Visible to the public Biblio

Filters: Keyword is Control  [Clear All Filters]
2023-02-17
Schüle, Mareike, Kraus, Johannes Maria, Babel, Franziska, Reißner, Nadine.  2022.  Patients' Trust in Hospital Transport Robots: Evaluation of the Role of User Dispositions, Anxiety, and Robot Characteristics. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :246–255.
For designing the interaction with robots in healthcare scenarios, understanding how trust develops in such situations characterized by vulnerability and uncertainty is important. The goal of this study was to investigate how technology-related user dispositions, anxiety, and robot characteristics influence trust. A second goal was to substantiate the association between hospital patients' trust and their intention to use a transport robot. In an online study, patients, who were currently treated in hospitals, were introduced to the concept of a transport robot with both written and video-based material. Participants evaluated the robot several times. Technology-related user dispositions were found to be essentially associated with trust and the intention to use. Furthermore, hospital patients' anxiety was negatively associated with the intention to use. This relationship was mediated by trust. Moreover, no effects of the manipulated robot characteristics were found. In conclusion, for a successful implementation of robots in hospital settings patients' individual prior learning history - e.g., in terms of existing robot attitudes - and anxiety levels should be considered during the introduction and implementation phase.
2022-12-02
Wylde, Allison.  2021.  Zero trust: Never trust, always verify. 2021 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—4.

This short paper argues that current conceptions in trust formation scholarship miss the context of zero trust, a practice growing in importance in cyber security. The contribution of this paper presents a novel approach to help conceptualize and operationalize zero trust and a call for a research agenda. Further work will expand this model and explore the implications of zero trust in future digital systems.

2022-09-30
Selifanov, Valentin V., Doroshenko, Ivan E., Troeglazova, Anna V., Maksudov, Midat M..  2021.  Acceptable Variants Formation Methods of Organizational Structure and the Automated Information Security Management System Structure. 2021 XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE). :631–635.
To ensure comprehensive information protection, it is necessary to use various means of information protection, distributed by levels and segments of the information system. This creates a contradiction, which consists in the presence of many different means of information protection and the inability to ensure their joint coordinated application in ensuring the protection of information due to the lack of an automated control system. One of the tasks that contribute to the solution of this problem is the task of generating a feasible organizational structure and the structure of such an automated control system, the results of which would provide these options and choose the one that is optimal under given initial parameters and limitations. The problem is solved by reducing the General task with particular splitting the original graph of the automated cyber defense control system into subgraphs. As a result, the organizational composition and the automated cyber defense management system structures will provide a set of acceptable variants, on the basis of which the optimal choice is made under the given initial parameters and restrictions. As a result, admissible variants for the formation technique of organizational structure and structure by the automated control system of cyber defense is received.
2022-08-26
Doynikova, Elena V., Fedorchenko, Andrei V., Novikova, Evgenia S., U shakov, Igor A., Krasov, Andrey V..  2021.  Security Decision Support in the Control Systems based on Graph Models. 2021 IV International Conference on Control in Technical Systems (CTS). :224—227.
An effective response against information security violations in the technical systems remains relevant challenge nowadays, when their number, complexity, and the level of possible losses are growing. The violation can be caused by the set of the intruder's consistent actions. In the area of countermeasure selection for a proactive and reactive response against security violations, there are a large number of techniques. The techniques based on graph models seem to be promising. These models allow representing the set of actions caused the violation. Their advantages include the ability to forecast violations for timely decision-making on the countermeasures, as well as the ability to analyze and consider the coverage of countermeasures in terms of steps caused the violation. The paper proposes and describes a decision support method for responding against information security violations in the technical systems based on the graph models, as well as the developed models, including the countermeasure model and the graph representing the set of actions caused the information security violation.
2022-02-04
Da Veiga, Tomás, Chandler, James H., Pittiglio, Giovanni, Lloyd, Peter, Holdar, Mohammad, Onaizah, Onaizah, Alazmani, Ali, Valdastri, Pietro.  2021.  Material Characterization for Magnetic Soft Robots. 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft). :335–342.
Magnetic soft robots are increasingly popular as they provide many advantages such as miniaturization and tetherless control that are ideal for applications inside the human body or in previously inaccessible locations.While non-magnetic elastomers have been extensively characterized and modelled for optimizing the fabrication of soft robots, a systematic material characterization of their magnetic counterparts is still missing. In this paper, commonly employed magnetic materials made out of Ecoflex™ 00-30 and Dragon Skin™ 10 with different concentrations of NdFeB microparticles were mechanically and magnetically characterized. The magnetic materials were evaluated under uniaxial tensile testing and their behavior analyzed through linear and hyperelastic model comparison. To determine the corresponding magnetic properties, we present a method to determine the magnetization vector, and magnetic remanence, by means of a force and torque load cell and large reference permanent magnet; demonstrating a high level of accuracy. Furthermore, we study the influence of varied magnitude impulse magnetizing fields on the resultant magnetizations. In combination, by applying improved, material-specific mechanical and magnetic properties to a 2-segment discrete magnetic robot, we show the potential to reduce simulation errors from 8.5% to 5.4%.
2021-05-05
Mnushka, Oksana, Savchenko, Volodymyr.  2020.  Security Model of IOT-based Systems. 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :398—401.
The increasing using of IoT technologies in the industrial sector creates new challenges for the information security of such systems. Using IoT-devices for building SCADA systems cause standard protocols and public networks for data transmitting. Commercial off-the-shelf devices and systems are a new base for industrial control systems, which have high-security risks. There are some useful models are exist for security analysis of information systems, but they do not take into account IoT architecture. The nested attributed metagraph model for the security of IoT-based solutions is proposed and discussed.
2020-07-16
Farivar, Faezeh, Haghighi, Mohammad Sayad, Barchinezhad, Soheila, Jolfaei, Alireza.  2019.  Detection and Compensation of Covert Service-Degrading Intrusions in Cyber Physical Systems through Intelligent Adaptive Control. 2019 IEEE International Conference on Industrial Technology (ICIT). :1143—1148.

Cyber-Physical Systems (CPS) are playing important roles in the critical infrastructure now. A prominent family of CPSs are networked control systems in which the control and feedback signals are carried over computer networks like the Internet. Communication over insecure networks make system vulnerable to cyber attacks. In this article, we design an intrusion detection and compensation framework based on system/plant identification to fight covert attacks. We collect error statistics of the output estimation during the learning phase of system operation and after that, monitor the system behavior to see if it significantly deviates from the expected outputs. A compensating controller is further designed to intervene and replace the classic controller once the attack is detected. The proposed model is tested on a DC motor as the plant and is put against a deception signal amplification attack over the forward link. Simulation results show that the detection algorithm well detects the intrusion and the compensator is also successful in alleviating the attack effects.

2020-03-02
Bhat, Sriharsha, Stenius, Ivan, Bore, Nils, Severholt, Josefine, Ljung, Carl, Torroba Balmori, Ignacio.  2019.  Towards a Cyber-Physical System for Hydrobatic AUVs. OCEANS 2019 - Marseille. :1–7.
Cyber-physical systems (CPSs) encompass a network of sensors and actuators that are monitored, controlled and integrated by a computing and communication core. As autonomous underwater vehicles (AUVs) become more intelligent and connected, new use cases in ocean production, security and environmental monitoring become feasible. Swarms of small, affordable and hydrobatic AUVs can be beneficial in substance cloud tracking and algae farming, and a CPS linking the AUVs with multi-fidelity simulations can improve performance while reducing risks and costs. In this paper, we present a CPS concept tightly linking the AUV network in ROS to virtual validation using Simulink and Gazebo. A robust hardware-software interface using the open-source UAVCAN-ROS bridge is described for enabling hardware-in-the-loop validation. Hardware features of the hydrobatic SAM AUV are described, with a focus on subsystem integration. Results presented include pre-tuning of controllers, validation of mission plans in simulation and real time subsystem performance in tank tests. These first results demonstrate the interconnection between different system elements and offer a proof of concept.
2020-02-17
Thomopoulos, Stelios C. A..  2019.  Maritime Situational Awareness Forensics Tools for a Common Information Sharing Environment (CISE). 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech). :1–5.
CISE stands for Common Information Sharing Environment and refers to an architecture and set of protocols, procedures and services for the exchange of data and information across Maritime Authorities of EU (European Union) Member States (MS's). In the context of enabling the implementation and adoption of CISE by different MS's, EU has funded a number of projects that enable the development of subsystems and adaptors intended to allow MS's to connect and make use of CISE. In this context, the Integrated Systems Laboratory (ISL) has led the development of the corresponding Hellenic and Cypriot CISE by developing a Control, Command & Information (C2I) system that unifies all partial maritime surveillance systems into one National Situational Picture Management (NSPM) system, and adaptors that allow the interconnection of the corresponding national legacy systems to CISE and the exchange of data, information and requests between the two MS's. Furthermore, a set of forensics tools that allow geospatial & time filtering and detection of anomalies, risk incidents, fake MMSIs, suspicious speed changes, collision paths, and gaps in AIS (Automatic Identification System), have been developed by combining motion models, AI, deep learning and fusion algorithms using data from different databases through CISE. This paper briefly discusses these developments within the EU CISE-2020, Hellenic CISE and CY-CISE projects and the benefits from the sharing of maritime data across CISE for both maritime surveillance and security. The prospect of using CISE for the creation of a considerably rich database that could be used for forensics analysis and detection of suspicious maritime traffic and maritime surveillance is discussed.
2020-02-10
Fedyanin, Denis, Giliazova, Albina.  2019.  Influence of Deactivated Agents in Social Networks: Switching Between French-De Groot Models and Friedkin-Johnsen Model. 2019 Twelfth International Conference "Management of large-scale system development" (MLSD). :1–5.
The paper shows the influence of deactivated agents in social networks: switching between French-De Groot models and Friedkin-Johnsen model.
2019-12-18
Atkinson, Simon Reay, Walker, David, Beaulne, Kevin, Hossain, Liaquat.  2012.  Cyber – Transparencies, Assurance and Deterrence. 2012 International Conference on Cyber Security. :119–126.
Cyber-has often been considered as a coordination and control, as opposed to collaborative influence, media. This conceptual-design paper, uniquely, builds upon a number of entangled, cross disciplinary research strands – integrating engineering and conflict studies – and a detailed literature review to propose a new paradigm of assurance and deterrence models. We consider an ontology for Cyber-sûréte, which combines both the social trusts necessary for [knowledge &, information] assurance such as collaboration by social influence (CSI) and the technological controls and rules for secure information management referred as coordination by rule and control (CRC). We posit Cyber-sûréte as enabling both a 'safe-to-fail' ecology (in which learning, testing and adaptation can take place) within a fail-safe supervisory control and data acquisition (SCADA type) system, e.g. in a nuclear power plant. Building upon traditional state-based threat analysis, we consider Warning Time and the Threat equation with relation to policies for managing Cyber-Deterrence. We examine how the goods of Cyber-might be galvanised so as to encourage virtuous behaviour and deter and / or dissuade ne'er-do-wells through multiple transparencies. We consider how the Deterrence-escalator may be managed by identifying both weak influence and strong control signals so as to create a more benign and responsive cyber-ecology, in which strengths can be exploited and weaknesses identified. Finally, we consider declaratory / mutual transparencies as opposed to legalistic / controlled transparency.
2019-12-16
Le Métayer, Daniel, Rauzy, Pablo.  2018.  Capacity: An Abstract Model of Control over Personal Data. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :64-75.

While the control of individuals over their personal data is increasingly seen as an essential component of their privacy, the word "control" is usually used in a very vague way, both by lawyers and by computer scientists. This lack of precision may lead to misunderstandings and makes it difficult to check compliance. To address this issue, we propose a formal framework based on capacities to specify the notion of control over personal data and to reason about control properties. We illustrate our framework with social network systems and show that it makes it possible to characterize the types of control over personal data that they provide to their users and to compare them in a rigorous way.

2018-12-10
Farooq, M. J., Zhu, Q..  2018.  On the Secure and Reconfigurable Multi-Layer Network Design for Critical Information Dissemination in the Internet of Battlefield Things (IoBT). IEEE Transactions on Wireless Communications. 17:2618–2632.

The Internet of things (IoT) is revolutionizing the management and control of automated systems leading to a paradigm shift in areas, such as smart homes, smart cities, health care, and transportation. The IoT technology is also envisioned to play an important role in improving the effectiveness of military operations in battlefields. The interconnection of combat equipment and other battlefield resources for coordinated automated decisions is referred to as the Internet of battlefield things (IoBT). IoBT networks are significantly different from traditional IoT networks due to battlefield specific challenges, such as the absence of communication infrastructure, heterogeneity of devices, and susceptibility to cyber-physical attacks. The combat efficiency and coordinated decision-making in war scenarios depends highly on real-time data collection, which in turn relies on the connectivity of the network and information dissemination in the presence of adversaries. This paper aims to build the theoretical foundations of designing secure and reconfigurable IoBT networks. Leveraging the theories of stochastic geometry and mathematical epidemiology, we develop an integrated framework to quantify the information dissemination among heterogeneous network devices. Consequently, a tractable optimization problem is formulated that can assist commanders in cost effectively planning the network and reconfiguring it according to the changing mission requirements.

2018-09-12
Yousef, K. M. A., AlMajali, A., Hasan, R., Dweik, W., Mohd, B..  2017.  Security risk assessment of the PeopleBot mobile robot research platform. 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :1–5.

Nowadays, robots are widely ubiquitous and integral part in our daily lives, which can be seen almost everywhere in industry, hospitals, military, etc. To provide remote access and control, usually robots are connected to local network or to the Internet through WiFi or Ethernet. As such, it is of great importance and of a critical mission to maintain the safety and the security access of such robots. Security threats may result in completely preventing the access and control of the robot. The consequences of this may be catastrophic and may cause an immediate physical damage to the robot. This paper aims to present a security risk assessment of the well-known PeopleBot; a mobile robot platform from Adept MobileRobots Company. Initially, we thoroughly examined security threats related to remote accessing the PeopleBot robot. We conducted an impact-oriented analysis approach on the wireless communication medium; the main method considered to remotely access the PeopleBot robot. Numerous experiments using SSH and server-client applications were conducted, and they demonstrated that certain attacks result in denying remote access service to the PeopleBot robot. Consequently and dangerously the robot becomes unavailable. Finally, we suggested one possible mitigation and provided useful conclusions to raise awareness of possible security threats on the robotic systems; especially when the robots are involved in critical missions or applications.

2018-02-21
Kalinin, Maxim, Krundyshev, Vasiliy, Zegzhda, Peter, Belenko, Viacheslav.  2017.  Network Security Architectures for VANET. Proceedings of the 10th International Conference on Security of Information and Networks. :73–79.
In recent years, cyber security oriented research is paying much close attention on Vehicular Adhoc NETworks (VANETs). However, existing vehicular networks do not meet current security requirements. Typically for dynamic networks, maximal decentralization and rapidly changing topology of moving hosts form a number of security issues associated with ensuring access control of hosts, security policy enforcement, and resistance of the routing methods. To solve these problems generally, the paper reviews SDN (software defined networks) based network security architectures of VANET. The following tasks are solved in our work: composing of network security architectures for SDN-VANET (architecture with the central control and shared security servers, decentralized (zoned) architecture, hierarchical architecture); implementation of these architectures in virtual modeling environment; and experimental study of effectiveness of the suggested architectures. With large-scale vehicular networks, architectures with multiple SDN controllers are most effective. In small networks, the architecture with the central control also significantly outperforms the traditional VANET architecture. For the suggested architectures, three control modes are discussed in the paper: central, distributed and hybrid modes. Unlike common architectures, all of the proposed security architectures allow us to establish a security policy in m2m-networks and increase resistance capabilities of self-organizing networks.
2017-05-19
Li, Bo, Ma, Yehan, Westenbroek, Tyler, Wu, Chengjie, Gonzalez, Humberto, Lu, Chenyang.  2016.  Wireless Routing and Control: A Cyber-physical Case Study. Proceedings of the 7th International Conference on Cyber-Physical Systems. :32:1–32:10.

Wireless sensor-actuator networks (WSANs) are being adopted in process industries because of their advantages in lowering deployment and maintenance costs. While there has been significant theoretical advancement in networked control design, only limited empirical results that combine control design with realistic WSAN standards exist. This paper presents a cyber-physical case study on a wireless process control system that integrates state-of-the-art network control design and a WSAN based on the WirelessHART standard. The case study systematically explores the interactions between wireless routing and control design in the process control plant. The network supports alternative routing strategies, including single-path source routing and multi-path graph routing. To mitigate the effect of data loss in the WSAN, the control design integrates an observer based on an Extended Kalman Filter with a model predictive controller and an actuator buffer of recent control inputs. We observe that sensing and actuation can have different levels of resilience to packet loss under this network control design. We then propose a flexible routing approach where the routing strategy for sensing and actuation can be configured separately. Finally, we show that an asymmetric routing configuration with different routing strategies for sensing and actuation can effectively improve control performance under significant packet loss. Our results highlight the importance of co-joining the design of wireless network protocols and control in wireless control systems.

2017-02-23
Tchilinguirian, G. J., Erickson, K. G..  2015.  Securing MDSplus for the NSTX-U Digital Coil Protection System. 2015 IEEE 26th Symposium on Fusion Engineering (SOFE). :1–4.

NSTX used MDSplus extensively to record data, relay information and control data acquisition hardware. For NSTX-U the same functionality is expected as well as an expansion into the realm of securely maintaining parameters for machine protection. Specifically, we designed the Digital Coil Protection System (DCPS) to use MDSplus to manage our physical and electrical limit values and relay information about the state of our acquisition system to DCPS. Additionally, test and development systems need to use many of the same resources concurrently without causing interference with other critical systems. Further complications include providing access to critical, protected data without risking changes being made to it by unauthorized users or through unsupported or uncontrolled methods either maliciously or unintentionally. To achieve a level of confidence with an existing software system designed with minimal security controls, a number of changes to how MDSplus is used were designed and implemented. Trees would need to be verified and checked for changes before use. Concurrent creation of trees from vastly different use-cases and varying requirements would need to be supported. This paper will further discuss the impetus for developing such designs and the methods used to implement them.

2014-09-17
Yang, Wei, Xiao, Xusheng, Pandita, Rahul, Enck, William, Xie, Tao.  2014.  Improving Mobile Application Security via Bridging User Expectations and Application Behaviors. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :32:1–32:2.

To keep malware out of mobile application markets, existing techniques analyze the security aspects of application behaviors and summarize patterns of these security aspects to determine what applications do. However, user expectations (reflected via user perception in combination with user judgment) are often not incorporated into such analysis to determine whether application behaviors are within user expectations. This poster presents our recent work on bridging the semantic gap between user perceptions of the application behaviors and the actual application behaviors.

Hwang, JeeHyun, Williams, Laurie, Vouk, Mladen.  2014.  Access Control Policy Evolution: An Empirical Study. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :28:1–28:2.

Access Control Policies (ACPs) evolve. Understanding the trends and evolution patterns of ACPs could provide guidance about the reliability and maintenance of ACPs. Our research goal is to help policy authors improve the quality of ACP evolution based on the understanding of trends and evolution patterns in ACPs We performed an empirical study by analyzing the ACP changes over time for two systems: Security Enhanced Linux (SELinux), and an open-source virtual computing platform (VCL). We measured trends in terms of the number of policy lines and lines of code (LOC), respectively. We observed evolution patterns. For example, an evolution pattern st1 → st2 says that st1 (e.g., "read") evolves into st2 (e.g., "read" and "write"). This pattern indicates that policy authors add "write" permission in addition to existing "read" permission. We found that some of evolution patterns appear to occur more frequently.

Yu, Xianqing, Ning, Peng, Vouk, Mladen A..  2014.  Securing Hadoop in Cloud. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :26:1–26:2.

Hadoop is a map-reduce implementation that rapidly processes data in parallel. Cloud provides reliability, flexibility, scalability, elasticity and cost saving to customers. Moving Hadoop into Cloud can be beneficial to Hadoop users. However, Hadoop has two vulnerabilities that can dramatically impact its security in a Cloud. The vulnerabilities are its overloaded authentication key, and the lack of fine-grained access control at the data access level. We propose and develop a security enhancement for Cloud-based Hadoop.

Biswas, Trisha, Lesser, Kendra, Dutta, Rudra, Oishi, Meeko.  2014.  Examining Reliability of Wireless Multihop Network Routing with Linear Systems. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :19:1–19:2.

In this study, we present a control theoretic technique to model routing in wireless multihop networks. We model ad hoc wireless networks as stochastic dynamical systems where, as a base case, a centralized controller pre-computes optimal paths to the destination. The usefulness of this approach lies in the fact that it can help obtain bounds on reliability of end-to-end packet transmissions. We compare this approach with the reliability achieved by some of the widely used routing techniques in multihop networks.

Williams, Laurie A., Nicol, David M., Singh, Munindar P..  2014.  HotSoS '14: Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. Symposium and Bootcamp on the Science of Security.

The Symposium and Bootcamp on the Science of Security (HotSoS), is a research event centered on the Science of Security (SoS). Following a successful invitational SoS Community Meeting in December 2012, HotSoS 2014 was the first open research event in what we expect will be a continuing series of such events. The key motivation behind developing a Science of Security is to address the fundamental problems of cybersecurity in a principled manner. Security has been intensively studied, but a lot of previous research emphasizes the engineering of specific solutions without first developing the scientific understanding of the problem domain. All too often, security research conveys the flavor of identifying specific threats and removing them in an apparently ad hoc manner. The motivation behind the nascent Science of Security is to understand how computing systems are architected, built, used, and maintained with a view to understanding and addressing security challenges systematically across their life cycle. In particular, two features distinguish the Science of Security from previous research programs on cybersecurity. Scope. The Science of Security considers not just computational artifacts but also incorporates the human, social, and organizational aspects of computing within its purview. Approach. The Science of Security takes a decidedly scientific approach, based on the understanding of empirical evaluation and theoretical foundations as developed in the natural and social sciences, but adapted as appropriate for the "artificial science" (paraphrasing Herb Simon's term) that is computing.