Visible to the public Biblio

Found 150 results

Filters: Keyword is face recognition  [Clear All Filters]
2021-02-08
Arunpandian, S., Dhenakaran, S. S..  2020.  DNA based Computing Encryption Scheme Blending Color and Gray Images. 2020 International Conference on Communication and Signal Processing (ICCSP). :0966–0970.

In this paper, a novel DNA based computing method is proposed for encryption of biometric color(face)and gray fingerprint images. In many applications of present scenario, gray and color images are exhibited major role for authenticating identity of an individual. The values of aforementioned images have considered as two separate matrices. The key generation process two level mathematical operations have applied on fingerprint image for generating encryption key. For enhancing security to biometric image, DNA computing has done on the above matrices generating DNA sequence. Further, DNA sequences have scrambled to add complexity to biometric image. Results of blending images, image of DNA computing has shown in experimental section. It is observed that the proposed substitution DNA computing algorithm has shown good resistant against statistical and differential attacks.

2021-01-28
Romashchenko, V., Brutscheck, M., Chmielewski, I..  2020.  Organisation and Implementation of ResNet Face Recognition Architectures in the Environment of Zigbee-based Data Transmission Protocol. 2020 Fourth International Conference on Multimedia Computing, Networking and Applications (MCNA). :25—30.

This paper describes a realisation of a ResNet face recognition method through Zigbee-based wireless protocol. The system uses a CC2530 Zigbee-based radio frequency chip with connected VC0706 camera on it. The Arduino Nano had been used for organisation of data compression and effective division of Zigbee packets. The proposed solution also simplifies a data transmission within a strict bandwidth of Zigbee protocol and reliable packet forwarding in case of frequency distortion. The following investigation model uses Raspberry Pi 3 with connected Zigbee End Device (ZED) for successful receiving of important images and acceleration of deep learning interfaces. The model is integrated into a smart security system based on Zigbee modules, MySQL database, Android application and works in the background by using daemons procedures. To protect data, all wireless connections had been encrypted by the 128-bit Advanced Encryption Standard (AES-128) algorithm. Experimental results show a possibility to implement complex systems under restricted requirements of available transmission protocols.

2021-01-25
Rizki, R. P., Hamidi, E. A. Z., Kamelia, L., Sururie, R. W..  2020.  Image Processing Technique for Smart Home Security Based On the Principal Component Analysis (PCA) Methods. 2020 6th International Conference on Wireless and Telematics (ICWT). :1–4.
Smart home is one application of the pervasive computing branch of science. Three categories of smart homes, namely comfort, healthcare, and security. The security system is a part of smart home technology that is very important because the intensity of crime is increasing, especially in residential areas. The system will detect the face by the webcam camera if the user enters the correct password. Face recognition will be processed by the Raspberry pi 3 microcontroller with the Principal Component Analysis method using OpenCV and Python software which has outputs, namely actuators in the form of a solenoid lock door and buzzer. The test results show that the webcam can perform face detection when the password input is successful, then the buzzer actuator can turn on when the database does not match the data taken by the webcam or the test data and the solenoid door lock actuator can run if the database matches the test data taken by the sensor. webcam. The mean response time of face detection is 1.35 seconds.
2021-01-15
Brockschmidt, J., Shang, J., Wu, J..  2019.  On the Generality of Facial Forgery Detection. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :43—47.
A variety of architectures have been designed or repurposed for the task of facial forgery detection. While many of these designs have seen great success, they largely fail to address challenges these models may face in practice. A major challenge is posed by generality, wherein models must be prepared to perform in a variety of domains. In this paper, we investigate the ability of state-of-the-art facial forgery detection architectures to generalize. We first propose two criteria for generality: reliably detecting multiple spoofing techniques and reliably detecting unseen spoofing techniques. We then devise experiments which measure how a given architecture performs against these criteria. Our analysis focuses on two state-of-the-art facial forgery detection architectures, MesoNet and XceptionNet, both being convolutional neural networks (CNNs). Our experiments use samples from six state-of-the-art facial forgery techniques: Deepfakes, Face2Face, FaceSwap, GANnotation, ICface, and X2Face. We find MesoNet and XceptionNet show potential to generalize to multiple spoofing techniques but with a slight trade-off in accuracy, and largely fail against unseen techniques. We loosely extrapolate these results to similar CNN architectures and emphasize the need for better architectures to meet the challenges of generality.
Yang, X., Li, Y., Lyu, S..  2019.  Exposing Deep Fakes Using Inconsistent Head Poses. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8261—8265.
In this paper, we propose a new method to expose AI-generated fake face images or videos (commonly known as the Deep Fakes). Our method is based on the observations that Deep Fakes are created by splicing synthesized face region into the original image, and in doing so, introducing errors that can be revealed when 3D head poses are estimated from the face images. We perform experiments to demonstrate this phenomenon and further develop a classification method based on this cue. Using features based on this cue, an SVM classifier is evaluated using a set of real face images and Deep Fakes.
Matern, F., Riess, C., Stamminger, M..  2019.  Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations. 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW). :83—92.
High quality face editing in videos is a growing concern and spreads distrust in video content. However, upon closer examination, many face editing algorithms exhibit artifacts that resemble classical computer vision issues that stem from face tracking and editing. As a consequence, we wonder how difficult it is to expose artificial faces from current generators? To this end, we review current facial editing methods and several characteristic artifacts from their processing pipelines. We also show that relatively simple visual artifacts can be already quite effective in exposing such manipulations, including Deepfakes and Face2Face. Since the methods are based on visual features, they are easily explicable also to non-technical experts. The methods are easy to implement and offer capabilities for rapid adjustment to new manipulation types with little data available. Despite their simplicity, the methods are able to achieve AUC values of up to 0.866.
Akhtar, Z., Dasgupta, D..  2019.  A Comparative Evaluation of Local Feature Descriptors for DeepFakes Detection. 2019 IEEE International Symposium on Technologies for Homeland Security (HST). :1—5.
The global proliferation of affordable photographing devices and readily-available face image and video editing software has caused a remarkable rise in face manipulations, e.g., altering face skin color using FaceApp. Such synthetic manipulations are becoming a very perilous problem, as altered faces not only can fool human experts but also have detrimental consequences on automated face identification systems (AFIS). Thus, it is vital to formulate techniques to improve the robustness of AFIS against digital face manipulations. The most prominent countermeasure is face manipulation detection, which aims at discriminating genuine samples from manipulated ones. Over the years, analysis of microtextural features using local image descriptors has been successfully used in various applications owing to their flexibility, computational simplicity, and performances. Therefore, in this paper, we study the possibility of identifying manipulated faces via local feature descriptors. The comparative experimental investigation of ten local feature descriptors on a new and publicly available DeepfakeTIMIT database is reported.
Korshunov, P., Marcel, S..  2019.  Vulnerability assessment and detection of Deepfake videos. 2019 International Conference on Biometrics (ICB). :1—6.
It is becoming increasingly easy to automatically replace a face of one person in a video with the face of another person by using a pre-trained generative adversarial network (GAN). Recent public scandals, e.g., the faces of celebrities being swapped onto pornographic videos, call for automated ways to detect these Deepfake videos. To help developing such methods, in this paper, we present the first publicly available set of Deepfake videos generated from videos of VidTIMIT database. We used open source software based on GANs to create the Deepfakes, and we emphasize that training and blending parameters can significantly impact the quality of the resulted videos. To demonstrate this impact, we generated videos with low and high visual quality (320 videos each) using differently tuned parameter sets. We showed that the state of the art face recognition systems based on VGG and Facenet neural networks are vulnerable to Deepfake videos, with 85.62% and 95.00% false acceptance rates (on high quality versions) respectively, which means methods for detecting Deepfake videos are necessary. By considering several baseline approaches, we found the best performing method based on visual quality metrics, which is often used in presentation attack detection domain, to lead to 8.97% equal error rate on high quality Deep-fakes. Our experiments demonstrate that GAN-generated Deepfake videos are challenging for both face recognition systems and existing detection methods, and the further development of face swapping technology will make it even more so.
Yadav, D., Salmani, S..  2019.  Deepfake: A Survey on Facial Forgery Technique Using Generative Adversarial Network. 2019 International Conference on Intelligent Computing and Control Systems (ICCS). :852—857.
"Deepfake" it is an incipiently emerging face video forgery technique predicated on AI technology which is used for creating the fake video. It takes images and video as source and it coalesces these to make a new video using the generative adversarial network and the output is very convincing. This technique is utilized for generating the unauthentic spurious video and it is capable of making it possible to generate an unauthentic spurious video of authentic people verbally expressing and doing things that they never did by swapping the face of the person in the video. Deepfake can create disputes in countries by influencing their election process by defaming the character of the politician. This technique is now being used for character defamation of celebrities and high-profile politician just by swapping the face with someone else. If it is utilized in unethical ways, this could lead to a serious problem. Someone can use this technique for taking revenge from the person by swapping face in video and then posting it to a social media platform. In this paper, working of Deepfake technique along with how it can swap faces with maximum precision in the video has been presented. Further explained are the different ways through which we can identify if the video is generated by Deepfake and its advantages and drawback have been listed.
Khalid, H., Woo, S. S..  2020.  OC-FakeDect: Classifying Deepfakes Using One-class Variational Autoencoder. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :2794—2803.
An image forgery method called Deepfakes can cause security and privacy issues by changing the identity of a person in a photo through the replacement of his/her face with a computer-generated image or another person's face. Therefore, a new challenge of detecting Deepfakes arises to protect individuals from potential misuses. Many researchers have proposed various binary-classification based detection approaches to detect deepfakes. However, binary-classification based methods generally require a large amount of both real and fake face images for training, and it is challenging to collect sufficient fake images data in advance. Besides, when new deepfakes generation methods are introduced, little deepfakes data will be available, and the detection performance may be mediocre. To overcome these data scarcity limitations, we formulate deepfakes detection as a one-class anomaly detection problem. We propose OC-FakeDect, which uses a one-class Variational Autoencoder (VAE) to train only on real face images and detects non-real images such as deepfakes by treating them as anomalies. Our preliminary result shows that our one class-based approach can be promising when detecting Deepfakes, achieving a 97.5% accuracy on the NeuralTextures data of the well-known FaceForensics++ benchmark dataset without using any fake images for the training process.
Younus, M. A., Hasan, T. M..  2020.  Effective and Fast DeepFake Detection Method Based on Haar Wavelet Transform. 2020 International Conference on Computer Science and Software Engineering (CSASE). :186—190.
DeepFake using Generative Adversarial Networks (GANs) tampered videos reveals a new challenge in today's life. With the inception of GANs, generating high-quality fake videos becomes much easier and in a very realistic manner. Therefore, the development of efficient tools that can automatically detect these fake videos is of paramount importance. The proposed DeepFake detection method takes the advantage of the fact that current DeepFake generation algorithms cannot generate face images with varied resolutions, it is only able to generate new faces with a limited size and resolution, a further distortion and blur is needed to match and fit the fake face with the background and surrounding context in the source video. This transformation causes exclusive blur inconsistency between the generated face and its background in the outcome DeepFake videos, in turn, these artifacts can be effectively spotted by examining the edge pixels in the wavelet domain of the faces in each frame compared to the rest of the frame. A blur inconsistency detection scheme relied on the type of edge and the analysis of its sharpness using Haar wavelet transform as shown in this paper, by using this feature, it can determine if the face region in a video has been blurred or not and to what extent it has been blurred. Thus will lead to the detection of DeepFake videos. The effectiveness of the proposed scheme is demonstrated in the experimental results where the “UADFV” dataset has been used for the evaluation, a very successful detection rate with more than 90.5% was gained.
Zhu, K., Wu, B., Wang, B..  2020.  Deepfake Detection with Clustering-based Embedding Regularization. 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC). :257—264.

In recent months, AI-synthesized face swapping videos referred to as deepfake have become an emerging problem. False video is becoming more and more difficult to distinguish, which brings a series of challenges to social security. Some scholars are devoted to studying how to improve the detection accuracy of deepfake video. At the same time, in order to conduct better research, some datasets for deepfake detection are made. Companies such as Google and Facebook have also spent huge sums of money to produce datasets for deepfake video detection, as well as holding deepfake detection competitions. The continuous advancement of video tampering technology and the improvement of video quality have also brought great challenges to deepfake detection. Some scholars have achieved certain results on existing datasets, while the results on some high-quality datasets are not as good as expected. In this paper, we propose new method with clustering-based embedding regularization for deepfake detection. We use open source algorithms to generate videos which can simulate distinctive artifacts in the deepfake videos. To improve the local smoothness of the representation space, we integrate a clustering-based embedding regularization term into the classification objective, so that the obtained model learns to resist adversarial examples. We evaluate our method on three latest deepfake datasets. Experimental results demonstrate the effectiveness of our method.

Khodabakhsh, A., Busch, C..  2020.  A Generalizable Deepfake Detector based on Neural Conditional Distribution Modelling. 2020 International Conference of the Biometrics Special Interest Group (BIOSIG). :1—5.
Photo- and video-realistic generation techniques have become a reality following the advent of deep neural networks. Consequently, there are immense concerns regarding the difficulty in differentiating what content is real from what is synthetic. An example of video-realistic generation techniques is the infamous Deepfakes, which exploit the main modality by which humans identify each other. Deepfakes are a category of synthetic face generation methods and are commonly based on generative adversarial networks. In this article, we propose a novel two-step synthetic face image detection method in which general-purpose features are extracted in a first step, trivializing the task of detecting synthetic images. The anomaly detector predicts the conditional probabilities for observing every individual pixel in the image and is trained on pristine data only. The extracted anomaly features demonstrate true generalization capacity across widely different unknown synthesis methods while showing a minimal loss in performance with regard to the detection of known synthetic samples.
Maksutov, A. A., Morozov, V. O., Lavrenov, A. A., Smirnov, A. S..  2020.  Methods of Deepfake Detection Based on Machine Learning. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :408—411.
Nowadays, people faced an emerging problem of AI-synthesized face swapping videos, widely known as the DeepFakes. This kind of videos can be created to cause threats to privacy, fraudulence and so on. Sometimes good quality DeepFake videos recognition could be hard to distinguish with people eyes. That's why researchers need to develop algorithms to detect them. In this work, we present overview of indicators that can tell us about the fact that face swapping algorithms were used on photos. Main purpose of this paper is to find algorithm or technology that can decide whether photo was changed with DeepFake technology or not with good accuracy.
Nguyen, H. M., Derakhshani, R..  2020.  Eyebrow Recognition for Identifying Deepfake Videos. 2020 International Conference of the Biometrics Special Interest Group (BIOSIG). :1—5.
Deepfake imagery that contains altered faces has become a threat to online content. Current anti-deepfake approaches usually do so by detecting image anomalies, such as visible artifacts or inconsistencies. However, with deepfake advances, these visual artifacts are becoming harder to detect. In this paper, we show that one can use biometric eyebrow matching as a tool to detect manipulated faces. Our method could provide an 0.88 AUC and 20.7% EER for deepfake detection when applied to the highest quality deepfake dataset, Celeb-DF.
2021-01-11
YE, X., JI, B., Chen, X., QIAN, D., Zhao, Z..  2020.  Probability Boltzmann Machine Network for Face Detection on Video. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :138—147.

By the multi-layer nonlinear mapping and the semantic feature extraction of the deep learning, a deep learning network is proposed for video face detection to overcome the challenge of detecting faces rapidly and accurately in video with changeable background. Particularly, a pre-training procedure is used to initialize the network parameters to avoid falling into the local optimum, and the greedy layer-wise learning is introduced in the pre-training to avoid the training error transfer in layers. Key to the network is that the probability of neurons models the status of human brain neurons which is a continuous distribution from the most active to the least active and the hidden layer’s neuron number decreases layer-by-layer to reduce the redundant information of the input data. Moreover, the skin color detection is used to accelerate the detection speed by generating candidate regions. Experimental results show that, besides the faster detection speed and robustness against face rotation, the proposed method possesses lower false detection rate and lower missing detection rate than traditional algorithms.

Kanna, J. S. Vignesh, Raj, S. M. Ebenezer, Meena, M., Meghana, S., Roomi, S. Mansoor.  2020.  Deep Learning Based Video Analytics For Person Tracking. 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). :1—6.

As the assets of people are growing, security and surveillance have become a matter of great concern today. When a criminal activity takes place, the role of the witness plays a major role in nabbing the criminal. The witness usually states the gender of the criminal, the pattern of the criminal's dress, facial features of the criminal, etc. Based on the identification marks provided by the witness, the criminal is searched for in the surveillance cameras. Surveillance cameras are ubiquitous and finding criminals from a huge volume of surveillance video frames is a tedious process. In order to automate the search process, proposed a novel smart methodology using deep learning. This method takes gender, shirt pattern, and spectacle status as input to find out the object as person from the video log. The performance of this method achieves an accuracy of 87% in identifying the person in the video frame.

2020-12-07
Handa, A., Garg, P., Khare, V..  2018.  Masked Neural Style Transfer using Convolutional Neural Networks. 2018 International Conference on Recent Innovations in Electrical, Electronics Communication Engineering (ICRIEECE). :2099–2104.

In painting, humans can draw an interrelation between the style and the content of a given image in order to enhance visual experiences. Deep neural networks like convolutional neural networks are being used to draw a satisfying conclusion of this problem of neural style transfer due to their exceptional results in the key areas of visual perceptions such as object detection and face recognition.In this study, along with style transfer on whole image it is also outlined how transfer of style can be performed only on the specific parts of the content image which is accomplished by using masks. The style is transferred in a way that there is a least amount of loss to the content image i.e., semantics of the image is preserved.

2020-12-01
Goel, A., Agarwal, A., Vatsa, M., Singh, R., Ratha, N..  2019.  DeepRing: Protecting Deep Neural Network With Blockchain. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). :2821—2828.

Several computer vision applications such as object detection and face recognition have started to completely rely on deep learning based architectures. These architectures, when paired with appropriate loss functions and optimizers, produce state-of-the-art results in a myriad of problems. On the other hand, with the advent of "blockchain", the cybersecurity industry has developed a new sense of trust which was earlier missing from both the technical and commercial perspectives. Employment of cryptographic hash as well as symmetric/asymmetric encryption and decryption algorithms ensure security without any human intervention (i.e., centralized authority). In this research, we present the synergy between the best of both these worlds. We first propose a model which uses the learned parameters of a typical deep neural network and is secured from external adversaries by cryptography and blockchain technology. As the second contribution of the proposed research, a new parameter tampering attack is proposed to properly justify the role of blockchain in machine learning.

2020-11-09
Zhang, T., Wang, R., Ding, J., Li, X., Li, B..  2018.  Face Recognition Based on Densely Connected Convolutional Networks. 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). :1–6.
The face recognition methods based on convolutional neural network have achieved great success. The existing model usually used the residual network as the core architecture. The residual network is good at reusing features, but it is difficult to explore new features. And the densely connected network can be used to explore new features. We proposed a face recognition model named Dense Face to explore the performance of densely connected network in face recognition. The model is based on densely connected convolutional neural network and composed of Dense Block layers, transition layers and classification layer. The model was trained with the joint supervision of center loss and softmax loss through feature normalization and enabled the convolutional neural network to learn more discriminative features. The Dense Face model was trained using the public available CASIA-WebFace dataset and was tested on the LFW and the CAS-PEAL-Rl datasets. Experimental results showed that the densely connected convolutional neural network has achieved higher face verification accuracy and has better robustness than other model such as VGG Face and ResNet model.
2020-09-04
Song, Chengru, Xu, Changqiao, Yang, Shujie, Zhou, Zan, Gong, Changhui.  2019.  A Black-Box Approach to Generate Adversarial Examples Against Deep Neural Networks for High Dimensional Input. 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC). :473—479.
Generating adversarial samples is gathering much attention as an intuitive approach to evaluate the robustness of learning models. Extensive recent works have demonstrated that numerous advanced image classifiers are defenseless to adversarial perturbations in the white-box setting. However, the white-box setting assumes attackers to have prior knowledge of model parameters, which are generally inaccessible in real world cases. In this paper, we concentrate on the hard-label black-box setting where attackers can only pose queries to probe the model parameters responsible for classifying different images. Therefore, the issue is converted into minimizing non-continuous function. A black-box approach is proposed to address both massive queries and the non-continuous step function problem by applying a combination of a linear fine-grained search, Fibonacci search, and a zeroth order optimization algorithm. However, the input dimension of a image is so high that the estimation of gradient is noisy. Hence, we adopt a zeroth-order optimization method in high dimensions. The approach converts calculation of gradient into a linear regression model and extracts dimensions that are more significant. Experimental results illustrate that our approach can relatively reduce the amount of queries and effectively accelerate convergence of the optimization method.
2020-08-28
Ahmed, Asraa, Hasan, Taha, Abdullatif, Firas A., T., Mustafa S., Rahim, Mohd Shafry Mohd.  2019.  A Digital Signature System Based on Real Time Face Recognition. 2019 IEEE 9th International Conference on System Engineering and Technology (ICSET). :298—302.

This study proposed a biometric-based digital signature scheme proposed for facial recognition. The scheme is designed and built to verify the person’s identity during a registration process and retrieve their public and private keys stored in the database. The RSA algorithm has been used as asymmetric encryption method to encrypt hashes generated for digital documents. It uses the hash function (SHA-256) to generate digital signatures. In this study, local binary patterns histograms (LBPH) were used for facial recognition. The facial recognition method was evaluated on ORL faces retrieved from the database of Cambridge University. From the analysis, the LBPH algorithm achieved 97.5% accuracy; the real-time testing was done on thirty subjects and it achieved 94% recognition accuracy. A crypto-tool software was used to perform the randomness test on the proposed RSA and SHA256.

Pradhan, Chittaranjan, Banerjee, Debanjan, Nandy, Nabarun, Biswas, Udita.  2019.  Generating Digital Signature using Facial Landmlark Detection. 2019 International Conference on Communication and Signal Processing (ICCSP). :0180—0184.
Information security has developed rapidly over the recent years with a key being the emergence of social media. To standardize this discipline, security of an individual becomes an urgent concern. In 2019, it is estimated that there will be over 2.5 billion social media users around the globe. Unfortunately, anonymous identity has become a major concern for the security advisors. Due to the technological advancements, the phishers are able to access the confidential information. To resolve these issues numerous solutions have been proposed, such as biometric identification, facial and audio recognition etc prior access to any highly secure forum on the web. Generating digital signatures is the recent trend being incorporated in the field of digital security. We have designed an algorithm that after generating 68 point facial landmark, converts the image to a highly compressed and secure digital signature. The proposed algorithm generates a unique signature for an individual which when stored in the user account information database will limit the creation of fake or multiple accounts. At the same time the algorithm reduces the database storage overhead as it stores the facial identity of an individual in the form of a compressed textual signature rather than the traditional method where the image file was being stored, occupying lesser amount of space and making it more efficient in terms of searching, fetching and manipulation. A unique new analysis of the features produced at intermediate layers has been applied. Here, we opt to use the normal and two opposites' angular measures of the triangle as the invariance. It simply acts as the real-time optimized encryption procedure to achieve the reliable security goals explained in detail in the later sections.
2020-08-07
Smith, Gary.  2019.  Artificial Intelligence and the Privacy Paradox of Opportunity, Big Data and The Digital Universe. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). :150—153.
Artificial Intelligence (AI) can and does use individual's data to make predictions about their wants, their needs, their influences on them and predict what they could do. The use of individual's data naturally raises privacy concerns. This article focuses on AI, the privacy issue against the backdrop of the endless growth of the Digital Universe where Big Data, AI, Data Analytics and 5G Technology live and grow in The Internet of Things (IoT).
Liu, Bo, Xiong, Jian, Wu, Yiyan, Ding, Ming, Wu, Cynthia M..  2019.  Protecting Multimedia Privacy from Both Humans and AI. 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). :1—6.
With the development of artificial intelligence (AI), multimedia privacy issues have become more challenging than ever. AI-assisted malicious entities can steal private information from multimedia data more easily than humans. Traditional multimedia privacy protection only considers the situation when humans are the adversaries, therefore they are ineffective against AI-assisted attackers. In this paper, we develop a new framework and new algorithms that can protect image privacy from both humans and AI. We combine the idea of adversarial image perturbation which is effective against AI and the obfuscation technique for human adversaries. Experiments show that our proposed methods work well for all types of attackers.