Visible to the public Biblio

Found 944 results

Filters: Keyword is Internet  [Clear All Filters]
2020-11-30
Pan, T., Xu, C., Lv, J., Shi, Q., Li, Q., Jia, C., Huang, T., Lin, X..  2019.  LD-ICN: Towards Latency Deterministic Information-Centric Networking. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :973–980.
Deterministic latency is the key challenge that must be addressed in numerous 5G applications such as AR/VR. However, it is difficult to make customized end-to-end resource reservation across multiple ISPs using IP-based QoS mechanisms. Information-Centric Networking (ICN) provides scalable and efficient content distribution at the Internet scale due to its in-network caching and native multicast capabilities, and the deterministic latency can promisingly be guaranteed by caching the relevant content objects in appropriate locations. Existing proposals formulate the ICN cache placement problem into numerous theoretical models. However, the underlying mechanisms to support such cache coordination are not discussed in detail. Especially, how to efficiently make cache reservation, how to avoid route oscillation when content cache is updated and how to conduct the real-time latency measurement? In this work, we propose Latency Deterministic Information-Centric Networking (LD-ICN). LD-ICN relies on source routing-based latency telemetry and leverages an on-path caching technique to avoid frequent route oscillation while still achieve the optimal cache placement under the SDN architecture. Extensive evaluation shows that under LD-ICN, 90.04% of the content requests are satisfied within the hard latency requirements.
Zhou, K., Sun, S., Wang, H., Huang, P., He, X., Lan, R., Li, W., Liu, W., Yang, T..  2019.  Improving Cache Performance for Large-Scale Photo Stores via Heuristic Prefetching Scheme. IEEE Transactions on Parallel and Distributed Systems. 30:2033–2045.
Photo service providers are facing critical challenges of dealing with the huge amount of photo storage, typically in a magnitude of billions of photos, while ensuring national-wide or world-wide satisfactory user experiences. Distributed photo caching architecture is widely deployed to meet high performance expectations, where efficient still mysterious caching policies play essential roles. In this work, we present a comprehensive study on internet-scale photo caching algorithms in the case of QQPhoto from Tencent Inc., the largest social network service company in China. We unveil that even advanced cache algorithms can only perform at a similar level as simple baseline algorithms and there still exists a large performance gap between these cache algorithms and the theoretically optimal algorithm due to the complicated access behaviors in such a large multi-tenant environment. We then expound the reasons behind this phenomenon via extensively investigating the characteristics of QQPhoto workloads. Finally, in order to realistically further improve QQPhoto cache efficiency, we propose to incorporate a prefetcher in the cache stack based on the observed immediacy feature that is unique to the QQPhoto workload. The prefetcher proactively prefetches selected photos into cache before they are requested for the first time to eliminate compulsory misses and promote hit ratios. Our extensive evaluation results show that with appropriate prefetching we improve the cache hit ratio by up to 7.4 percent, while reducing the average access latency by 6.9 percent at a marginal cost of 4.14 percent backend network traffic compared to the original system that performs no prefetching.
Chai, W. K., Pavlou, G., Kamel, G., Katsaros, K. V., Wang, N..  2019.  A Distributed Interdomain Control System for Information-Centric Content Delivery. IEEE Systems Journal. 13:1568–1579.
The Internet, the de facto platform for large-scale content distribution, suffers from two issues that limit its manageability, efficiency, and evolution. First, the IP-based Internet is host-centric and agnostic to the content being delivered and, second, the tight coupling of the control and data planes restrict its manageability, and subsequently the possibility to create dynamic alternative paths for efficient content delivery. Here, we present the CURLING system that leverages the emerging Information-Centric Networking paradigm for enabling cost-efficient Internet-scale content delivery by exploiting multicasting and in-network caching. Following the software-defined networking concept that decouples the control and data planes, CURLING adopts an interdomain hop-by-hop content resolution mechanism that allows network operators to dynamically enforce/change their network policies in locating content sources and optimizing content delivery paths. Content publishers and consumers may also control content access according to their preferences. Based on both analytical modeling and simulations using real domain-level Internet subtopologies, we demonstrate how CURLING supports efficient Internet-scale content delivery without the necessity for radical changes to the current Internet.
Xu, Y., Chen, H., Zhao, Y., Zhang, W., Shen, Q., Zhang, X., Ma, Z..  2019.  Neural Adaptive Transport Framework for Internet-scale Interactive Media Streaming Services. 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). :1–6.
Network dynamics, such as bandwidth fluctuation and unexpected latency, hurt users' quality of experience (QoE) greatly for media services over the Internet. In this work, we propose a neural adaptive transport (NAT) framework to tackle the network dynamics for Internet-scale interactive media services. The entire NAT system has three major components: a learning based cloud overlay routing (COR) scheme for the best delivery path to bypass the network bottlenecks while offering the minimal end-to-end latency simultaneously; a residual neural network based collaborative video processing (CVP) system to trade the computational capability at client-end for QoE improvement via learned resolution scaling; and a deep reinforcement learning (DRL) based adaptive real-time streaming (ARS) strategy to select the appropriate video bitrate for maximal QoE. We have demonstrated that COR could improve the user satisfaction from 5% to 43%, CVP could reduce the bandwidth consumption more than 30% at the same quality, and DRL-based ARS can maintain the smooth streaming with \textbackslashtextless; 50% QoE improvement, respectively.
2020-11-23
Li, W., Zhu, H., Zhou, X., Shimizu, S., Xin, M., Jin, Q..  2018.  A Novel Personalized Recommendation Algorithm Based on Trust Relevancy Degree. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :418–422.
The rapid development of the Internet and ecommerce has brought a lot of convenience to people's life. Personalized recommendation technology provides users with services that they may be interested according to users' information such as personal characteristics and historical behaviors. The research of personalized recommendation has been a hot point of data mining and social networks. In this paper, we focus on resolving the problem of data sparsity based on users' rating data and social network information, introduce a set of new measures for social trust and propose a novel personalized recommendation algorithm based on matrix factorization combining trust relevancy. Our experiments were performed on the Dianping datasets. The results show that our algorithm outperforms traditional approaches in terms of accuracy and stability.
Kumari, K. A., Sadasivam, G. S., Gowri, S. S., Akash, S. A., Radhika, E. G..  2018.  An Approach for End-to-End (E2E) Security of 5G Applications. 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS). :133–138.
As 5G transitions from an industrial vision to a tangible, next-generation mobile technology, security remains key business driver. Heterogeneous environment, new networking paradigms and novel use cases makes 5G vulnerable to new security threats. This in turn necessitates a flexible and dependable security mechanism. End-to-End (E2E) data protection provides better security, avoids repeated security operations like encryption/decryption and provides differentiated security based on the services. E2E security deals with authentication, integrity, key management and confidentiality. The attack surface of a 5G system is larger as 5G aims for a heterogeneous networked society. Hence attack resistance needs to be a design consideration when defining new 5G protocols. This framework has been designed for accessing the manifold applications with high security and trust by offering E2E security for various services. The proposed framework is evaluated based on computation complexity, communication complexity, attack resistance rate and security defensive rate. The protocol is also evaluated for correctness, and resistance against passive, active and dictionary attacks using random oracle model and Automated Validation of Internet Security Protocols and Applications (AVISPA) tool.
Wu, K., Gao, X., Liu, Y..  2018.  Web server security evaluation method based on multi-source data. 2018 International Conference on Cloud Computing, Big Data and Blockchain (ICCBB). :1–6.
Traditional web security assessments are evaluated using a single data source, and the results of the calculations from different data sources are different. Based on multi-source data, this paper uses Analytic Hierarchy Process to construct an evaluation model, calculates the weight of each level of indicators in the web security evaluation model, analyzes and processes the data, calculates the host security threat assessment values at various levels, and visualizes the evaluation results through ECharts+WebGL technology.
Wang, X., Li, J..  2018.  Design of Intelligent Home Security Monitoring System Based on Android. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :2621–2624.
In view of the problem that the health status and safety monitoring of the traditional intelligent home are mainly dependent on the manual inspection, this paper introduces the intelligent home-based remote monitoring system by introducing the Internet-based Internet of Things technology into the intelligent home condition monitoring and safety assessment. The system's Android remote operation based on the MVP model to develop applications, the use of neural networks to deal with users daily use of operational data to establish the network data model, combined with S3C2440A microcontrollers in the gateway to the embedded Linux to facilitate different intelligent home drivers development. Finally, the power line communication network is used to connect the intelligent electrical appliances to the gateway. By calculating the success rate of the routing nodes, the success rate of the network nodes of 15 intelligent devices is 98.33%. The system can intelligent home many electrical appliances at the same time monitoring, to solve the system data and network congestion caused by the problem can not he security monitoring.
2020-11-20
Lavrenovs, A., Melón, F. J. R..  2018.  HTTP security headers analysis of top one million websites. 2018 10th International Conference on Cyber Conflict (CyCon). :345—370.
We present research on the security of the most popular websites, ranked according to Alexa's top one million list, based on an HTTP response headers analysis. For each of the domains included in the list, we made four different requests: an HTTP/1.1 request to the domain itself and to its "www" subdomain and two more equivalent HTTPS requests. Redirections were always followed. A detailed discussion of the request process and main outcomes is presented, including X.509 certificate issues and comparison of results with equivalent HTTP/2 requests. The body of the responses was discarded, and the HTTP response header fields were stored in a database. We analysed the prevalence of the most important response headers related to web security aspects. In particular, we took into account Strict- Transport-Security, Content-Security-Policy, X-XSS-Protection, X-Frame-Options, Set-Cookie (for session cookies) and X-Content-Type. We also reviewed the contents of response HTTP headers that potentially could reveal unwanted information, like Server (and related headers), Date and Referrer-Policy. This research offers an up-to-date survey of current prevalence of web security policies implemented through HTTP response headers and concludes that most popular sites tend to implement it noticeably more often than less popular ones. Equally, HTTPS sites seem to be far more eager to implement those policies than HTTP only websites. A comparison with previous works show that web security policies based on HTTP response headers are continuously growing, but still far from satisfactory widespread adoption.
Lu, X., Guan, Z., Zhou, X., Du, X., Wu, L., Guizani, M..  2019.  A Secure and Efficient Renewable Energy Trading Scheme Based on Blockchain in Smart Grid. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1839—1844.
Nowadays, with the diversification and decentralization of energy systems, the energy Internet makes it possible to interconnect distributed energy sources and consumers. In the energy trading market, the traditional centralized model relies entirely on trusted third parties. However, as the number of entities involved in the transactions grows and the forms of transactions diversify, the centralized model gradually exposes problems such as insufficient scalability, High energy consumption, and low processing efficiency. To address these challenges, we propose a secure and efficient energy renewable trading scheme based on blockchain. In our scheme, the electricity market trading model is divided into two levels, which can not only protect the privacy, but also achieve a green computing. In addition, in order to adapt to the relatively weak computing power of the underlying equipment in smart grid, we design a credibility-based equity proof mechanism to greatly improve the system availability. Compared with other similar distributed energy trading schemes, we prove the advantages of our scheme in terms of high operational efficiency and low computational overhead through experimental evaluations. Additionally, we conduct a detailed security analysis to demonstrate that our solution meets the security requirements.
2020-11-17
Radha, P., Selvakumar, N., Sekar, J. Raja, Johnsonselva, J. V..  2018.  Enhancing Internet of Battle Things using Ultrasonic assisted Non-Destructive Testing (Technical solution). 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). :1—4.

The subsystem of IoMT (Internet of Military of Things) called IoBT (Internet of Battle of Things) is the major resource of the military where the various stack holders of the battlefield and different categories of equipment are tightly integrated through the internet. The proposed architecture mentioned in this paper will be helpful to design IoBT effectively for warfare using irresistible technologies like information technology, embedded technology, and network technology. The role of Machine intelligence is essential in IoBT to create smart things and provide accurate solutions without human intervention. Non-Destructive Testing (NDT) is used in Industries to examine and analyze the invisible defects of equipment. Generally, the ultrasonic waves are used to examine and analyze the internal defects of materials. Hence the proposed architecture of IoBT is enhanced by ultrasonic based NDT to study the properties of the things of the battlefield without causing any damage.

Kamhoua, C. A..  2018.  Game theoretic modeling of cyber deception in the Internet of Battlefield Things. 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :862—862.

Internet of Battlefield Things (IoBT) devices such as actuators, sensors, wearable devises, robots, drones, and autonomous vehicles, facilitate the Intelligence, Surveillance and Reconnaissance (ISR) to Command and Control and battlefield services. IoBT devices have the ability to collect operational field data, to compute on the data, and to upload its information to the network. Securing the IoBT presents additional challenges compared with traditional information technology (IT) systems. First, IoBT devices are mass produced rapidly to be low-cost commodity items without security protection in their original design. Second, IoBT devices are highly dynamic, mobile, and heterogeneous without common standards. Third, it is imperative to understand the natural world, the physical process(es) under IoBT control, and how these real-world processes can be compromised before recommending any relevant security counter measure. Moreover, unprotected IoBT devices can be used as “stepping stones” by attackers to launch more sophisticated attacks such as advanced persistent threats (APTs). As a result of these challenges, IoBT systems are the frequent targets of sophisticated cyber attack that aim to disrupt mission effectiveness.

Conway, A. E., Wang, M., Ljuca, E., Lebling, P. D..  2019.  A Dynamic Transport Overlay System for Mission-Oriented Dispersed Computing Over IoBT. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :815—820.

A dynamic overlay system is presented for supporting transport service needs of dispersed computing applications for moving data and/or code between network computation points and end-users in IoT or IoBT. The Network Backhaul Layered Architecture (Nebula) system combines network discovery and QoS monitoring, dynamic path optimization, online learning, and per-hop tunnel transport protocol optimization and synthesis over paths, to carry application traffic flows transparently over overlay tunnels. An overview is provided of Nebula's overlay system, software architecture, API, and implementation in the NRL CORE network emulator. Experimental emulation results demonstrate the performance benefits that Nebula provides under challenging networking conditions.

Khakurel, U., Rawat, D., Njilla, L..  2019.  2019 IEEE International Conference on Industrial Internet (ICII). 2019 IEEE International Conference on Industrial Internet (ICII). :241—247.

FastChain is a simulator built in NS-3 which simulates the networked battlefield scenario with military applications, connecting tankers, soldiers and drones to form Internet-of-Battlefield-Things (IoBT). Computing, storage and communication resources in IoBT are limited during certain situations in IoBT. Under these circumstances, these resources should be carefully combined to handle the task to accomplish the mission. FastChain simulator uses Sharding approach to provide an efficient solution to combine resources of IoBT devices by identifying the correct and the best set of IoBT devices for a given scenario. Then, the set of IoBT devices for a given scenario collaborate together for sharding enabled Blockchain technology. Interested researchers, policy makers and developers can download and use the FastChain simulator to design, develop and evaluate blockchain enabled IoBT scenarios that helps make robust and trustworthy informed decisions in mission-critical IoBT environment.

Agadakos, I., Ciocarlie, G. F., Copos, B., Emmi, M., George, J., Leslie, N., Michaelis, J..  2019.  Application of Trust Assessment Techniques to IoBT Systems. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :833—840.

Continued advances in IoT technology have prompted new investigation into its usage for military operations, both to augment and complement existing military sensing assets and support next-generation artificial intelligence and machine learning systems. Under the emerging Internet of Battlefield Things (IoBT) paradigm, current operational conditions necessitate the development of novel security techniques, centered on establishment of trust for individual assets and supporting resilience of broader systems. To advance current IoBT efforts, a collection of prior-developed cybersecurity techniques is reviewed for applicability to conditions presented by IoBT operational environments (e.g., diverse asset ownership, degraded networking infrastructure, adversary activities) through use of supporting case study examples. The research techniques covered focus on two themes: (1) Supporting trust assessment for known/unknown IoT assets; (2) ensuring continued trust of known IoT assets and IoBT systems.

2020-11-09
Kemp, C., Calvert, C., Khoshgoftaar, T..  2018.  Utilizing Netflow Data to Detect Slow Read Attacks. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :108–116.
Attackers can leverage several techniques to compromise computer networks, ranging from sophisticated malware to DDoS (Distributed Denial of Service) attacks that target the application layer. Application layer DDoS attacks, such as Slow Read, are implemented with just enough traffic to tie up CPU or memory resources causing web and application servers to go offline. Such attacks can mimic legitimate network requests making them difficult to detect. They also utilize less volume than traditional DDoS attacks. These low volume attack methods can often go undetected by network security solutions until it is too late. In this paper, we explore the use of machine learners for detecting Slow Read DDoS attacks on web servers at the application layer. Our approach uses a generated dataset based upon Netflow data collected at the application layer on a live network environment. Our Netflow data uses the IP Flow Information Export (IPFIX) standard providing significant flexibility and features. These Netflow features can process and handle a growing amount of traffic and have worked well in our previous DDoS work detecting evasion techniques. Our generated dataset consists of real-world network data collected from a production network. We use eight different classifiers to build Slow Read attack detection models. Our wide selection of learners provides us with a more comprehensive analysis of Slow Read detection models. Experimental results show that the machine learners were quite successful in identifying the Slow Read attacks with a high detection and low false alarm rate. The experiment demonstrates that our chosen Netflow features are discriminative enough to detect such attacks accurately.
2020-11-04
Jin, Y., Tomoishi, M., Matsuura, S..  2019.  A Detection Method Against DNS Cache Poisoning Attacks Using Machine Learning Techniques: Work in Progress. 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA). :1—3.

DNS based domain name resolution has been known as one of the most fundamental Internet services. In the meanwhile, DNS cache poisoning attacks also have become a critical threat in the cyber world. In addition to Kaminsky attacks, the falsified data from the compromised authoritative DNS servers also have become the threats nowadays. Several solutions have been proposed in order to prevent DNS cache poisoning attacks in the literature for the former case such as DNSSEC (DNS Security Extensions), however no effective solutions have been proposed for the later case. Moreover, due to the performance issue and significant workload increase on DNS cache servers, DNSSEC has not been deployed widely yet. In this work, we propose an advanced detection method against DNS cache poisoning attacks using machine learning techniques. In the proposed method, in addition to the basic 5-tuple information of a DNS packet, we intend to add a lot of special features extracted based on the standard DNS protocols as well as the heuristic aspects such as “time related features”, “GeoIP related features” and “trigger of cached DNS data”, etc., in order to identify the DNS response packets used for cache poisoning attacks especially those from compromised authoritative DNS servers. In this paper, as a work in progress, we describe the basic idea and concept of our proposed method as well as the intended network topology of the experimental environment while the prototype implementation, training data preparation and model creation as well as the evaluations will belong to the future work.

Shen, J., Zhu, X., Ma, D..  2019.  TensorClog: An Imperceptible Poisoning Attack on Deep Neural Network Applications. IEEE Access. 7:41498—41506.

Internet application providers now have more incentive than ever to collect user data, which greatly increases the risk of user privacy violations due to the emerging of deep neural networks. In this paper, we propose TensorClog-a poisoning attack technique that is designed for privacy protection against deep neural networks. TensorClog has three properties with each of them serving a privacy protection purpose: 1) training on TensorClog poisoned data results in lower inference accuracy, reducing the incentive of abusive data collection; 2) training on TensorClog poisoned data converges to a larger loss, which prevents the neural network from learning the privacy; and 3) TensorClog regularizes the perturbation to remain a high structure similarity, so that the poisoning does not affect the actual content in the data. Applying our TensorClog poisoning technique to CIFAR-10 dataset results in an increase in both converged training loss and test error by 300% and 272%, respectively. It manages to maintain data's human perception with a high SSIM index of 0.9905. More experiments including different limited information attack scenarios and a real-world application transferred from pre-trained ImageNet models are presented to further evaluate TensorClog's effectiveness in more complex situations.

Bell, S., Oudshoorn, M..  2018.  Meeting the Demand: Building a Cybersecurity Degree Program With Limited Resources. 2018 IEEE Frontiers in Education Conference (FIE). :1—7.

This innovative practice paper considers the heightening awareness of the need for cybersecurity programs in light of several well publicized cyber-attacks in recent years. An examination of the academic job market reveals that a significant number of institutions are looking to hire new faculty in the area of cybersecurity. Additionally, a growing number of universities are starting to offer courses, certifications and degrees in cybersecurity. Other recent activity includes the development of a model cybersecurity curriculum and the creation of a program accreditation criteria for cybersecurity through ABET. This sudden and significant growth in demand for cybersecurity expertise has some similarities to the significant demand for networking faculty that Computer Science programs experienced in the late 1980s as a result of the rise of the Internet. This paper examines the resources necessary to respond to the demand for cybersecurity courses and programs and draws some parallels and distinctions to the demand for networking faculty over 25 years ago. Faculty and administration are faced with a plethora of questions to answer as they approach this problem: What degree and courses to offer, what certifications to consider, which curriculum to incorporate and how to deliver the material (online, faceto-face, or something in-between)? However, the most pressing question in today's fiscal climate in higher education is: what resources will it take to deliver a cybersecurity program?

Sultana, K. Z., Williams, B. J., Bosu, A..  2018.  A Comparison of Nano-Patterns vs. Software Metrics in Vulnerability Prediction. 2018 25th Asia-Pacific Software Engineering Conference (APSEC). :355—364.

Context: Software security is an imperative aspect of software quality. Early detection of vulnerable code during development can better ensure the security of the codebase and minimize testing efforts. Although traditional software metrics are used for early detection of vulnerabilities, they do not clearly address the granularity level of the issue to precisely pinpoint vulnerabilities. The goal of this study is to employ method-level traceable patterns (nano-patterns) in vulnerability prediction and empirically compare their performance with traditional software metrics. The concept of nano-patterns is similar to design patterns, but these constructs can be automatically recognized and extracted from source code. If nano-patterns can better predict vulnerable methods compared to software metrics, they can be used in developing vulnerability prediction models with better accuracy. Aims: This study explores the performance of method-level patterns in vulnerability prediction. We also compare them with method-level software metrics. Method: We studied vulnerabilities reported for two major releases of Apache Tomcat (6 and 7), Apache CXF, and two stand-alone Java web applications. We used three machine learning techniques to predict vulnerabilities using nano-patterns as features. We applied the same techniques using method-level software metrics as features and compared their performance with nano-patterns. Results: We found that nano-patterns show lower false negative rates for classifying vulnerable methods (for Tomcat 6, 21% vs 34.7%) and therefore, have higher recall in predicting vulnerable code than the software metrics used. On the other hand, software metrics show higher precision than nano-patterns (79.4% vs 76.6%). Conclusion: In summary, we suggest developers use nano-patterns as features for vulnerability prediction to augment existing approaches as these code constructs outperform standard metrics in terms of prediction recall.

2020-11-02
Shayan, Mohammed, Bhattacharjee, Sukanta, Song, Yong-Ak, Chakrabarty, Krishnendu, Karri, Ramesh.  2019.  Deceive the Attacker: Thwarting IP Theft in Sieve-Valve-based Biochips. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :210—215.

Researchers develop bioassays following rigorous experimentation in the lab that involves considerable fiscal and highly-skilled-person-hour investment. Previous work shows that a bioassay implementation can be reverse engineered by using images or video and control signals of the biochip. Hence, techniques must be devised to protect the intellectual property (IP) rights of the bioassay developer. This study is the first step in this direction and it makes the following contributions: (1) it introduces use of a sieve-valve as a security primitive to obfuscate bioassay implementations; (2) it shows how sieve-valves can be used to obscure biochip building blocks such as multiplexers and mixers; (3) it presents design rules and security metrics to design and measure obfuscated biochips. We assess the cost-security trade-offs associated with this solution and demonstrate practical sieve-valve based obfuscation on real-life biochips.

Fraiji, Yosra, Ben Azzouz, Lamia, Trojet, Wassim, Saidane, Leila Azouz.  2018.  Cyber security issues of Internet of electric vehicles. 2018 IEEE Wireless Communications and Networking Conference (WCNC). :1—6.

The use of Electric Vehicle (EV) is growing rapidly due to its environmental benefits. However, the major problem of these vehicles is their limited battery, the lack of charging stations and the re-charge time. Introducing Information and Communication Technologies, in the field of EV, will improve energy efficiency, energy consumption predictions, availability of charging stations, etc. The Internet of Vehicles based only on Electric Vehicles (IoEV) is a complex system. It is composed of vehicles, humans, sensors, road infrastructure and charging stations. All these entities communicate using several communication technologies (ZigBee, 802.11p, cellular networks, etc). IoEV is therefore vulnerable to significant attacks such as DoS, false data injection, modification. Hence, security is a crucial factor for the development and the wide deployment of Internet of Electric Vehicles (IoEV). In this paper, we present an overview of security issues of the IoEV architecture and we highlight open issues that make the IoEV security a challenging research area in the future.

Siddiqui, Abdul Jabbar, Boukerche, Azzedine.  2018.  On the Impact of DDoS Attacks on Software-Defined Internet-of-Vehicles Control Plane. 2018 14th International Wireless Communications Mobile Computing Conference (IWCMC). :1284—1289.

To enhance the programmability and flexibility of network and service management, the Software-Defined Networking (SDN) paradigm is gaining growing attention by academia and industry. Motivated by its success in wired networks, researchers have recently started to embrace SDN towards developing next generation wireless networks such as Software-Defined Internet of Vehicles (SD-IoV). As the SD-IoV evolves, new security threats would emerge and demand attention. And since the core of the SD-IoV would be the control plane, it is highly vulnerable to Distributed Denial of Service (DDoS) Attacks. In this work, we investigate the impact of DDoS attacks on the controllers in a SD-IoV environment. Through experimental evaluations, we highlight the drastic effects DDoS attacks could have on a SD-IoV in terms of throughput and controller load. Our results could be a starting point to motivate further research in the area of SD-IoV security and would give deeper insights into the problems of DDoS attacks on SD-IoV.

Ivanov, I, Maple, C, Watson, T, Lee, S.  2018.  Cyber security standards and issues in V2X communications for Internet of Vehicles. Living in the Internet of Things: Cybersecurity of the IoT – 2018. :1—6.

Significant developments have taken place over the past few years in the area of vehicular communication systems in the ITS environment. It is vital that, in these environments, security is considered in design and implementation since compromised vulnerabilities in one vehicle can be propagated to other vehicles, especially given that V2X communication is through an ad-hoc type network. Recently, many standardisation organisations have been working on creating international standards related to vehicular communication security and the so-called Internet of Vehicles (IoV). This paper presents a discussion of current V2X communications cyber security issues and standardisation approaches being considered by standardisation bodies such as the ISO, the ITU, the IEEE, and the ETSI.

Sahbi, Roumissa, Ghanemi, Salim, Djouani, Ramissa.  2018.  A Network Model for Internet of vehicles based on SDN and Cloud Computing. 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM). :1—4.

Internet of vehicles (IoV) is the evolution of conventional vehicle network (VANET), a recent domain attracting a large number of companies and researchers. It is an integration of three networks: an inter-vehicle network, an intra-vehicle network, and vehicular mobile Internet, in which the vehicle is considered as a smart object equipped with powerful multi-sensors platform, connectivity and communication technologies, enabling it to communicate with the world. The cooperative communication between vehicles and other devices causes diverse challenges in terms of: storage and computing capability, energy of vehicle and network's control and management. Security is very important aspect in IoV and it is required to protect connected cars from cybercrime and accidents. In this article, we propose a network model for IoV based on software Defined Network and Cloud Computing.