Named Data Networking. 2020 International Conference on Information Networking (ICOIN). :16–19.
Named Data Networking (NDN) is a promising Internet architecture which is expected to solve some problems (e.g., security, mobility) of the current TCP/IP architecture. The basic concept of NDN is to use named data for routing instead of using location addresses like IP address. NDN natively supports consumer mobility, but producer mobility is still a challenge and there have been quite a few researches. Considering the Internet connection such as public transport vehicles, network mobility support in NDN is important, but it is still a challenge. That is the reason that this paper proposes an efficient network mobility support scheme in NDN in terms of signaling protocols and data retrieval.
2021-02-16
Lotfalizadeh, H., Kim, D. S..  2020.  Investigating Real-Time Entropy Features of DDoS Attack Based on Categorized Partial-Flows. 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1—6.
With the advent of IoT devices and exponential growth of nodes on the internet, computer networks are facing new challenges, with one of the more important ones being DDoS attacks. In this paper, new features to detect initiation and termination of DDoS attacks are investigated. The method to extract these features is devised with respect to some openflowbased switch capabilities. These features provide us with a higher resolution to view and process packet count entropies, thus improving DDoS attack detection capabilities. Although some of the technical assumptions are based on SDN technology and openflow protocol, the methodology can be applied in other networking paradigms as well.
Sumantra, I., Gandhi, S. Indira.  2020.  DDoS attack Detection and Mitigation in Software Defined Networks. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
This work aims to formulate an effective scheme which can detect and mitigate of Distributed Denial of Service (DDoS) attack in Software Defined Networks. Distributed Denial of Service attacks are one of the most destructive attacks in the internet. Whenever you heard of a website being hacked, it would have probably been a victim of a DDoS attack. A DDoS attack is aimed at disrupting the normal operation of a system by making service and resources unavailable to legitimate users by overloading the system with excessive superfluous traffic from distributed source. These distributed set of compromised hosts that performs the attack are referred as Botnet. Software Defined Networking being an emerging technology, offers a solution to reduce network management complexity. It separates the Control plane and the data plane. This decoupling provides centralized control of the network with programmability and flexibility. This work harness this programming ability and centralized control of SDN to obtain the randomness of the network flow data. This statistical approach utilizes the source IP in the network and various attributes of TCP flags and calculates entropy from them. The proposed technique can detect volume based and application based DDoS attacks like TCP SYN flood, Ping flood and Slow HTTP attacks. The methodology is evaluated through emulation using Mininet and Detection and mitigation strategies are implemented in POX controller. The experimental results show the proposed method have improved performance evaluation parameters including the Attack detection time, Delay to serve a legitimate request in the presence of attacker and overall CPU utilization.
2021-02-15
Maldonado-Ruiz, D., Torres, J., Madhoun, N. El.  2020.  3BI-ECC: a Decentralized Identity Framework Based on Blockchain Technology and Elliptic Curve Cryptography. 2020 2nd Conference on Blockchain Research Applications for Innovative Networks and Services (BRAINS). :45–46.

Most of the authentication protocols assume the existence of a Trusted Third Party (TTP) in the form of a Certificate Authority or as an authentication server. The main objective of this research is to present an autonomous solution where users could store their credentials, without depending on TTPs. For this, the use of an autonomous network is imperative, where users could use their uniqueness in order to identify themselves. We propose the framework “Three Blockchains Identity Management with Elliptic Curve Cryptography (3BI-ECC)”. Our proposed framework is a decentralize identity management system where users' identities are self-generated.

2021-02-10
Kerschbaumer, C., Ritter, T., Braun, F..  2020.  Hardening Firefox against Injection Attacks. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :653—663.
Web browsers display content in the form of HTML, CSS and JavaScript retrieved from the world wide web. The loaded content is subject to the web security model and considered untrusted and potentially malicious. To complicate security matters, Firefox uses the same technologies to render its user interface as it does to render untrusted web content which blurs the distinction between the two privilege levels.Getting interactions between the two correct turns out to be complicated and has led to numerous real-world security vulnerabilities. We study those vulnerabilities to discover common threats and explain how we address them systematically to harden Firefox.
Lei, L., Chen, M., He, C., Li, D..  2020.  XSS Detection Technology Based on LSTM-Attention. 2020 5th International Conference on Control, Robotics and Cybernetics (CRC). :175—180.
Cross-site scripting (XSS) is one of the main threats of Web applications, which has great harm. How to effectively detect and defend against XSS attacks has become more and more important. Due to the malicious obfuscation of attack codes and the gradual increase in number, the traditional XSS detection methods have some defects such as poor recognition of malicious attack codes, inadequate feature extraction and low efficiency. Therefore, we present a novel approach to detect XSS attacks based on the attention mechanism of Long Short-Term Memory (LSTM) recurrent neural network. First of all, the data need to be preprocessed, we used decoding technology to restore the XSS codes to the unencoded state for improving the readability of the code, then we used word2vec to extract XSS payload features and map them to feature vectors. And then, we improved the LSTM model by adding attention mechanism, the LSTM-Attention detection model was designed to train and test the data. We used the ability of LSTM model to extract context-related features for deep learning, the added attention mechanism made the model extract more effective features. Finally, we used the classifier to classify the abstract features. Experimental results show that the proposed XSS detection model based on LSTM-Attention achieves a precision rate of 99.3% and a recall rate of 98.2% in the actually collected dataset. Compared with traditional machine learning methods and other deep learning methods, this method can more effectively identify XSS attacks.
Mishra, P., Gupta, C..  2020.  Cookies in a Cross-site scripting: Type, Utilization, Detection, Protection and Remediation. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :1056—1059.
In accordance to the annual report by the Cisco 2018, web applications are exposed to several security vulnerabilities that are exploited by hackers in various ways. It is becoming more and more frequent, specific and sophisticated. Of all the vulnerabilities, more than 40% of attempts are performed via cross-site scripting (XSS). A number of methods have been postulated to examine such vulnerabilities. Therefore, this paper attempted to address an overview of one such vulnerability: the cookies in the XSS. The objective is to present an overview of the cookies, it's type, vulnerability, policies, discovering, protecting and their mitigation via different tools/methods and via cryptography, artificial intelligence techniques etc. While some future issues, directions, challenges and future research challenges were also being discussed.
Kishimoto, K., Taniguchi, Y., Iguchi, N..  2020.  A Practical Exercise System Using Virtual Machines for Learning Cross-Site Scripting Countermeasures. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1—2.

Cross-site scripting (XSS) is an often-occurring major attack that developers should consider when developing web applications. We develop a system that can provide practical exercises for learning how to create web applications that are secure against XSS. Our system utilizes free software and virtual machines, allowing low-cost, safe, and practical exercises. By using two virtual machines as the web server and the attacker host, the learner can conduct exercises demonstrating both XSS countermeasures and XSS attacks. In our system, learners use a web browser to learn and perform exercises related to XSS. Experimental evaluations confirm that the proposed system can support learning of XSS countermeasures.

Aktepe, S., Varol, C., Shashidhar, N..  2020.  MiNo: The Chrome Web Browser Add-on Application to Block the Hidden Cryptocurrency Mining Activities. 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—5.

Cryptocurrencies are the digital currencies designed to replace the regular cash money while taking place in our daily lives especially for the last couple of years. Mining cryptocurrencies are one of the popular ways to have them and make a profit due to unstable values in the market. This attracts attackers to utilize malware on internet users' computer resources, also known as cryptojacking, to mine cryptocurrencies. Cryptojacking started to be a major issue in the internet world. In this case, we developed MiNo, a web browser add-on application to detect these malicious mining activities running without the user's permission or knowledge. This add-on provides security and efficiency for the computer resources of the internet users. MiNo designed and developed with double-layer protection which makes it ahead of its competitors in the market.

Varlioglu, S., Gonen, B., Ozer, M., Bastug, M..  2020.  Is Cryptojacking Dead After Coinhive Shutdown? 2020 3rd International Conference on Information and Computer Technologies (ICICT). :385—389.
Cryptojacking is the exploitation of victims' computer resources to mine for cryptocurrency using malicious scripts. It had become popular after 2017 when attackers started to exploit legal mining scripts, especially Coinhive scripts. Coinhive was actually a legal mining service that provided scripts and servers for in-browser mining activities. Nevertheless, over 10 million web users had been victims every month before the Coinhive shutdown that happened in Mar 2019. This paper explores the new era of the cryptojacking world after Coinhive discontinued its service. We aimed to see whether and how attackers continue cryptojacking, generate new malicious scripts, and developed new methods. We used a capable cryptojacking detector named CMTracker that proposed by Hong et al. in 2018. We automatically and manually examined 2770 websites that had been detected by CMTracker before the Coinhive shutdown. The results revealed that 99% of sites no longer continue cryptojacking. 1% of websites still run 8 unique mining scripts. By tracking these mining scripts, we detected 632 unique cryptojacking websites. Moreover, open-source investigations (OSINT) demonstrated that attackers still use the same methods. Therefore, we listed the typical patterns of cryptojacking. We concluded that cryptojacking is not dead after the Coinhive shutdown. It is still alive, but not as attractive as it used to be.