Visible to the public Biblio

Found 1180 results

Filters: Keyword is cloud computing  [Clear All Filters]
2018-04-04
Narwal, P., Singh, S. N., Kumar, D..  2017.  Game-theory based detection and prevention of DoS attacks on networking node in open stack private cloud. 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS). :481–486.

Security at virtualization level has always been a major issue in cloud computing environment. A large number of virtual machines that are hosted on a single server by various customers/client may face serious security threats due to internal/external network attacks. In this work, we have examined and evaluated these threats and their impact on OpenStack private cloud. We have also discussed the most popular DOS (Denial-of-Service) attack on DHCP server on this private cloud platform and evaluated the vulnerabilities in an OpenStack networking component, Neutron, due to which this attack can be performed through rogue DHCP server. Finally, a solution, a game-theory based cloud architecture, that helps to detect and prevent DOS attacks in OpenStack has been proposed.

Zekri, M., Kafhali, S. E., Aboutabit, N., Saadi, Y..  2017.  DDoS attack detection using machine learning techniques in cloud computing environments. 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech). :1–7.

Cloud computing is a revolution in IT technology that provides scalable, virtualized on-demand resources to the end users with greater flexibility, less maintenance and reduced infrastructure cost. These resources are supervised by different management organizations and provided over Internet using known networking protocols, standards and formats. The underlying technologies and legacy protocols contain bugs and vulnerabilities that can open doors for intrusion by the attackers. Attacks as DDoS (Distributed Denial of Service) are ones of the most frequent that inflict serious damage and affect the cloud performance. In a DDoS attack, the attacker usually uses innocent compromised computers (called zombies) by taking advantages of known or unknown bugs and vulnerabilities to send a large number of packets from these already-captured zombies to a server. This may occupy a major portion of network bandwidth of the victim cloud infrastructures or consume much of the servers time. Thus, in this work, we designed a DDoS detection system based on the C.4.5 algorithm to mitigate the DDoS threat. This algorithm, coupled with signature detection techniques, generates a decision tree to perform automatic, effective detection of signatures attacks for DDoS flooding attacks. To validate our system, we selected other machine learning techniques and compared the obtained results.

Montella, Raffaele, Di Luccio, Diana, Marcellino, Livia, Galletti, Ardelio, Kosta, Sokol, Brizius, Alison, Foster, Ian.  2017.  Processing of Crowd-sourced Data from an Internet of Floating Things. Proceedings of the 12th Workshop on Workflows in Support of Large-Scale Science. :8:1–8:11.
Sensors incorporated into mobile devices provide unique opportunities to capture detailed environmental information that cannot be readily collected in other ways. We show here how data from networked navigational sensors on leisure vessels can be used to construct unique new datasets, using the example of underwater topography (bathymetry) to demonstrate the approach. Specifically, we describe an end-to-end workflow that involves the collection of large numbers of timestamped (position, depth) measurements from "internet of floating things" devices on leisure vessels; the communication of data to cloud resources, via a specialized protocol capable of dealing with delayed, intermittent, or even disconnected networks; the integration of measurement data into cloud storage; the efficient correction and interpolation of measurements on a cloud computing platform; and the creation of a continuously updated bathymetric database. Our prototype implementation of this workflow leverages the FACE-IT Galaxy workflow engine to integrate network communication and database components with a CUDA-enabled algorithm running in a virtualized cloud environment.
2018-04-02
Fereidooni, H., Frassetto, T., Miettinen, M., Sadeghi, A. R., Conti, M..  2017.  Fitness Trackers: Fit for Health but Unfit for Security and Privacy. 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE). :19–24.

Wearable devices for fitness tracking and health monitoring have gained considerable popularity and become one of the fastest growing smart devices market. More and more companies are offering integrated health and activity monitoring solutions for fitness trackers. Recently insurances are offering their customers better conditions for health and condition monitoring. However, the extensive sensitive information collected by tracking products and accessibility by third party service providers poses vital security and privacy challenges on the employed solutions. In this paper, we present our security analysis of a representative sample of current fitness tracking products on the market. In particular, we focus on malicious user setting that aims at injecting false data into the cloud-based services leading to erroneous data analytics. We show that none of these products can provide data integrity, authenticity and confidentiality.

Mamun, A. Al, Salah, K., Al-maadeed, S., Sheltami, T. R..  2017.  BigCrypt for Big Data Encryption. 2017 Fourth International Conference on Software Defined Systems (SDS). :93–99.

as data size is growing up, cloud storage is becoming more familiar to store a significant amount of private information. Government and private organizations require transferring plenty of business files from one end to another. However, we will lose privacy if we exchange information without data encryption and communication mechanism security. To protect data from hacking, we can use Asymmetric encryption technique, but it has a key exchange problem. Although Asymmetric key encryption deals with the limitations of Symmetric key encryption it can only encrypt limited size of data which is not feasible for a large amount of data files. In this paper, we propose a probabilistic approach to Pretty Good Privacy technique for encrypting large-size data, named as ``BigCrypt'' where both Symmetric and Asymmetric key encryption are used. Our goal is to achieve zero tolerance security on a significant amount of data encryption. We have experimentally evaluated our technique under three different platforms.

Lin, W., Wang, K., Zhang, Z., Chen, H..  2017.  Revisiting Security Risks of Asymmetric Scalar Product Preserving Encryption and Its Variants. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :1116–1125.

Cloud computing has emerged as a compelling vision for managing data and delivering query answering capability over the internet. This new way of computing also poses a real risk of disclosing confidential information to the cloud. Searchable encryption addresses this issue by allowing the cloud to compute the answer to a query based on the cipher texts of data and queries. Thanks to its inner product preservation property, the asymmetric scalar-product-preserving encryption (ASPE) has been adopted and enhanced in a growing number of works toperform a variety of queries and tasks in the cloud computingsetting. However, the security property of ASPE and its enhancedschemes has not been studied carefully. In this paper, we show acomplete disclosure of ASPE and several previously unknownsecurity risks of its enhanced schemes. Meanwhile, efficientalgorithms are proposed to learn the plaintext of data and queriesencrypted by these schemes with little or no knowledge beyondthe ciphertexts. We demonstrate these risks on real data sets.

Yassein, M. B., Aljawarneh, S., Qawasmeh, E., Mardini, W., Khamayseh, Y..  2017.  Comprehensive Study of Symmetric Key and Asymmetric Key Encryption Algorithms. 2017 International Conference on Engineering and Technology (ICET). :1–7.

Cloud computing emerged in the last years to handle systems with large-scale services sharing between vast numbers of users. It provides enormous storage for data and computing power to users over the Internet. There are many issues with the high growth of data. Data security is one of the most important issues in cloud computing. There are many algorithms and implementation for data security. These algorithms provided various encryption methods. In this work, We present a comprehensive study between Symmetric key and Asymmetric key encryption algorithms that enhanced data security in cloud computing system. We discuss AES, DES, 3DES and Blowfish for symmetric encryption algorithms, and RSA, DSA, Diffie-Hellman and Elliptic Curve, for asymmetric encryption algorithms.

Halvi, A. K. B., Soma, S..  2017.  A Robust and Secured Cloud Based Distributed Biometric System Using Symmetric Key Cryptography and Microsoft Cognitive API. 2017 International Conference on Computing Methodologies and Communication (ICCMC). :225–229.

Biometric authentication has been extremely popular in large scale industries. The face biometric has been used widely in various applications. Handling large numbers of face images is a challenging task in authentication of biometric system. It requires large amount of secure storage, where the registered user information can be stored. Maintaining centralized data centers to store the information requires high investment and maintenance cost, therefore there is a need for deployment of cloud services. However as there is no guaranty of the security in the cloud, user needs to implement an additional or extra layer of security before storing facial data of all registered users. In this work a unique cloud based biometric authentication system is developed using Microsoft cognitive face API. Because most of the cloud based biometric techniques are scalable it is paramount to implement a security technique which can handle the scalability. Any users can use this system for single enterprise application base over the entire enterprise application. In this work the identification number which is text information associated with each biometric image is protected by AES algorithm. The proposed technique also works under distributed system in order to have wider accessibility. The system is also being extended to validate the registered user with an image of aadhar card. An accuracy of 96% is achieved with 100 registered users face images and aadhar card images. Earlier research carried out for the development of biometric system either suffers from development of distributed system are security aspects to handle multiple biometric information such as facial image and aadhar card image.

Hayawi, K., Ho, P. H., Mathew, S. S., Peng, L..  2017.  Securing the Internet of Things: A Worst-Case Analysis of Trade-Off between Query-Anonymity and Communication-Cost. 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). :939–946.

Cloud services are widely used to virtualize the management and actuation of the real-world the Internet of Things (IoT). Due to the increasing privacy concerns regarding querying untrusted cloud servers, query anonymity has become a critical issue to all the stakeholders which are related to assessment of the dependability and security of the IoT system. The paper presents our study on the problem of query receiver-anonymity in the cloud-based IoT system, where the trade-off between the offered query-anonymity and the incurred communication is considered. The paper will investigate whether the accepted worst-case communication cost is sufficient to achieve a specific query anonymity or not. By way of extensive theoretical analysis, it shows that the bounds of worst-case communication cost is quadratically increased as the offered level of anonymity is increased, and they are quadratic in the network diameter for the opposite range. Extensive simulation is conducted to verify the analytical assertions.

Elgzil, A., Chow, C. E., Aljaedi, A., Alamri, N..  2017.  Cyber Anonymity Based on Software-Defined Networking and Onion Routing (SOR). 2017 IEEE Conference on Dependable and Secure Computing. :358–365.

Cyber anonymity tools have attracted wide attention in resisting network traffic censorship and surveillance, and have played a crucial role for open communications over the Internet. The Onion Routing (Tor) is considered the prevailing technique for circumventing the traffic surveillance and providing cyber anonymity. Tor operates by tunneling a traffic through a series of relays, making such traffic to appear as if it originated from the last relay in the traffic path, rather than from the original user. However, Tor faced some obstructions in carrying out its goal effectively, such as insufficient performance and limited capacity. This paper presents a cyber anonymity technique based on software-defined networking; named SOR, which builds onion-routed tunnels across multiple anonymity service providers. SOR architecture enables any cloud tenants to participate in the anonymity service via software-defined networking. Our proposed architecture leverages the large capacity and robust connectivity of the commercial cloud networks to elevate the performance of the cyber anonymity service.

2018-03-26
Chen, K., Mao, H., Shi, X., Xu, Y., Liu, A..  2017.  Trust-Aware and Location-Based Collaborative Filtering for Web Service QoS Prediction. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2:143–148.

The rapid development of cloud computing has resulted in the emergence of numerous web services on the Internet. Selecting a suitable cloud service is becoming a major problem for users especially non-professionals. Quality of Service (QoS) is considered to be the criterion for judging web services. There are several Collaborative Filtering (CF)-based QoS prediction methods proposed in recent years. QoS values among different users may vary largely due to the network and geographical location. Moreover, QoS data provided by untrusted users will definitely affect the prediction accuracy. However, most existing methods seldom take both facts into consideration. In this paper, we present a trust-aware and location-based approach for web service QoS prediction. A trust value for each user is evaluated before the similarity calculation and the location is taken into account in similar neighbors selecting. A series of experiments are performed based on a realworld QoS dataset including 339 service users and 5,825 services. The experimental analysis shows that the accuracy of our method is much higher than other CF-based methods.

2018-03-19
Xu, D., Xiao, L., Mandayam, N. B., Poor, H. V..  2017.  Cumulative Prospect Theoretic Study of a Cloud Storage Defense Game against Advanced Persistent Threats. 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :541–546.

Cloud storage is vulnerable to advanced persistent threats (APTs), in which an attacker launches stealthy, continuous, well-funded and targeted attacks on storage devices. In this paper, cumulative prospect theory (CPT) is applied to study the interactions between a defender of cloud storage and an APT attacker when each of them makes subjective decisions to choose the scan interval and attack interval, respectively. Both the probability weighting effect and the framing effect are applied to model the deviation of subjective decisions of end-users from the objective decisions governed by expected utility theory, under uncertain attack durations. Cumulative decision weights are used to describe the probability weighting effect and the value distortion functions are used to represent the framing effect of subjective APT attackers and defenders in the CPT-based APT defense game, rather than discrete decision weights, as in earlier prospect theoretic study of APT defense. The Nash equilibria of the CPT-based APT defense game are derived, showing that a subjective attacker becomes risk-seeking if the frame of reference for evaluating the utility is large, and becomes risk-averse if the frame of reference for evaluating the utility is small.

Massonet, P., Deru, L., Achour, A., Dupont, S., Levin, A., Villari, M..  2017.  End-To-End Security Architecture for Federated Cloud and IoT Networks. 2017 IEEE International Conference on Smart Computing (SMARTCOMP). :1–6.

Smart Internet of Things (IoT) applications will rely on advanced IoT platforms that not only provide access to IoT sensors and actuators, but also provide access to cloud services and data analytics. Future IoT platforms should thus provide connectivity and intelligence. One approach to connecting IoT devices, IoT networks to cloud networks and services is to use network federation mechanisms over the internet to create network slices across heterogeneous platforms. Network slices also need to be protected from potential external and internal threats. In this paper we describe an approach for enforcing global security policies in the federated cloud and IoT networks. Our approach allows a global security to be defined in the form of a single service manifest and enforced across all federation network segments. It relies on network function virtualisation (NFV) and service function chaining (SFC) to enforce the security policy. The approach is illustrated with two case studies: one for a user that wishes to securely access IoT devices and another in which an IoT infrastructure administrator wishes to securely access some remote cloud and data analytics services.

Pathare, K. G., Chouragade, P. M..  2017.  Reliable Data Sharing Using Revocable-Storage Identity-Based Encryption in Cloud Storage. 2017 International Conference on Recent Trends in Electrical, Electronics and Computing Technologies (ICRTEECT). :173–176.

Security has always been concern when it comes to data sharing in cloud computing. Cloud computing provides high computation power and memory. Cloud computing is convenient way for data sharing. But users may sometime needs to outsourced the shared data to cloud server though it contains valuable and sensitive information. Thus it is necessary to provide cryptographically enhanced access control for data sharing system. This paper discuss about the promising access control for data sharing in cloud which is identity-based encryption. We introduce the efficient revocation scheme for the system which is revocable-storage identity-based encryption scheme. It provides both forward and backward security of ciphertext. Then we will have glance at the architecture and steps involved in identity-based encryption. Finally we propose system that provide secure file sharing system using identity-based encryption scheme.

Keerthana, S., Monisha, C., Priyanka, S., Veena, S..  2017.  De Duplication Scalable Secure File Sharing on Untrusted Storage in Big Data. 2017 International Conference on Information Communication and Embedded Systems (ICICES). :1–6.

Data Deduplication provides lots of benefits to security and privacy issues which can arise as user's sensitive data at risk of within and out of doors attacks. Traditional secret writing that provides knowledge confidentiality is incompatible with knowledge deduplication. Ancient secret writing wants completely different users to encode their knowledge with their own keys. Thus, identical knowledge copies of completely different various users can result in different ciphertexts that makes Deduplication not possible. Convergent secret writing has been planned to enforce knowledge confidentiality whereas creating Deduplication possible. It encrypts/decrypts a knowledge copy with a confluent key, that is obtained by computing the cryptographical hash price of the content of the information copy. Once generation of key and encryption, the user can retain the keys and send ciphertext to cloud.

Rawal, B. S., Vivek, S. S..  2017.  Secure Cloud Storage and File Sharing. 2017 IEEE International Conference on Smart Cloud (SmartCloud). :78–83.
Internet-based online cloud services provide enormous volumes of storage space, tailor made computing resources and eradicates the obligation of native machines for data maintenance as well. Cloud storage service providers claim to offer the ability of secure and elastic data-storage services that can adapt to various storage necessities. Most of the security tools have a finite rate of failure, and intrusion comes with more complex and sophisticated techniques; the security failure rates are skyrocketing. Once we upload our data into the cloud, we lose control of our data, which certainly brings new security risks toward integrity and confidentiality of our data. In this paper, we discuss a secure file sharing mechanism for the cloud with the disintegration protocol (DIP). The paper also introduces new contribution of seamless file sharing technique among different clouds without sharing an encryption key.
Jemel, M., Msahli, M., Serhrouchni, A..  2017.  Towards an Efficient File Synchronization between Digital Safes. 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). :136–143.
One of the main concerns of Cloud storage solutions is to offer the availability to the end user. Thus, addressing the mobility needs and device's variety has emerged as a major challenge. At first, data should be synchronized automatically and continuously when the user moves from one equipment to another. Secondly, the Cloud service should offer to the owner the possibility to share data with specific users. The paper's goal is to develop a secure framework that ensures file synchronization with high quality and minimal resource consumption. As a first step towards this goal, we propose the SyncDS protocol with its associated architecture. The synchronization protocol efficiency raises through the choice of the used networking protocol as well as the strategy of changes detection between two versions of file systems located in different devices. Our experiment results show that adopting the Hierarchical Hash Tree to detect the changes between two file systems and adopting the WebSocket protocol for the data exchanges improve the efficiency of the synchronization protocol.
Ukwandu, E., Buchanan, W. J., Russell, G..  2017.  Performance Evaluation of a Fragmented Secret Share System. 2017 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–6.
There are many risks in moving data into public storage environments, along with an increasing threat around large-scale data leakage. Secret sharing scheme has been proposed as a keyless and resilient mechanism to mitigate this, but scaling through large scale data infrastructure has remained the bane of using secret sharing scheme in big data storage and retrievals. This work applies secret sharing methods as used in cryptography to create robust and secure data storage and retrievals in conjunction with data fragmentation. It outlines two different methods of distributing data equally to storage locations as well as recovering them in such a manner that ensures consistent data availability irrespective of file size and type. Our experiments consist of two different methods - data and key shares. Using our experimental results, we were able to validate previous works on the effects of threshold on file recovery. Results obtained also revealed the varying effects of share writing to and retrieval from storage locations other than computer memory. The implication is that increase in fragment size at varying file and threshold sizes rather than add overheads to file recovery, do so on creation instead, underscoring the importance of choosing a varying fragment size as file size increases.
Kabir, T., Adnan, M. A..  2017.  A Dynamic Searchable Encryption Scheme for Secure Cloud Server Operation Reserving Multi-Keyword Ranked Search. 2017 4th International Conference on Networking, Systems and Security (NSysS). :1–9.
Cloud computing is becoming more and more popular day by day due to its maintenance, multitenancy and performance. Data owners are motivated to outsource their data to the cloud servers for resource pooling and productivity where multiple users can work on the same data concurrently. These servers offer great convenience and reduced cost for the computation, storage and management of data. But concerns can persist for loss of control over certain sensitive information. The complexity of security is largely intensified when data is distributed over a greater number of devices and data is shared among unrelated users. So these sensitive data should be encrypted for solving these security issues that many consumers cannot afford to tackle. In this paper, we present a dynamic searchable encryption scheme whose update operation can be completed by cloud server while reserving the ability to support multi-keyword ranked search. We have designed a scheme where dynamic operations on data like insert, update and delete are performed by cloud server without decrypting the data. Thus this scheme not only ensures dynamic operations on data but also provides a secure technique by performing those tasks without decryption. The state-of-the-art methods let the data users retrieve the data, re-encrypt it under the new policy and then send it again to the cloud. But our proposed method saves this high computational overhead by reducing the burden of performing dynamic operation by the data owners. The secure and widely used TF × IDF model is used along with kNN algorithm for construction of the index and generation of the query. We have used a tree-based index structure, so our proposed scheme can achieve a sub-linear search time. We have conducted experiments on Amazon EC2 cloud server with three datasets by updating a file, appending a file and deleting a file from the document collection and compared our result with the state-of-the-art method. Results show th- t our scheme has an average running time of 42ms which is 75% less than the existing method.
Jacob, C., Rekha, V. R..  2017.  Secured and Reliable File Sharing System with De-Duplication Using Erasure Correction Code. 2017 International Conference on Networks Advances in Computational Technologies (NetACT). :221–228.
An effective storage and management of file systems is very much essential now a days to avoid the wastage of storage space provided by the cloud providers. Data de-duplication technique has been used widely which allows only to store a single copy of a file and thus avoids duplication of file in the cloud storage servers. It helps to reduce the amount of storage space and save bandwidth of cloud service and thus in high cost savings for the cloud service subscribers. Today data that we need to store are in encrypted format to ensure the security. So data encryption by data owners with their own keys makes the de-duplication impossible for the cloud service subscriber as the data encryption with a key converts data into an unidentifiable format called cipher text thus encrypting, even the same data, with different keys may result in different cipher texts. But de-duplication and encryption need to work in hand to hand to ensure secure, authorized and optimized storage. In this paper, we propose a scheme for file-level de-duplication on encrypted files like text, images and even on video files stored in cloud based on the user's privilege set and file privilege set. This paper proposed a de-duplication system which distributes the files across different servers. The system uses an Erasure Correcting Code technique to re-construct the files even if the parts of the files are lost by attacking any server. Thus the proposed system can ensure both the security and reliability of encrypted files.
Heckman, M. R., Schell, R. R., Reed, E. E..  2015.  A Multi-Level Secure File Sharing Server and Its Application to a Multi-Level Secure Cloud. MILCOM 2015 - 2015 IEEE Military Communications Conference. :1224–1229.
Contemporary cloud environments are built on low-assurance components, so they cannot provide a high level of assurance about the isolation and protection of information. A ``multi-level'' secure cloud environment thus typically consists of multiple, isolated clouds, each of which handles data of only one security level. Not only are such environments duplicative and costly, data ``sharing'' must be implemented by massive, wasteful copying of data from low-level domains to high-level domains. The requirements for certifiable, scalable, multi-level cloud security are threefold: 1) To have trusted, high-assurance components available for use in creating a multi-level secure cloud environment; 2) To design a cloud architecture that efficiently uses the high-assurance components in a scalable way, and 3) To compose the secure components within the scalable architecture while still verifiably maintaining the system security properties. This paper introduces a trusted, high-assurance file server and architecture that satisfies all three requirements. The file server is built on mature technology that was previously certified and deployed across domains from TS/SCI to Unclassified and that supports high-performance, low-to-high and high-to-low file sharing with verifiable security.
2018-03-05
Subedi, K. P., Budhathoki, D. R., Chen, B., Dasgupta, D..  2017.  RDS3: Ransomware Defense Strategy by Using Stealthily Spare Space. 2017 IEEE Symposium Series on Computational Intelligence (SSCI). :1–8.

Ransomware attacks are becoming prevalent nowadays with the flourishing of crypto-currencies. As the most harmful variant of ransomware crypto-ransomware encrypts the victim's valuable data, and asks for ransom money. Paying the ransom money, however, may not guarantee recovery of the data being encrypted. Most of the existing work for ransomware defense purely focuses on ransomware detection. A few of them consider data recovery from ransomware attacks, but they are not able to defend against ransomware which can obtain a high system privilege. In this work, we design RDS3, a novel Ransomware Defense Strategy, in which we Stealthily back up data in the Spare space of a computing device, such that the data encrypted by ransomware can be restored. Our key idea is that the spare space which stores the backup data is fully isolated from the ransomware. In this way, the ransomware is not able to ``touch'' the backup data regardless of what privilege it can obtain. Security analysis and experimental evaluation show that RDS3 can mitigate ransomware attacks with an acceptable overhead.

Schnepf, N., Badonnel, R., Lahmadi, A., Merz, S..  2017.  Automated Verification of Security Chains in Software-Defined Networks with Synaptic. 2017 IEEE Conference on Network Softwarization (NetSoft). :1–9.

Software-defined networks provide new facilities for deploying security mechanisms dynamically. In particular, it is possible to build and adjust security chains to protect the infrastructures, by combining different security functions, such as firewalls, intrusion detection systems and services for preventing data leakage. It is important to ensure that these security chains, in view of their complexity and dynamics, are consistent and do not include security violations. We propose in this paper an automated strategy for supporting the verification of security chains in software-defined networks. It relies on an architecture integrating formal verification methods for checking both the control and data planes of these chains, before their deployment. We describe algorithms for translating specifications of security chains into formal models that can then be verified by SMT1 solving or model checking. Our solution is prototyped as a package, named Synaptic, built as an extension of the Frenetic family of SDN programming languages. The performances of our approach are evaluated through extensive experimentations based on the CVC4, veriT, and nuXmv checkers.

Tselios, C., Politis, I., Kotsopoulos, S..  2017.  Enhancing SDN Security for IoT-Related Deployments through Blockchain. 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :303–308.

The majority of business activity of our integrated and connected world takes place in networks based on cloud computing infrastructure that cross national, geographic and jurisdictional boundaries. Such an efficient entity interconnection is made possible through an emerging networking paradigm, Software Defined Networking (SDN) that intends to vastly simplify policy enforcement and network reconfiguration in a dynamic manner. However, despite the obvious advantages this novel networking paradigm introduces, its increased attack surface compared to traditional networking deployments proved to be a thorny issue that creates skepticism when safety-critical applications are considered. Especially when SDN is used to support Internet-of-Things (IoT)-related networking elements, additional security concerns rise, due to the elevated vulnerability of such deployments to specific types of attacks and the necessity of inter-cloud communication any IoT application would require. The overall number of connected nodes makes the efficient monitoring of all entities a real challenge, that must be tackled to prevent system degradation and service outage. This position paper provides an overview of common security issues of SDN when linked to IoT clouds, describes the design principals of the recently introduced Blockchain paradigm and advocates the reasons that render Blockchain as a significant security factor for solutions where SDN and IoT are involved.

Schnepf, N., Badonnel, R., Lahmadi, A., Merz, S..  2017.  Automated Verification of Security Chains in Software-Defined Networks with Synaptic. 2017 IEEE Conference on Network Softwarization (NetSoft). :1–9.
Software-defined networks provide new facilities for deploying security mechanisms dynamically. In particular, it is possible to build and adjust security chains to protect the infrastructures, by combining different security functions, such as firewalls, intrusion detection systems and services for preventing data leakage. It is important to ensure that these security chains, in view of their complexity and dynamics, are consistent and do not include security violations. We propose in this paper an automated strategy for supporting the verification of security chains in software-defined networks. It relies on an architecture integrating formal verification methods for checking both the control and data planes of these chains, before their deployment. We describe algorithms for translating specifications of security chains into formal models that can then be verified by SMT1 solving or model checking. Our solution is prototyped as a package, named Synaptic, built as an extension of the Frenetic family of SDN programming languages. The performances of our approach are evaluated through extensive experimentations based on the CVC4, veriT, and nuXmv checkers.