Visible to the public Biblio

Filters: Keyword is Logistics  [Clear All Filters]
2020-05-11
Cui, Zhicheng, Zhang, Muhan, Chen, Yixin.  2018.  Deep Embedding Logistic Regression. 2018 IEEE International Conference on Big Knowledge (ICBK). :176–183.
Logistic regression (LR) is used in many areas due to its simplicity and interpretability. While at the same time, those two properties limit its classification accuracy. Deep neural networks (DNNs), instead, achieve state-of-the-art performance in many domains. However, the nonlinearity and complexity of DNNs make it less interpretable. To balance interpretability and classification performance, we propose a novel nonlinear model, Deep Embedding Logistic Regression (DELR), which augments LR with a nonlinear dimension-wise feature embedding. In DELR, each feature embedding is learned through a deep and narrow neural network and LR is attached to decide feature importance. A compact and yet powerful model, DELR offers great interpretability: it can tell the importance of each input feature, yield meaningful embedding of categorical features, and extract actionable changes, making it attractive for tasks such as market analysis and clinical prediction.
2020-03-23
Unnikrishnan, Grieshma, Mathew, Deepa, Jose, Bijoy A., Arvind, Raju.  2019.  Hybrid Route Recommender System for Smarter Logistics. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :239–244.
The condition of road surface has a significant role in land transportation. Due to poor road conditions, the logistics and supply chain industry face a drastic loss in their business. Unmaintained roads can cause damage to goods and accidents. The existing routing techniques do not consider factors like shock, temperature and tilt of goods etc. but these factors have to be considered for the logistics and supply chain industry. This paper proposes a recommender system which target management of goods in logistics. A 3 axis accelerometer is used to measure the road surface conditions. The pothole location is obtained using Global Positioning System (GPS). Using these details a hybrid recommender system is built. Hybrid recommender system combines multiple recommendation techniques to develop an effective recommender system. Here content-based and collaborative-based techniques is combined to build a hybrid recommender system. One of the popular Multiple Criteria Decision Making (MCDM) method, The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is used for content based filtering and normalised Euclidean distance and KNN algorithm is used for collaborative filtering. The best route recommended by the system will be displayed to the user using a map application.
2020-03-12
Liang, Shiaofang, Li, Mingchen, Li, Wenjing.  2019.  Research on Traceability Algorithm of Logistics Service Transaction Based on Blockchain. 2019 18th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :186–189.

The traditional logistics transaction lacks a perfect traceability mechanism, and the data information's integrity and safety are not guaranteed in the existing traceability system. In order to solve the problem of main body responsibility caused by the participation of many stakeholders and the uncompleted supervision system in the process of logistics service transaction, This paper proposes a traceability algorithm for logistics service transactions based on blockchain. Based on the logistics service supply chain and alliance chain, the paper firstly investigates the traditional logistics service supply chain, analyzes the existing problems, and combines the structural characteristics of the blockchain to propose a decentralized new logistics service supply chain concept model based on blockchain. Then, using Globe sandara 1 to standardize the physical products and data circulating in the new logistics service supply chain, form unified and standard traceable data, and propose a multi-dimensional traceable data model based on logistics service supply chain. Based on the proposed model, combined with the business process of the logistics service supply chain and asymmetric encryption, a blockchain-based logistics service transaction traceability algorithm is designed. Finally, the simulation results show that the algorithm realizes the end-to-end traceability of the logistics service supply chain, and the service transaction is transparent while ensuring the integrity and security of the data.

Wu, Hanqing, Cao, Jiannong, Yang, Yanni, Tung, Cheung Leong, Jiang, Shan, Tang, Bin, Liu, Yang, Wang, Xiaoqing, Deng, Yuming.  2019.  Data Management in Supply Chain Using Blockchain: Challenges and a Case Study. 2019 28th International Conference on Computer Communication and Networks (ICCCN). :1–8.

Supply chain management (SCM) is fundamental for gaining financial, environmental and social benefits in the supply chain industry. However, traditional SCM mechanisms usually suffer from a wide scope of issues such as lack of information sharing, long delays for data retrieval, and unreliability in product tracing. Recent advances in blockchain technology show great potential to tackle these issues due to its salient features including immutability, transparency, and decentralization. Although there are some proof-of-concept studies and surveys on blockchain-based SCM from the perspective of logistics, the underlying technical challenges are not clearly identified. In this paper, we provide a comprehensive analysis of potential opportunities, new requirements, and principles of designing blockchain-based SCM systems. We summarize and discuss four crucial technical challenges in terms of scalability, throughput, access control, data retrieval and review the promising solutions. Finally, a case study of designing blockchain-based food traceability system is reported to provide more insights on how to tackle these technical challenges in practice.

2020-02-26
Vlachokostas, Alex, Prousalidis, John, Spathis, Dimosthenis, Nikitas, Mike, Kourmpelis, Theo, Dallas, Stefanos, Soghomonian, Zareh, Georgiou, Vassilis.  2019.  Ship-to-Grid Integration: Environmental Mitigation and Critical Infrastructure Resilience. 2019 IEEE Electric Ship Technologies Symposium (ESTS). :542–547.

The United States and European Union have an increasing number of projects that are engaging end-use devices for improved grid capabilities. Areas such as building-to-grid and vehicle-to-grid are simple examples of these advanced capabilities. In this paper, we present an innovative concept study for a ship-to-grid integration. The goal of this study is to simulate a two-way power flow between ship(s) and the grid with GridLAB-D for the port of Kyllini in Greece, where a ship-to-shore interconnection was recently implemented. Extending this further, we explore: (a) the ability of ships to meet their load demand needs, while at berth, by being supplied with energy from the electric grid and thus powering off their diesel engines; and (b) the ability of ships to provide power to critical loads onshore. As a result, the ship-to-grid integration helps (a) mitigate environmental pollutants from the ships' diesel engines and (b) provide resilience to nearby communities during a power disruption due to natural disasters or man-made threats.

2020-01-21
Han, Danyang, Yu, Jinsong, Song, Yue, Tang, Diyin, Dai, Jing.  2019.  A Distributed Autonomic Logistics System with Parallel-Computing Diagnostic Algorithm for Aircrafts. 2019 IEEE AUTOTESTCON. :1–8.
The autonomic logistic system (ALS), first used by the U.S. military JSF, is a new conceptional system which supports prognostic and health management system of aircrafts, including such as real-time failure monitoring, remaining useful life prediction and maintenance decisions-making. However, the development of ALS faces some challenges. Firstly, current ALS is mainly based on client/server architecture, which is very complex in a large-scale aircraft control center and software is required to be reconfigured for every accessed node, which will increase the cost and decrease the expandability of deployment for large scale aircraft control centers. Secondly, interpretation of telemetry parameters from the aircraft is a tough task considering various real-time flight conditions, including instructions from controllers, work statements of single machines or machine groups, and intrinsic physical meaning of telemetry parameters. It is troublesome to meet the expectation of full representing the relationship between faults and tests without a standard model. Finally, typical diagnostic algorithms based on dependency matrix are inefficient, especially the temporal waste when dealing with thousands of test points and fault modes, for the reason that the time complexity will increase exponentially as dependency matrix expansion. Under this situation, this paper proposed a distributed ALS under complex operating conditions, which has the following contributions 1) introducing a distributed system based on browser/server architecture, which is divided overall system into primary control system and diagnostic and health assessment platform; 2) designing a novel interface for modelling the interpretation rules of telemetry parameters and the relationship between faults and tests in consideration of multiple elements of aircraft conditions; 3) proposing a promoted diagnostic algorithm under parallel computing in order to decrease the computing time complexity. what's more, this paper develops a construction with 3D viewer of aircraft for user to locate fault points and presents repairment instructions for maintenance personnels based on Interactive Electronic Technical Manual, which supports both online and offline. A practice in a certain aircraft demonstrated the efficiency of improved diagnostic algorithm and proposed ALS.
Le, Duc C., Nur Zincir-Heywood, A..  2019.  Machine Learning Based Insider Threat Modelling and Detection. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :1–6.

Recently, malicious insider attacks represent one of the most damaging threats to companies and government agencies. This paper proposes a new framework in constructing a user-centered machine learning based insider threat detection system on multiple data granularity levels. System evaluations and analysis are performed not only on individual data instances but also on normal and malicious insiders, where insider scenario specific results and delay in detection are reported and discussed. Our results show that the machine learning based detection system can learn from limited ground truth and detect new malicious insiders with a high accuracy.

2019-12-10
Ponuma, R, Amutha, R, Haritha, B.  2018.  Compressive Sensing and Hyper-Chaos Based Image Compression-Encryption. 2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). :1-5.

A 2D-Compressive Sensing and hyper-chaos based image compression-encryption algorithm is proposed. The 2D image is compressively sampled and encrypted using two measurement matrices. A chaos based measurement matrix construction is employed. The construction of the measurement matrix is controlled by the initial and control parameters of the chaotic system, which are used as the secret key for encryption. The linear measurements of the sparse coefficients of the image are then subjected to a hyper-chaos based diffusion which results in the cipher image. Numerical simulation and security analysis are performed to verify the validity and reliability of the proposed algorithm.

2019-10-08
Tripathi, S. K., Pandian, K. K. S., Gupta, B..  2018.  Hardware Implementation of Dynamic Key Value Based Stream Cipher Using Chaotic Logistic Map. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI). :1104–1108.

In the last few decades, the relative simplicity of the logistic map made it a widely accepted point in the consideration of chaos, which is having the good properties of unpredictability, sensitiveness in the key values and ergodicity. Further, the system parameters fit the requirements of a cipher widely used in the field of cryptography, asymmetric and symmetric key chaos based cryptography, and for pseudorandom sequence generation. Also, the hardware-based embedded system is configured on FPGA devices for high performance. In this paper, a novel stream cipher using chaotic logistic map is proposed. The two chaotic logistic maps are coded using Verilog HDL and implemented on commercially available FPGA hardware using Xilinx device: XC3S250E for the part: FT256 and operated at frequency of 62.20 MHz to generate the non-recursive key which is used in key scheduling of pseudorandom number generation (PRNG) to produce the key stream. The realization of proposed cryptosystem in this FPGA device accomplishes the improved efficiency equal to 0.1186 Mbps/slice. Further, the generated binary sequence from the experiment is analyzed for X-power, thermal analysis, and randomness tests are performed using NIST statistical.

2019-08-05
Kaiafas, G., Varisteas, G., Lagraa, S., State, R., Nguyen, C. D., Ries, T., Ourdane, M..  2018.  Detecting Malicious Authentication Events Trustfully. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1-6.

Anomaly detection on security logs is receiving more and more attention. Authentication events are an important component of security logs, and being able to produce trustful and accurate predictions minimizes the effort of cyber-experts to stop false attacks. Observed events are classified into Normal, for legitimate user behavior, and Malicious, for malevolent actions. These classes are consistently excessively imbalanced which makes the classification problem harder; in the commonly used Los Alamos dataset, the malicious class comprises only 0.00033% of the total. This work proposes a novel method to extract advanced composite features, and a supervised learning technique for classifying authentication logs trustfully; the models are Random Forest, LogitBoost, Logistic Regression, and ultimately Majority Voting which leverages the predictions of the previous models and gives the final prediction for each authentication event. We measure the performance of our experiments by using the False Negative Rate and False Positive Rate. In overall we achieve 0 False Negative Rate (i.e. no attack was missed), and on average a False Positive Rate of 0.0019.

2019-06-10
Farooq, H. M., Otaibi, N. M..  2018.  Optimal Machine Learning Algorithms for Cyber Threat Detection. 2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation (UKSim). :32-37.

With the exponential hike in cyber threats, organizations are now striving for better data mining techniques in order to analyze security logs received from their IT infrastructures to ensure effective and automated cyber threat detection. Machine Learning (ML) based analytics for security machine data is the next emerging trend in cyber security, aimed at mining security data to uncover advanced targeted cyber threats actors and minimizing the operational overheads of maintaining static correlation rules. However, selection of optimal machine learning algorithm for security log analytics still remains an impeding factor against the success of data science in cyber security due to the risk of large number of false-positive detections, especially in the case of large-scale or global Security Operations Center (SOC) environments. This fact brings a dire need for an efficient machine learning based cyber threat detection model, capable of minimizing the false detection rates. In this paper, we are proposing optimal machine learning algorithms with their implementation framework based on analytical and empirical evaluations of gathered results, while using various prediction, classification and forecasting algorithms.

2019-05-20
Prokofiev, A. O., Smirnova, Y. S., Surov, V. A..  2018.  A method to detect Internet of Things botnets. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :105–108.

The main security problems, typical for the Internet of Things (IoT), as well as the purpose of gaining unauthorized access to the IoT, are considered in this paper. Common characteristics of the most widespread botnets are provided. A method to detect compromised IoT devices included into a botnet is proposed. The method is based on a model of logistic regression. The article describes a developed model of logistic regression which allows to estimate the probability that a device initiating a connection is running a bot. A list of network protocols, used to gain unauthorized access to a device and to receive instructions from common and control (C&C) server, is provided too.

2019-04-05
Bapat, R., Mandya, A., Liu, X., Abraham, B., Brown, D. E., Kang, H., Veeraraghavan, M..  2018.  Identifying Malicious Botnet Traffic Using Logistic Regression. 2018 Systems and Information Engineering Design Symposium (SIEDS). :266-271.

An important source of cyber-attacks is malware, which proliferates in different forms such as botnets. The botnet malware typically looks for vulnerable devices across the Internet, rather than targeting specific individuals, companies or industries. It attempts to infect as many connected devices as possible, using their resources for automated tasks that may cause significant economic and social harm while being hidden to the user and device. Thus, it becomes very difficult to detect such activity. A considerable amount of research has been conducted to detect and prevent botnet infestation. In this paper, we attempt to create a foundation for an anomaly-based intrusion detection system using a statistical learning method to improve network security and reduce human involvement in botnet detection. We focus on identifying the best features to detect botnet activity within network traffic using a lightweight logistic regression model. The network traffic is processed by Bro, a popular network monitoring framework which provides aggregate statistics about the packets exchanged between a source and destination over a certain time interval. These statistics serve as features to a logistic regression model responsible for classifying malicious and benign traffic. Our model is easy to implement and simple to interpret. We characterized and modeled 8 different botnet families separately and as a mixed dataset. Finally, we measured the performance of our model on multiple parameters using F1 score, accuracy and Area Under Curve (AUC).

2019-03-06
Li, W., Li, S., Zhang, X., Pan, Q..  2018.  Optimization Algorithm Research of Logistics Distribution Path Based on the Deep Belief Network. 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :60-63.

Aiming at the phenomenon that the urban traffic is complex at present, the optimization algorithm of the traditional logistic distribution path isn't sensitive to the change of road condition without strong application in the actual logistics distribution, the optimization algorithm research of logistics distribution path based on the deep belief network is raised. Firstly, build the traffic forecast model based on the deep belief network, complete the model training and conduct the verification by learning lots of traffic data. On such basis, combine the predicated road condition with the traffic network to build the time-share traffic network, amend the access set and the pheromone variable of ant algorithm in accordance with the time-share traffic network, and raise the optimization algorithm of logistics distribution path based on the traffic forecasting. Finally, verify the superiority and application value of the algorithm in the actual distribution through the optimization algorithm contrast test with other logistics distribution paths.

2019-03-04
Aborisade, O., Anwar, M..  2018.  Classification for Authorship of Tweets by Comparing Logistic Regression and Naive Bayes Classifiers. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :269–276.

At a time when all it takes to open a Twitter account is a mobile phone, the act of authenticating information encountered on social media becomes very complex, especially when we lack measures to verify digital identities in the first place. Because the platform supports anonymity, fake news generated by dubious sources have been observed to travel much faster and farther than real news. Hence, we need valid measures to identify authors of misinformation to avert these consequences. Researchers propose different authorship attribution techniques to approach this kind of problem. However, because tweets are made up of only 280 characters, finding a suitable authorship attribution technique is a challenge. This research aims to classify authors of tweets by comparing machine learning methods like logistic regression and naive Bayes. The processes of this application are fetching of tweets, pre-processing, feature extraction, and developing a machine learning model for classification. This paper illustrates the text classification for authorship process using machine learning techniques. In total, there were 46,895 tweets used as both training and testing data, and unique features specific to Twitter were extracted. Several steps were done in the pre-processing phase, including removal of short texts, removal of stop-words and punctuations, tokenizing and stemming of texts as well. This approach transforms the pre-processed data into a set of feature vector in Python. Logistic regression and naive Bayes algorithms were applied to the set of feature vectors for the training and testing of the classifier. The logistic regression based classifier gave the highest accuracy of 91.1% compared to the naive Bayes classifier with 89.8%.

2019-02-25
Winter, A., Deniaud, I., Marmier, F., Caillaud, E..  2018.  A risk assessment model for supply chain design. Implementation at Kuehne amp;\#x002B; Nagel Luxembourg. 2018 4th International Conference on Logistics Operations Management (GOL). :1–8.
Every company may be located at the junction of several Supply Chains (SCs) to meet the requirements of many different end customers. To achieve a sustainable competitive advantage over its business rivals, a company needs to continuously improve its relations to its different stakeholders as well as its performance in terms of integrating its decision processes and hence, its communication and information systems. Furthermore, customers' growing awareness of green and sustainable matters and new national and international regulations force enterprises to rethink their whole system. In this paper we propose a model to quantify the identified potential risks to assist in designing or re-designing a supply chain. So that managers may take adequate decisions to have the continuing ability of satisfying customers' requirements. A case study, developed at kuehne + nagel Luxembourg is provided.
2019-02-18
Caballero-Gil, Pino, Caballero-Gil, Cándido, Molina-Gil, Jezabel.  2018.  Ubiquitous System to Monitor Transport and Logistics. Proceedings of the 15th ACM International Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks. :71–75.
In the management of transport and logistics, which includes the delivery, movement and collection of goods through roads, ports and airports, participate, in general, many different actors. The most critical aspects of supply chain systems include time, space and interdependencies. Besides, there are several security challenges that can be caused both by unintentional and intentional errors. With all this in mind, this work proposes the combination of technologies such as RFID, GPS, WiFi Direct and LTE/3G to automate product authentication and merchandise tracking, reducing the negative effects caused either by mismanagement or attacks against the process of the supply chain. In this way, this work proposes a ubiquitous management scheme for the monitoring through the cloud of freight and logistics systems, including demand management, customization and automatic replenishment of out-of-stock goods. The proposal implies an improvement in the efficiency of the systems, which can be quantified in a reduction of time and cost in the inventory and distribution processes, and in a greater facility for the detection of counterfeit versions of branded articles. In addition, it can be used to create safer and more efficient schemes that help companies and organizations to improve the quality of the service and the traceability of the transported goods.
2018-12-03
Molka-Danielsen, J., Engelseth, P., Olešnaníková, V., Šarafín, P., Žalman, R..  2017.  Big Data Analytics for Air Quality Monitoring at a Logistics Shipping Base via Autonomous Wireless Sensor Network Technologies. 2017 5th International Conference on Enterprise Systems (ES). :38–45.
The indoor air quality in industrial workplace buildings, e.g. air temperature, humidity and levels of carbon dioxide (CO2), play a critical role in the perceived levels of workers' comfort and in reported medical health. CO2 can act as an oxygen displacer, and in confined spaces humans can have, for example, reactions of dizziness, increased heart rate and blood pressure, headaches, and in more serious cases loss of consciousness. Specialized organizations can be brought in to monitor the work environment for limited periods. However, new low cost wireless sensor network (WSN) technologies offer potential for more continuous and autonomous assessment of industrial workplace air quality. Central to effective decision making is the data analytics approach and visualization of what is potentially, big data (BD) in monitoring the air quality in industrial workplaces. This paper presents a case study that monitors air quality that is collected with WSN technologies. We discuss the potential BD problems. The case trials are from two workshops that are part of a large on-shore logistics base a regional shipping industry in Norway. This small case study demonstrates a monitoring and visualization approach for facilitating BD in decision making for health and safety in the shipping industry. We also identify other potential applications of WSN technologies and visualization of BD in the workplace environments; for example, for monitoring of other substances for worker safety in high risk industries and for quality of goods in supply chain management.
Palmer, D., Fazzari, S., Wartenberg, S..  2017.  A virtual laboratory approach for risk assessment of aerospace electronics trust techniques. 2017 IEEE Aerospace Conference. :1–8.

This paper describes a novel aerospace electronic component risk assessment methodology and supporting virtual laboratory structure designed to augment existing supply chain management practices and aid in Microelectronics Trust Assurance. This toolkit and methodology applies structure to the unclear and evolving risk assessment problem, allowing quantification of key risks affecting both advanced and obsolete systems that rely on semiconductor technologies. The impacts of logistics & supply chain risk, technology & counterfeit risk, and faulty component risk on trusted and non-trusted procurement options are quantified. The benefits of component testing on part reliability are assessed and incorporated into counterfeit mitigation calculations. This toolkit and methodology seek to assist acquisition staff by providing actionable decision data regarding the increasing threat of counterfeit components by assessing the risks faced by systems, identifying mitigation strategies to reduce this risk, and resolving these risks through the optimal test and procurement path based on the component criticality risk tolerance of the program.

2018-05-16
Fattahi, J., Mejri, M., Ziadia, M., Ghayoula, E., Samoud, O., Pricop, E..  2017.  Cryptographic protocol for multipart missions involving two independent and distributed decision levels in a military context. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1127–1132.

In several critical military missions, more than one decision level are involved. These decision levels are often independent and distributed, and sensitive pieces of information making up the military mission must be kept hidden from one level to another even if all of the decision levels cooperate to accomplish the same task. Usually, a mission is negotiated through insecure networks such as the Internet using cryptographic protocols. In such protocols, few security properties have to be ensured. However, designing a secure cryptographic protocol that ensures several properties at once is a very challenging task. In this paper, we propose a new secure protocol for multipart military missions that involve two independent and distributed decision levels having different security levels. We show that it ensures the secrecy, authentication, and non-repudiation properties. In addition, we show that it resists against man-in-the-middle attacks.

2018-03-05
Wang, W., Hussein, N., Gupta, A., Wang, Y..  2017.  A Regression Model Based Approach for Identifying Security Requirements in Open Source Software Development. 2017 IEEE 25th International Requirements Engineering Conference Workshops (REW). :443–446.

There are several security requirements identification methods proposed by researchers in up-front requirements engineering (RE). However, in open source software (OSS) projects, developers use lightweight representation and refine requirements frequently by writing comments. They also tend to discuss security aspect in comments by providing code snippets, attachments, and external resource links. Since most security requirements identification methods in up-front RE are based on textual information retrieval techniques, these methods are not suitable for OSS projects or just-in-time RE. In our study, we propose a new model based on logistic regression to identify security requirements in OSS projects. We used five metrics to build security requirements identification models and tested the performance of these metrics by applying those models to three OSS projects. Our results show that four out of five metrics achieved high performance in intra-project testing.

2017-12-28
Vu, Q. H., Ruta, D., Cen, L..  2017.  An ensemble model with hierarchical decomposition and aggregation for highly scalable and robust classification. 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). :149–152.

This paper introduces an ensemble model that solves the binary classification problem by incorporating the basic Logistic Regression with the two recent advanced paradigms: extreme gradient boosted decision trees (xgboost) and deep learning. To obtain the best result when integrating sub-models, we introduce a solution to split and select sets of features for the sub-model training. In addition to the ensemble model, we propose a flexible robust and highly scalable new scheme for building a composite classifier that tries to simultaneously implement multiple layers of model decomposition and outputs aggregation to maximally reduce both bias and variance (spread) components of classification errors. We demonstrate the power of our ensemble model to solve the problem of predicting the outcome of Hearthstone, a turn-based computer game, based on game state information. Excellent predictive performance of our model has been acknowledged by the second place scored in the final ranking among 188 competing teams.

2017-12-27
Radhika, K. R., Nalini, M. K..  2017.  Biometric Image Encryption Using DNA Sequences and Chaotic Systems. 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT). :164–168.

Emerging communication technologies in distributed network systems require transfer of biometric digital images with high security. Network security is identified by the changes in system behavior which is either Dynamic or Deterministic. Performance computation is complex in dynamic system where cryptographic techniques are not highly suitable. Chaotic theory solves complex problems of nonlinear deterministic system. Several chaotic methods are combined to get hyper chaotic system for more security. Chaotic theory along with DNA sequence enhances security of biometric image encryption. Implementation proves the encrypted image is highly chaotic and resistant to various attacks.

Arivazhagan, S., Jebarani, W. S. L., Kalyani, S. V., Abinaya, A. Deiva.  2017.  Mixed chaotic maps based encryption for high crypto secrecy. 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN). :1–6.

In recent years, the chaos based cryptographic algorithms have enabled some new and efficient ways to develop secure image encryption techniques. In this paper, we propose a new approach for image encryption based on chaotic maps in order to meet the requirements of secure image encryption. The chaos based image encryption technique uses simple chaotic maps which are very sensitive to original conditions. Using mixed chaotic maps which works based on simple substitution and transposition techniques to encrypt the original image yields better performance with less computation complexity which in turn gives high crypto-secrecy. The initial conditions for the chaotic maps are assigned and using that seed only the receiver can decrypt the message. The results of the experimental, statistical analysis and key sensitivity tests show that the proposed image encryption scheme provides an efficient and secure way for image encryption.

Shyamala, N., Anusudha, K..  2017.  Reversible Chaotic Encryption Techniques For Images. 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN). :1–5.

Image encryption takes been used by armies and governments to help top-secret communication. Nowadays, this one is frequently used for guarding info among various civilian systems. To perform secure image encryption by means of various chaotic maps, in such system a legal party may perhaps decrypt the image with the support of encryption key. This reversible chaotic encryption technique makes use of Arnold's cat map, in which pixel shuffling offers mystifying the image pixels based on the number of iterations decided by the authorized image owner. This is followed by other chaotic encryption techniques such as Logistic map and Tent map, which ensures secure image encryption. The simulation result shows the planned system achieves better NPCR, UACI, MSE and PSNR respectively.