Magfirawaty, Magfirawaty, Budi Setiawan, Fauzan, Yusuf, Muhammad, Kurniandi, Rizki, Nafis, Raihan Fauzan, Hayati, Nur.
2022.
Principal Component Analysis and Data Encryption Model for Face Recognition System. 2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS). :381–386.
Face recognition is a biometric technique that uses a computer or machine to facilitate the recognition of human faces. The advantage of this technique is that it can detect faces without direct contact with the device. In its application, the security of face recognition data systems is still not given much attention. Therefore, this study proposes a technique for securing data stored in the face recognition system database. It implements the Viola-Jones Algorithm, the Kanade-Lucas-Tomasi Algorithm (KLT), and the Principal Component Analysis (PCA) algorithm by applying a database security algorithm using XOR encryption. Several tests and analyzes have been performed with this method. The histogram analysis results show no visual information related to encrypted images with plain images. In addition, the correlation value between the encrypted and plain images is weak, so it has high security against statistical attacks with an entropy value of around 7.9. The average time required to carry out the introduction process is 0.7896 s.
Gupta, Ashutosh, Agrawal, Anita.
2022.
Advanced Encryption Standard Algorithm with Optimal S-box and Automated Key Generation. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :2112–2115.
Advanced Encryption Standard (AES) algorithm plays an important role in a data security application. In general S-box module in AES will give maximum confusion and diffusion measures during AES encryption and cause significant path delay overhead. In most cases, either L UTs or embedded memories are used for S- box computations which are vulnerable to attacks that pose a serious risk to real-world applications. In this paper, implementation of the composite field arithmetic-based Sub-bytes and inverse Sub-bytes operations in AES is done. The proposed work includes an efficient multiple round AES cryptosystem with higher-order transformation and composite field s-box formulation with some possible inner stage pipelining schemes which can be used for throughput rate enhancement along with path delay optimization. Finally, input biometric-driven key generation schemes are used for formulating the cipher key dynamically, which provides a higher degree of security for the computing devices.
Chang, Liang.
2022.
The Research on Fingerprint Encryption Algorithm Based on The Error Correcting Code. 2022 International Conference on Wireless Communications, Electrical Engineering and Automation (WCEEA). :258–262.
In this paper, an overall introduction of fingerprint encryption algorithm is made, and then a fingerprint encryption algorithm with error correction is designed by adding error correction mechanism. This new fingerprint encryption algorithm can produce stochastic key in the form of multinomial coefficient by using the binary system sequencer, encrypt fingerprint, and use the Lagrange difference value to restore the multinomial during authenticating. Due to using the cyclic redundancy check code to find out the most accurate key, the accuracy of this algorithm can be ensured. Experimental result indicates that the fuzzy vault algorithm with error correction can well realize the template protection, and meet the requirements of biological information security protection. In addition, it also indicates that the system's safety performance can be enhanced by chanaing the key's length.
Hofbauer, Heinz, Martínez-Díaz, Yoanna, Luevano, Luis Santiago, Méndez-Vázquez, Heydi, Uhl, Andreas.
2022.
Utilizing CNNs for Cryptanalysis of Selective Biometric Face Sample Encryption. 2022 26th International Conference on Pattern Recognition (ICPR). :892–899.
When storing face biometric samples in accordance with ISO/IEC 19794 as JPEG2000 encoded images, it is necessary to encrypt them for the sake of users’ privacy. Literature suggests selective encryption of JPEG2000 images as fast and efficient method for encryption, the trade-off is that some information is left in plaintext. This could be used by an attacker, in case the encrypted biometric samples are leaked. In this work, we will attempt to utilize a convolutional neural network to perform cryptanalysis of the encryption scheme. That is, we want to assess if there is any information left in plaintext in the selectively encrypted face images which can be used to identify the person. The chosen approach is to train CNNs for biometric face recognition not only with plaintext face samples but additionally conduct a refinement training with partially encrypted data. If this system can successfully utilize encrypted face samples for biometric matching, we can show that the information left in encrypted biometric face samples is information actually usable for biometric recognition.The method works and we can show that a supposedly secure biometric sample still contains identifying information on average over the whole database.
L, Shammi, Milind, Emilin Shyni, C., Ul Nisa, Khair, Bora, Ravi Kumar, Saravanan, S..
2022.
Securing Biometric Data with Optimized Share Creation and Visual Cryptography Technique. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :673–679.
Biometric security is the fastest growing area that receives considerable attention over the past few years. Digital hiding and encryption technologies provide an effective solution to secure biometric information from intentional or accidental attacks. Visual cryptography is the approach utilized for encrypting the information which is in the form of visual information for example images. Meanwhile, the biometric template stored in the databases are generally in the form of images, the visual cryptography could be employed effectively for encrypting the template from the attack. This study develops a share creation with improved encryption process for secure biometric verification (SCIEP-SBV) technique. The presented SCIEP-SBV technique majorly aims to attain security via encryption and share creation (SC) procedure. Firstly, the biometric images undergo SC process to produce several shares. For encryption process, homomorphic encryption (HE) technique is utilized in this work. To further improve the secrecy, an improved bald eagle search (IBES) approach was exploited in this work. The simulation values of the SCIEP-SBV system are tested on biometric images. The extensive comparison study demonstrated the improved outcomes of the SCIEP-SBV technique over compared methods.
Habbak, Hany, Metwally, Khaled, Mattar, Ahmed Maher.
2022.
Securing Big Data: A Survey on Security Solutions. 2022 13th International Conference on Electrical Engineering (ICEENG). :145–149.
Big Data (BD) is the combination of several technologies which address the gathering, analyzing and storing of massive heterogeneous data. The tremendous spurt of the Internet of Things (IoT) and different technologies are the fundamental incentive behind this enduring development. Moreover, the analysis of this data requires high-performance servers for advanced and parallel data analytics. Thus, data owners with their limited capabilities may outsource their data to a powerful but untrusted environment, i.e., the Cloud. Furthermore, data analytic techniques performed on external cloud may arise various security intimidations regarding the confidentiality and the integrity of the aforementioned; transferred, analyzed, and stored data. To countermeasure these security issues and challenges, several techniques have been addressed. This survey paper aims to summarize and emphasize the security threats within Big Data framework, in addition, it is worth mentioning research work related to Big Data Analytics (BDA).
Shrivastva, Krishna Mohan Pd, Rizvi, M.A., Singh, Shailendra.
2014.
Big Data Privacy Based on Differential Privacy a Hope for Big Data. 2014 International Conference on Computational Intelligence and Communication Networks. :776–781.
In era of information age, due to different electronic, information & communication technology devices and process like sensors, cloud, individual archives, social networks, internet activities and enterprise data are growing exponentially. The most challenging issues are how to effectively manage these large and different type of data. Big data is one of the term named for this large and different type of data. Due to its extraordinary scale, privacy and security is one of the critical challenge of big data. At the every stage of managing the big data there are chances that privacy may be disclose. Many techniques have been suggested and implemented for privacy preservation of large data set like anonymization based, encryption based and others but unfortunately due to different characteristic (large volume, high speed, and unstructured data) of big data all these techniques are not fully suitable. In this paper we have deeply analyzed, discussed and suggested how an existing approach "differential privacy" is suitable for big data. Initially we have discussed about differential privacy and later analyze how it is suitable for big data.
Luo, Xingqi, Wang, Haotian, Dong, Jinyang, Zhang, Chuan, Wu, Tong.
2022.
Achieving Privacy-preserving Data Sharing for Dual Clouds. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :139–146.
With the advent of the era of Internet of Things (IoT), the increasing data volume leads to storage outsourcing as a new trend for enterprises and individuals. However, data breaches frequently occur, bringing significant challenges to the privacy protection of the outsourced data management system. There is an urgent need for efficient and secure data sharing schemes for the outsourced data management infrastructure, such as the cloud. Therefore, this paper designs a dual-server-based data sharing scheme with data privacy and high efficiency for the cloud, enabling the internal members to exchange their data efficiently and securely. Dual servers guarantee that none of the servers can get complete data independently by adopting secure two-party computation. In our proposed scheme, if the data is destroyed when sending it to the user, the data will not be restored. To prevent the malicious deletion, the data owner adds a random number to verify the identity during the uploading procedure. To ensure data security, the data is transmitted in ciphertext throughout the process by using searchable encryption. Finally, the black-box leakage analysis and theoretical performance evaluation demonstrate that our proposed data sharing scheme provides solid security and high efficiency in practice.
Biswas, Ankur, K V, Pradeep, Kumar Pandey, Arvind, Kumar Shukla, Surendra, Raj, Tej, Roy, Abhishek.
2022.
Hybrid Access Control for Atoring Large Data with Security. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). :838–844.
Although the public cloud is known for its incredible capabilities, consumers cannot totally depend on cloud service providers to keep personal data because to the lack of client maneuverability. To protect privacy, data controllers outsourced encryption keys rather than providing information. Crypt - text to conduct out okay and founder access control and provide the encryption keys with others, innate quality Aes (CP-ABE) may be employed. This, however, falls short of effectively protecting against new dangers. The public cloud was unable to validate if a downloader could decode using a number of older methods. Therefore, these files should be accessible to everyone having access to a data storage. A malicious attacker may download hundreds of files in order to launch Economic Deny of Sustain (EDoS) attacks, greatly depleting the cloud resource. The user of cloud storage is responsible for paying the fee. Additionally, the public cloud serves as both the accountant and the payer of resource consumption costs, without offering data owners any information. Cloud infrastructure storage should assuage these concerns in practice. In this study, we provide a technique for resource accountability and defense against DoS attacks for encrypted cloud storage tanks. It uses black-box CP-ABE techniques and abides by the access policy of CP-arbitrary ABE. After presenting two methods for different parameters, speed and security evaluations are given.
Yuan, Dandan, Cui, Shujie, Russello, Giovanni.
2022.
We Can Make Mistakes: Fault-tolerant Forward Private Verifiable Dynamic Searchable Symmetric Encryption. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :587–605.
Verifiable Dynamic Searchable Symmetric Encryption (VDSSE) enables users to securely outsource databases (document sets) to cloud servers and perform searches and updates. The verifiability property prevents users from accepting incorrect search results returned by a malicious server. However, we discover that the community currently only focuses on preventing malicious behavior from the server but ignores incorrect updates from the client, which are very likely to happen since there is no record on the client to check. Indeed most existing VDSSE schemes are not sufficient to tolerate incorrect updates from the client. For instance, deleting a nonexistent keyword-identifier pair can break their correctness and soundness. In this paper, we demonstrate the vulnerabilities of a type of existing VDSSE schemes that fail them to ensure correctness and soundness properties on incorrect updates. We propose an efficient fault-tolerant solution that can consider any DSSE scheme as a black-box and make them into a fault-tolerant VDSSE in the malicious model. Forward privacy is an important property of DSSE that prevents the server from linking an update operation to previous search queries. Our approach can also make any forward secure DSSE scheme into a fault-tolerant VDSSE without breaking the forward security guarantee. In this work, we take FAST [1] (TDSC 2020), a forward secure DSSE, as an example, implement a prototype of our solution, and evaluate its performance. Even when compared with the previous fastest forward private construction that does not support fault tolerance, the experiments show that our construction saves 9× client storage and has better search and update efficiency.
Hirahara, Shuichi.
2022.
NP-Hardness of Learning Programs and Partial MCSP. 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS). :968–979.
A long-standing open question in computational learning theory is to prove NP-hardness of learning efficient programs, the setting of which is in between proper learning and improper learning. Ko (COLT’90, SICOMP’91) explicitly raised this open question and demonstrated its difficulty by proving that there exists no relativizing proof of NP-hardness of learning programs. In this paper, we overcome Ko’s relativization barrier and prove NP-hardness of learning programs under randomized polynomial-time many-one reductions. Our result is provably non-relativizing, and comes somewhat close to the parameter range of improper learning: We observe that mildly improving our inapproximability factor is sufficient to exclude Heuristica, i.e., show the equivalence between average-case and worst-case complexities of N P. We also make progress on another long-standing open question of showing NP-hardness of the Minimum Circuit Size Problem (MCSP). We prove NP-hardness of the partial function variant of MCSP as well as other meta-computational problems, such as the problems MKTP* and MINKT* of computing the time-bounded Kolmogorov complexity of a given partial string, under randomized polynomial-time reductions. Our proofs are algorithmic information (a.k. a. Kolmogorov complexity) theoretic. We utilize black-box pseudorandom generator constructions, such as the Nisan-Wigderson generator, as a one-time encryption scheme secure against a program which “does not know” a random function. Our key technical contribution is to quantify the “knowledge” of a program by using conditional Kolmogorov complexity and show that no small program can know many random functions.
Zhang, Hui, Ding, Jianing, Tan, Jianlong, Gou, Gaopeng, Shi, Junzheng.
2022.
Classification of Mobile Encryption Services Based on Context Feature Enhancement. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :860–866.
Smart phones have become the preferred way for Chinese Internet users currently. The mobile phone traffic is large from the operating system. These traffic is mainly generated by the services. In the context of the universal encryption of the traffic, classification identification of mobile encryption services can effectively reduce the difficulty of analytical difficulty due to mobile terminals and operating system diversity, and can more accurately identify user access targets, and then enhance service quality and network security management. The existing mobile encryption service classification methods have two shortcomings in feature selection: First, the DL model is used as a black box, and the features of large dimensions are not distinguished as input of classification model, which resulting in sharp increase in calculation complexity, and the actual application is limited. Second, the existing feature selection method is insufficient to use the time and space associated information of traffic, resulting in less robustness and low accuracy of the classification. In this paper, we propose a feature enhancement method based on adjacent flow contextual features and evaluate the Apple encryption service traffic collected from the real world. Based on 5 DL classification models, the refined classification accuracy of Apple services is significantly improved. Our work can provide an effective solution for the fine management of mobile encryption services.
B S, Sahana Raj, Venugopalachar, Sridhar.
2022.
Traitor Tracing in Broadcast Encryption using Vector Keys. 2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon). :1–5.
Secured data transmission between one to many authorized users is achieved through Broadcast Encryption (BE). In BE, the source transmits encrypted data to multiple registered users who already have their decrypting keys. The Untrustworthy users, known as Traitors, can give out their secret keys to a hacker to form a pirate decoding system to decrypt the original message on the sly. The process of detecting the traitors is known as Traitor Tracing in cryptography. This paper presents a new Black Box Tracing method that is fully collusion resistant and it is designated as Traitor Tracing in Broadcast Encryption using Vector Keys (TTBE-VK). The proposed method uses integer vectors in the finite field Zp as encryption/decryption/tracing keys, reducing the computational cost compared to the existing methods.