Biblio
Cloud is the requirement of today's competitive world that demand flexible, agile and adaptable technology to be at par with rapidly changing IT industry. Cloud offers scalable, on-demand, pay-as-you-go services to enterprise and has hence become a part of growing trend of organizations IT service model. With emerging trend of cloud the security concerns have further increased and one of the biggest concerns related to cloud is DDoS attack. DDoS attack tends to exhaust all the available resources and leads to unavailability of services in cloud to legitimate users. In this paper the concept of fog computing is used, it is nothing but an extension to cloud computing that performs analysis at the edge of the network, i.e. bring intelligence at the edge of the network for quick real time decision making and reducing the amount of data that is forwarded to cloud. We have proposed a framework in which DDoS attack traffic is generated using different tools which is made to pass through fog defender to cloud. Furthermore, rules are applied on fog defender to detect and filter DDoS attack traffic targeted to cloud.
In the near future, vehicular cloud will help to improve traffic safety and efficiency. Unfortunately, a computing of vehicular cloud and fog cloud faced a set of challenges in security, authentication, privacy, confidentiality and detection of misbehaving vehicles. In addition to, there is a need to recognize false messages from received messages in VANETs during moving on the road. In this work, the security issues and challenges for computing in the vehicular cloud over for computing is studied.
With the scale of big data increasing in large-scale IoT application, fog computing is a recent computing paradigm that is extending cloud computing towards the edge of network in the field. There are a large number of storage resources placed on the edge of the network to form a geographical distributed storage system in fog computing system (FCS). It is used to store the big data collected by the fog computing nodes and to reduce the management costs for moving big data to the cloud. However, the storage of fog nodes at the edge of the network faces a direct attack of external threats. In order to improve the security of the storage of fog nodes in FCS, in this paper, we proposed a data security storage model for fog computing (FCDSSM) to realize the integration of storage and security management in large-scale IoT application. We designed a detail of the FCDSSM system architecture, gave a design of the multi-level trusted domain, cooperative working mechanism, data synchronization and key management strategy for the FCDSSM. Experimental results show that the loss of computing and communication performance caused by data security storage in the FCDSSM is within the acceptable range, and the FCDSSM has good scalability. It can be adapted to big data security storage in large-scale IoT application.
Fog computing is a new paradigm which extends cloud computing services into the edge of the network. Indeed, it aims to pool edge resources in order to deal with cloud's shortcomings such as latency problems. However, this proposal does not ensure the honesty and the good behavior of edge devices. Thus, security places itself as an important challenge in front of this new proposal. Authentication is the entry point of any security system, which makes it an important security service. Traditional authentication schemes endure latency issues and some of them do not satisfy fog-computing requirements such as mutual authentication between end devices and fog servers. Thus, new authentication protocols need to be implemented. In this paper, we propose a new efficient authentication scheme for fog computing architecture. Our scheme ensures mutual authentication and remedies to fog servers' misbehaviors. Moreover, fog servers need to hold only a couple of information to verify the authenticity of every user in the system. Thus, it provides a low overhead in terms of storage capacity. Finally, we show through experimentation the efficiency of our scheme.
As an extension of cloud computing, fog computing is proving itself more and more potentially useful nowadays. Fog computing is introduced to overcome the shortcomings of cloud computing paradigm in handling the massive amount of traffic caused by the enormous number of Internet of Things devices being increasingly connected to the Internet on daily basis. Despite its advantages, fog architecture introduces new security and privacy threats that need to be studied and solved as soon as possible. In this work, we explore two privacy issues posed by the fog computing architecture and we define privacy challenges according to them. The first challenge is related to the fog's design purposes of reducing the latency and improving the bandwidth, where the existing privacy-preserving methods violate these design purposed. The other challenge is related to the proximity of fog nodes to the end-users or IoT devices. We discuss the importance of addressing these challenges by putting them in the context of real-life scenarios. Finally, we propose a privacy-preserving fog computing paradigm that solves these challenges and we assess the security and efficiency of our solution.
The panic among medical control, information, and device administrators is due to surmounting number of high-profile attacks on healthcare facilities. This hostile situation is going to lead the health informatics industry to cloud-hoarding of medical data, control flows, and site governance. While different healthcare enterprises opt for cloud-based solutions, it is a matter of time when fog computing environment are formed. Because of major gaps in reported techniques for fog security administration for health data i.e. absence of an overarching certification authority (CA), the security provisioning is one of the the issue that we address in this paper. We propose a security provisioning model (AZSPM) for medical devices in fog environments. We propose that the AZSPM can be build by using atomic security components that are dynamically composed. The verification of authenticity of the atomic components, for trust sake, is performed by calculating the processor clock cycles from service execution at the resident hardware platform. This verification is performed in the fully sand boxed environment. The results of the execution cycles are matched with the service specifications from the manufacturer before forwarding the mobile services to the healthcare cloud-lets. The proposed model is completely novel in the fog computing environments. We aim at building the prototype based on this model in a healthcare information system environment.
With the evolution of computing from using personal computers to use of online Internet of Things (IoT) services and applications, security risks have also evolved as a major concern. The use of Fog computing enhances reliability and availability of the online services due to enhanced heterogeneity and increased number of computing servers. However, security remains an open challenge. Various trust models have been proposed to measure the security strength of available service providers. We utilize the quantized security of Datacenters and propose a new security-based service broker policy(SbSBP) for Fog computing environment to allocate the optimal Datacenter(s) to serve users' requests based on users' requirements of cost, time and security. Further, considering the dynamic nature of Fog computing, the concept of dynamic reconfiguration has been added. Comparative analysis of simulation results shows the effectiveness of proposed policy to incorporate users' requirements in the decision-making process.
As the Internet of Things (IoT) continues to grow, there arises concerns and challenges with regard to the security and privacy of the IoT system. In this paper, we propose a FOg CompUting-based Security (FOCUS) system to address the security challenges in the IoT. The proposed FOCUS system leverages the virtual private network (VPN) to secure the access channel to the IoT devices. In addition, FOCUS adopts a challenge-response authentication to protect the VPN server against distributed denial of service (DDoS) attacks, which can further enhance the security of the IoT system. FOCUS is implemented in fog computing that is close to the end users, thus achieving a fast and efficient protection. We demonstrate FOCUS in a proof-of-concept prototype, and conduct experiments to evaluate its performance. The results show that FOCUS can effectively filter out malicious attacks with a very low response latency.
Cloud computing has established itself as an alternative IT infrastructure and service model. However, as with all logically centralized resource and service provisioning infrastructures, cloud does not handle well local issues involving a large number of networked elements (IoTs) and it is not responsive enough for many applications that require immediate attention of a local controller. Fog computing preserves many benefits of cloud computing and it is also in a good position to address these local and performance issues because its resources and specific services are virtualized and located at the edge of the customer premise. However, data security is a critical challenge in fog computing especially when fog nodes and their data move frequently in its environment. This paper addresses the data protection and the performance issues by 1) proposing a Region-Based Trust-Aware (RBTA) model for trust translation among fog nodes of regions, 2) introducing a Fog-based Privacy-aware Role Based Access Control (FPRBAC) for access control at fog nodes, and 3) developing a mobility management service to handle changes of users and fog devices' locations. The implementation results demonstrate the feasibility and the efficiency of our proposed framework.
The paradigm of fog computing has set new trends and heights in the modern world networking and have overcome the major technical complexities of cloud computing. It is not a replacement of cloud computing technology but it just adds feasible advanced characteristics to existing cloud computing paradigm.fog computing not only provide storage, networking and computing services but also provide a platform for IoT (internet of things). However, the fog computing technology also arise the threat to privacy and security of the data and services. The existing security and privacy mechanisms of the cloud computing cannot be applied to the fog computing directly due to its basic characteristics of large-scale geo-distribution, mobility and heterogeneity. This article provides an overview of the present existing issues and challenges in fog computing.
This paper suggests a conceptual mechanism for increasing the security level of the global information community, national information technology infrastructures (e-governments) and private cloud structures, which uses the logical characteristic of IPv6-protocol. The mechanism is based on the properties of the IPv6-header and, in particular, rules of coding IPv6-addresses.
Nowadays, the Internet is developed, so that the requirements for on- and offline data storage have increased. Large storage IT projects, are related to large costs and high level of business risk. A storage service provider (SSP) provides computer storage space and management. In addition to that, it offers also back-up and archiving. Despite this, many companies fears security, privacy and integrity of outsourced data. As a solution, File Assured Deletion (FADE) is a system built upon standard cryptographic issues. It aims to guarantee their privacy and integrity, and most importantly, assuredly deleted files to make them unrecoverable to anybody (including those who manage the cloud storage) upon revocations of file access policies, by encrypting outsourced data files. Unfortunately, This system remains weak, in case the key manager's security is compromised. Our work provides a new scheme that aims to improve the security of FADE by using the TPM (Trusted Platform Module) that stores safely keys, passwords and digital certificates.
In the cloud computing era, in order to avoid computational burdens, many organizations tend to outsource their computations to third-party cloud servers. In order to protect service quality, the integrity of computation results need to be guaranteed. In this paper, we develop a game theoretic framework which helps the outsourcer to maximize its payoff while ensuring the desired level of integrity for the outsourced computation. We define two Stackelberg games and analyze the optimal setting's sensitivity for the parameters of the model.
Cloud computing services have gained a lot of attraction in the recent years, but the shift of data from user-owned desktops and laptops to cloud storage systems has led to serious data privacy implications for the users. Even though privacy notices supplied by the cloud vendors details the data practices and options to protect their privacy, the lengthy and free-flowing textual format of the notices are often difficult to comprehend by the users. Thus we propose a simplified presentation format for privacy practices and choices termed as "Privacy-Dashboard" based on Protection Motivation Theory (PMT) and we intend to test the effectiveness of presentation format using cognitive-fit theory. Also, we indirectly model the cloud privacy concerns using Item-Response Theory (IRT) model. We contribute to the information privacy literature by addressing the literature gap to develop privacy protection artifacts in order to improve the privacy protection behaviors of individual users. The proposed "privacy dashboard" would provide an easy-to-use choice mechanisms that allow consumers to control how their data is collected and used.
The expeditious expansion of the networking technologies have remarkably driven the usage of the distributedcomputing as well as services, such as task offloading to the cloud. However, security and privacy concerns are restricting the implementations of cloud computing because of the threats from both outsiders and insiders. The primary alternative of protecting users' data is developing a Fully Homomorphic Encryption (FHE) scheme, which can cover both data protections and data processing in the cloud. Despite many previous attempts addressing this approach, none of the proposed work can simultaneously satisfy two requirements that include the non-noise accuracy and an efficiency execution. This paper focuses on the issue of FHE design and proposes a novel FHE scheme, which is called Optimal Fully Homomorphic Encryption (O-FHE). Our approach utilizes the properties of the Kronecker Product (KP) and designs a mechanism of achieving FHE, which consider both accuracy and efficiency. We have assessed our scheme in both theoretical proofing and experimental evaluations with the confirmed and exceptional results.
Data storage in cloud should come along with high safety and confidentiality. It is accountability of cloud service provider to guarantee the availability and security of client data. There exist various alternatives for storage services but confidentiality and complexity solutions for database as a service are still not satisfactory. Proposed system gives alternative solution for database as a service that integrates benefits of different services along with advance encryption techniques. It yields possibility of applying concurrency on encrypted data. This alternative provides supporting facility to connect dispersed clients with elimination of intermediate proxy by which simplicity can acquired. Performance of proposed system evaluated on basis of theoretical analyses.
Current technologies to include cloud computing, social networking, mobile applications and crowd and synthetic intelligence, coupled with the explosion in storage and processing power, are evolving massive-scale marketplaces for a wide variety of resources and services. They are also enabling unprecedented forms and levels of collaborations among human and machine entities. In this new era, trust remains the keystone of success in any relationship between two or more parties. A primary challenge is to establish and manage trust in environments where massive numbers of consumers, providers and brokers are largely autonomous with vastly diverse requirements, capabilities, and trust profiles. Most contemporary trust management solutions are oblivious to diversities in trustors' requirements and contexts, utilize direct or indirect experiences as the only form of trust computations, employ hardcoded trust computations and marginally consider collaboration in trust management. We surmise the need for reference architecture for trust management to guide the development of a wide spectrum of trust management systems. In our previous work, we presented a preliminary reference architecture for trust management which provides customizable and reconfigurable trust management operations to accommodate varying levels of diversity and trust personalization. In this paper, we present a comprehensive taxonomy for trust management and extend our reference architecture to feature collaboration as a first-class object. Our goal is to promote the development of new collaborative trust management systems, where various trust management operations would involve collaborating entities. Using the proposed architecture, we implemented a collaborative personalized trust management system. Simulation results demonstrate the effectiveness and efficiency of our system.
Along with the growing popularisation of Cloud Computing. Cloud storage technology has been paid more and more attention as an emerging network storage technology which is extended and developed by cloud computing concepts. Cloud computing environment depends on user services such as high-speed storage and retrieval provided by cloud computing system. Meanwhile, data security is an important problem to solve urgently for cloud storage technology. In recent years, There are more and more malicious attacks on cloud storage systems, and cloud storage system of data leaking also frequently occurred. Cloud storage security concerns the user's data security. The purpose of this paper is to achieve data security of cloud storage and to formulate corresponding cloud storage security policy. Those were combined with the results of existing academic research by analyzing the security risks of user data in cloud storage and approach a subject of the relevant security technology, which based on the structural characteristics of cloud storage system.
Cloud Computing represents one of the most significant shifts in information technology and it enables to provide cloud-based security service such as Security-as-a-service (SECaaS). Improving of the cloud computing technologies, the traditional SIEM paradigm is able to shift to cloud-based security services. In this paper, we propose the SIEM architecture that can be deployed to the SECaaS platform which we have been developing for analyzing and recognizing intelligent cyber-threat based on virtualization technologies.
Blockchain has been applied to study data privacy and network security recently. In this paper, we propose a punishment scheme based on the action record on the blockchain to suppress the attack motivation of the edge servers and the mobile devices in the edge network. The interactions between a mobile device and an edge server are formulated as a blockchain security game, in which the mobile device sends a request to the server to obtain real-time service or launches attacks against the server for illegal security gains, and the server chooses to perform the request from the device or attack it. The Nash equilibria (NEs) of the game are derived and the conditions that each NE exists are provided to disclose how the punishment scheme impacts the adversary behaviors of the mobile device and the edge server.
Live migration is the process used in virtualization environment of datacenters in order to take the benefit of zero downtime during system maintenance. But during migrating live virtual machines along with system files and storage data, network traffic gets increases across network bandwidth and delays in migration time. There is need to reduce the migration time in order to maintain the system performance by analyzing and optimizing the storage overheads which mainly creates due to unnecessary duplicated data transferred during live migration. So there is need of such storage device which will keep the duplicated data residing in both the source as well as target physical host i.e. NAS. The proposed hash map based algorithm maps all I/O operations in order to track the duplicated data by assigning hash value to both NAS and RAM data. Only the unique data then will be sent data to the target host without affecting service level agreement (SLA), without affecting VM migration time, application downtime, SLA violations, VM pre-migration and downtime post migration overheads during pre and post migration of virtual machines.
Deep Neural Network (DNN) has recently become the “de facto” technique to drive the artificial intelligence (AI) industry. However, there also emerges many security issues as the DNN based intelligent systems are being increasingly prevalent. Existing DNN security studies, such as adversarial attacks and poisoning attacks, are usually narrowly conducted at the software algorithm level, with the misclassification as their primary goal. The more realistic system-level attacks introduced by the emerging intelligent service supply chain, e.g. the third-party cloud based machine learning as a service (MLaaS) along with the portable DNN computing engine, have never been discussed. In this work, we propose a low-cost modular methodology-Stealth Infection on Neural Network, namely “SIN2”, to demonstrate the novel and practical intelligent supply chain triggered neural Trojan attacks. Our “SIN2” well leverages the attacking opportunities built upon the static neural network model and the underlying dynamic runtime system of neural computing framework through a bunch of neural Trojaning techniques. We implement a variety of neural Trojan attacks in Linux sandbox by following proposed “SIN2”. Experimental results show that our modular design can rapidly produce and trigger various Trojan attacks that can easily evade the existing defenses.
Vehicular ad hoc network is based on MANET all the vehicle to vehicle and vehicle roadside are connected to the wireless sensor network. In this paper mainly discuss on the security in the VANET in the lightweight cloud environment. Moving vehicle on the roadside connected through the sensor nodes and to provide communication between the vehicles and directly connected to the centralized environment. We propose a new approach to share the information in the VANET networks in secure manner through cloud.