Biblio
Document integrity and origin for E2E S2S in IoTcloud have recently received considerable attention because of their importance in the real-world fields. Maintaining integrity could protect decisions made based on these message/image documents. Authentication and integrity solutions have been conducted to recognise or protect any modification in the exchange of documents between E2E S2S (smart-to-smart). However, none of the proposed schemes appear to be sufficiently designed as a secure scheme to prevent known attacks or applicable to smart devices. We propose a robust scheme that aims to protect the integrity of documents for each users session by integrating HMAC-SHA-256, handwritten feature extraction using a local binary pattern, one-time random pixel sequence based on RC4 to randomly hide authentication codes using LSB. The proposed scheme can provide users with one-time bio-key, robust message anonymity and a disappearing authentication code that does not draw the attention of eavesdroppers. Thus, the scheme improves the data integrity for a users messages/image documents, phase key agreement, bio-key management and a one-time message/image document code for each users session. The concept of stego-anonymity is also introduced to provide additional security to cover a hashed value. Finally, security analysis and experimental results demonstrate and prove the invulnerability and efficiency of the proposed scheme.
The current paper is proposing a three-factor authentication (3FA) scheme based on three components. In the first component a token and a password will be generated (this module represents the kernel of the three-factor authentication scheme - 3FA). In the second component a pass-code will be generated, using to the token resulted in the first phase. We will use RSA for encryption and decryption of the generated values (token and pass-code). For the token ID and passcode the user will use his smartphone. The third component uses a searchable encryption scheme, whose purpose is to retrieve the documents of the user from the cloud server, based on a keyword and his/her fingerprint. The documents are stored encrypted on a mistrust server (cloud environment) and searchable encryption will help us to search specific information and to access those documents in an encrypted content. We will introduce also a software simulation developed in C\# 8.0 for our scheme and a source code analysis for the main algorithms.
Biometric authentication is the preferred authentication scheme in modern computing systems. While it offers enhanced usability, it also requires cautious handling of sensitive users' biometric templates. In this paper, a distributed scheme that eliminates the requirement for a central node that holds users' biometric templates is presented. This is replaced by an Ethereum/IPFS combination to which the templates of the users are stored in a homomorphically encrypted form. The scheme enables the biometric authentication of the users by any third party service, while the actual biometric templates of the user never leave his device in non encrypted form. Secure authentication of users in enabled, while sensitive biometric data are not exposed to anyone. Experiments show that the scheme can be applied as an authentication mechanism with minimal time overhead.
A biometric system is a developing innovation which is utilized in different fields like forensics and security system. Finger recognition is the innovation that confirms the personality of an individual which relies upon the way that everybody has unique fingerprints. Fingerprint biometric systems are smaller in size, simple to utilize and have low power. This proposed study focuses on fingerprint biometric systems and how such a system would be implemented. If implemented, this system would have multifactor authentication strategies and improvised features based on encryption algorithms. The scanner that will be used is Biometric Fingerprint Sensor that is connected to system which determines the authorization and access control rights. All user access information is gathered by the system where the administrators can retrieve and analyse the information. This system has function of being up to date with the data changes like displaying the name of the individual for controlling security of the system.
We leverage deep learning algorithms on various user behavioral information gathered from end-user devices to classify a subject of interest. In spite of the ability of these techniques to counter spoofing threats, they are vulnerable to adversarial learning attacks, where an attacker adds adversarial noise to the input samples to fool the classifier into false acceptance. Recently, a handful of mature techniques like Fast Gradient Sign Method (FGSM) have been proposed to aid white-box attacks, where an attacker has a complete knowledge of the machine learning model. On the contrary, we exploit a black-box attack to a behavioral biometric system based on gait patterns, by using FGSM and training a shadow model that mimics the target system. The attacker has limited knowledge on the target model and no knowledge of the real user being authenticated, but induces a false acceptance in authentication. Our goal is to understand the feasibility of a black-box attack and to what extent FGSM on shadow models would contribute to its success. Our results manifest that the performance of FGSM highly depends on the quality of the shadow model, which is in turn impacted by key factors including the number of queries allowed by the target system in order to train the shadow model. Our experimentation results have revealed strong relationships between the shadow model and FGSM performance, as well as the effect of the number of FGSM iterations used to create an attack instance. These insights also shed light on deep-learning algorithms' model shareability that can be exploited to launch a successful attack.
In this paper, a novel DNA based computing method is proposed for encryption of biometric color(face)and gray fingerprint images. In many applications of present scenario, gray and color images are exhibited major role for authenticating identity of an individual. The values of aforementioned images have considered as two separate matrices. The key generation process two level mathematical operations have applied on fingerprint image for generating encryption key. For enhancing security to biometric image, DNA computing has done on the above matrices generating DNA sequence. Further, DNA sequences have scrambled to add complexity to biometric image. Results of blending images, image of DNA computing has shown in experimental section. It is observed that the proposed substitution DNA computing algorithm has shown good resistant against statistical and differential attacks.
The exchange of data has expanded utilizing the web nowadays, but it is not dependable because, during communication on the cloud, any malicious client can alter or steal the information or misuse it. To provide security to the data during transmission is becoming hot research and quite challenging topic. In this work, our proposed algorithm enhances the security of the keys by increasing its complexity, so that it can't be guessed, breached or stolen by the third party and hence by this, the data will be concealed while sending between the users. The proposed algorithm also provides more security and authentication to the users during cloud communication, as compared to the previously existing algorithm.
Cloud computing provides so many groundbreaking advantages over native computing servers like to improve capacity and decrease costs, but meanwhile, it carries many security issues also. In this paper, we find the feasible security attacks made about cloud computing, including Wrapping, Browser Malware-Injection and Flooding attacks, and also problems caused by accountability checking. We have also analyzed the honey pot attack and its procedural intrusion way into the system. This paper on overall deals with the most common security breaches in cloud computing and finally honey pot, in particular, to analyze its intrusion way. Our major scope is to do overall security, analyze in the cloud and then to take up with a particular attack to deal with granular level. Honey pot is the one such attack that is taken into account and its intrusion policies are analyzed. The specific honey pot algorithm is in the queue as the extension of this project in the future.
E- Health systems, specifically, Telecare Medical Information Systems (TMIS), are deployed in order to provide patients with specific diseases with healthcare services that are usually based on remote monitoring. Therefore, making an efficient, convenient and secure connection between users and medical servers over insecure channels within medical services is a rather major issue. In this context, because of the biometrics' characteristics, many biometrics-based three factor user authentication schemes have been proposed in the literature to secure user/server communication within medical services. In this paper, we make a brief study of the most interesting proposals. Then, we propose a new three-factor authentication and key agreement scheme for TMIS. Our scheme tends not only to fix the security drawbacks of some studied related work, but also, offers additional significant features while minimizing resource consumption. In addition, we perform a formal verification using the widely accepted formal security verification tool AVISPA to demonstrate that our proposed scheme is secure. Also, our comparative performance analysis reveals that our proposed scheme provides a lower resource consumption compared to other related work's proposals.
Instant messaging is an application that is widely used to communicate. Based on the wearesocial.com report, three of the five most used social media platforms are chat or instant messaging. Instant messaging was chosen for communication because it has security features in log in using a One Time Password (OTP) code, end-to-end encryption, and even two-factor authentication. However, instant messaging applications still have a vulnerability to account theft. This account theft occurs when the user loses his cellphone. Account theft can happen when a cellphone is locked or not. As a result of this account theft, thieves can read confidential messages and send fake news on behalf of the victim. In this research, instant messaging application security will be applied using hybrid encryption and two-factor authentication, which are made interrelated. Both methods will be implemented in 2 implementation designs. The implementation design is securing login and securing sending and receiving messages. For login security, QR Code implementation is sent via email. In sending and receiving messages, the message decryption process will be carried out when the user is authenticated using a fingerprint. Hybrid encryption as message security uses RSA 2048 and AES 128. Of the ten attempts to steal accounts that have been conducted, it is shown that the implementation design is proven to reduce the impact of account theft.
This paper investigates the impact of authentication on effective capacity (EC) of an underwater acoustic (UWA) channel. Specifically, the UWA channel is under impersonation attack by a malicious node (Eve) present in the close vicinity of the legitimate node pair (Alice and Bob); Eve tries to inject its malicious data into the system by making Bob believe that she is indeed Alice. To thwart the impersonation attack by Eve, Bob utilizes the distance of the transmit node as the feature/fingerprint to carry out feature-based authentication at the physical layer. Due to authentication at Bob, due to lack of channel knowledge at the transmit node (Alice or Eve), and due to the threshold-based decoding error model, the relevant dynamics of the considered system could be modelled by a Markov chain (MC). Thus, we compute the state-transition probabilities of the MC, and the moment generating function for the service process corresponding to each state. This enables us to derive a closed-form expression of the EC in terms of authentication parameters. Furthermore, we compute the optimal transmission rate (at Alice) through gradient-descent (GD) technique and artificial neural network (ANN) method. Simulation results show that the EC decreases under severe authentication constraints (i.e., more false alarms and more transmissions by Eve). Simulation results also reveal that the (optimal transmission rate) performance of the ANN technique is quite close to that of the GTJ method.
Voice user interfaces can offer intuitive interaction with our devices, but the usability and audio quality could be further improved if multiple devices could collaborate to provide a distributed voice user interface. To ensure that users' voices are not shared with unauthorized devices, it is however necessary to design an access management system that adapts to the users' needs. Prior work has demonstrated that a combination of audio fingerprinting and fuzzy cryptography yields a robust pairing of devices without sharing the information that they record. However, the robustness of these systems is partially based on the extensive duration of the recordings that are required to obtain the fingerprint. This paper analyzes methods for robust generation of acoustic fingerprints in short periods of time to enable the responsive pairing of devices according to changes in the acoustic scenery and can be integrated into other typical speech processing tools.
Blockchain technology is attracting attention as an innovative system for decentralized payments in fields such as financial area. On the other hand, in a decentralized environment, management of a secret key used for user authentication and digital signature becomes a big issue because if a user loses his/her secret key, he/she will also lose assets on the blockchain. This paper describes the secret key management issues in blockchain systems and proposes a solution using a biometrics-based digital signature scheme. In our proposed system, a secret key to be used for digital signature is generated from the user's biometric information each time and immediately deleted from the memory after using it. Therefore, our blockchain system has the advantage that there is no need for storage for storing secret keys throughout the system. As a result, the user does not have a risk of losing the key management devices and can prevent attacks from malware that steals the secret key.
Vehicular Adhoc Networks (VANETs) ensures road safety by communicating with a set of smart vehicles. VANET is a subset of Mobile Adhoc Networks (MANETs). VANET enabled vehicles helps in establishing communication services among one another or with the Road Side Unit (RSU). Information transmitted in VANET is distributed in an open access environment and hence security is one of the most critical issues related to VANET. Although each vehicle is not a source of all communications, most contact depends on the information that other vehicles receive from it. That vehicle must be able to assess, determine and respond locally on the information obtained from other vehicles to protect VANET from malicious act. Of this reason, message verification in VANET is more difficult due to the protection and privacy issues of the participating vehicles. To overcome security threats, we propose Monitoring Algorithm that detects malicious nodes based on the pre-selected threshold value. The threshold value is compared with the distrust value which is inherently tagged with each vehicle. The proposed Monitoring Algorithm not only detects malicious vehicles, but also isolates the malicious vehicles from the network. The proposed technique is simulated using Network Simulator2 (NS2) tool. The simulation result illustrated that the proposed Monitoring Algorithm outperforms the existing algorithms in terms of malicious node detection, network delay, packet delivery ratio and throughput, thereby uplifting the overall performance of the network.