Biblio
The time-varying properties of the wireless channel are a powerful source of information that can complement and enhance traditional security mechanisms. Therefore, we propose a cross-layer authentication mechanism that combines physical layer channel information and traditional authentication mechanism in LTE. To verify the feasibility of the proposed mechanism, we build a cross-layer authentication system that extracts the phase shift information of a typical UE and use the ensemble learning method to train the fingerprint map based on OAI LTE. Experimental results show that our cross-layer authentication mechanism can effectively prompt the security of LTE system.
In today's world privacy is paramount in everyone's life. Alongside the growth of IoT (Internet of things), wearable devices are becoming widely popular for real-time user monitoring and wise service support. However, in contrast with the traditional short-range communications, these resource-scanty devices face various vulnerabilities and security threats during the course of interactions. Hence, designing a security solution for these devices while dealing with the limited communication and computation capabilities is a challenging task. In this work, PUF (Physical Unclonable Function) and lightweight cryptographic parameters are used together for performing two-way authentication between wearable devices and smartphone, while the simultaneous verification is performed by providing yoking-proofs to the Cloud Server. At the end, it is shown that the proposed scheme satisfies many security aspects and is flexible as well as lightweight.
The developments made in IoT applications have made wearable devices a popular choice for collecting user data to monitor this information and provide intelligent service support. Since wearable devices are continuously collecting and transporting a user's sensitive data over the network, there exist increased security challenges. Moreover, wearable devices lack the computation capabilities in comparison to traditional short-range communication devices. In this paper, authors propounded a Yoking Proof based remote Authentication scheme for Cloud-aided Wearable devices (YPACW) which takes PUF and cryptographic functions and joins them to achieve mutual authentication between the wearable devices and smartphone via a cloud server, by performing the simultaneous verification of these devices, using the established yoking-proofs. Relative to Liu et al.'s scheme, YPACW provides better results with the reduction of communication and processing cost significantly.
Due to the mobility and openness of wireless body area networks (WBANs), the security of WBAN has been questioned by people. The patient's physiological information in WBAN is sensitive and confidential, which requires full consideration of user anonymity, untraceability, and data privacy protection in key agreement. Aiming at the shortcomings of Li et al.'s protocol in terms of anonymity and session unlinkability, forward/backward confidentiality, etc., a new anonymous mutual authentication and key agreement protocol was proposed on the basis of the protocol. This scheme only uses XOR and the one-way hash operations, which not only reduces communication consumption but also ensures security, and realizes a truly lightweight anonymous mutual authentication and key agreement protocol.
Emerging device-to-device (D2D) communication in 5th generation (5G) mobile communication networks and internet of things (loTs) provides many benefits in improving network capabilities such as energy consumption, communication delay and spectrum efficiency. D2D group communication has the potential for improving group-based services including group games and group discussions. Providing security in D2D group communication is the main challenge to make their wide usage possible. Nevertheless, the issue of security and privacy of D2D group communication has been less addressed in recent research work. In this paper, we propose an authentication and key agreement tree group-based (AKATGB) protocol to realize a secure and anonymous D2D group communication. In our protocol, a group of D2D users are first organized in a tree structure, authenticating each other without disclosing their identities and without any privacy violation. Then, D2D users negotiate to set a common group key for establishing a secure communication among themselves. Security analysis and performance evaluation of the proposed protocol show that it is effective and secure.
Nowadays, Vehicular Ad hoc Networks (VANETs) are popularly known as they can reduce traffic and road accidents. These networks need several security requirements, such as anonymity, data authentication, confidentiality, traceability and cancellation of offending users, unlinkability, integrity, undeniability and access control. Authentication of the data and sender are most important security requirements in these networks. So many authentication schemes have been proposed up to now. One of the well-known techniques to provide users authentication in these networks is the authentication based on the smartcard (ASC). In this paper, we propose an ASC scheme that not only provides necessary security requirements such as anonymity, traceability and unlinkability in the VANETs but also is more efficient than the other schemes in the literatures.