Biblio
This article describes the development of two mobile applications for learning Digital Electronics. The first application is an interactive app for iOS where you can study the different digital circuits, and which will serve as the basis for the second: a game of questions in augmented reality.
Finite-state machine (FSM) is widely used as control unit in most digital designs. Many intellectual property protection and obfuscation techniques leverage on the exponential number of possible states and state transitions of large FSM to secure a physical design with the reason that it is challenging to retrieve the FSM design from its downstream design or physical implementation without knowledge of the design. In this paper, we postulate that this assumption may not be sustainable with big data analytics. We demonstrate by applying a data mining technique to analyze sufficiently large amount of data collected from a full scan design to identify its FSM state registers. An impact metric is introduced to discriminate FSM state registers from other registers. A decision tree algorithm is constructed from the scan data for the regression analysis of the dependency of other registers on a chosen register to deduce its impact. The registers with the greater impact are more likely to be the FSM state registers. The proposed scheme is applied on several complex designs from OpenCores. The experiment results show the feasibility of our scheme in correctly identifying most FSM state registers with a high hit rate for a large majority of the designs.
A spin-Hall nano-oscillator (SHNO) is a type of spintronic oscillator that shows promising performance as a nanoscale microwave source and for neuromorphic computing applications. Within such nanodevices, a non-ferromagnetic layer in the presence of an external magnetic field and a DC bias current generates an oscillating microwave voltage. For developing optimal nano-oscillators, accurate simulations of the device's complex behaviour are required before fabrication. This work simulates the key behaviour of a nanoconstriction SHNO as the applied DC bias current is varied. The current density and Oersted field of the device have been presented, the magnetisation oscillations have been clearly visualised in three dimensions and the spatial distribution of the active mode determined. These simulations allow designers a greater understanding and characterisation of the device's behaviour while also providing a means of comparison when experimental resultsO are generated.
The continuing decrease in feature size of integrated circuits, and the increase of the complexity and cost of design and fabrication has led to outsourcing the design and fabrication of integrated circuits to third parties across the globe, and in turn has introduced several security vulnerabilities. The adversaries in the supply chain can pirate integrated circuits, overproduce these circuits, perform reverse engineering, and/or insert hardware Trojans in these circuits. Developing countermeasures against such security threats is highly crucial. Accordingly, this paper first develops a learning-based trust verification framework to detect hardware Trojans. To tackle Trojan insertion, IP piracy and overproduction, logic locking schemes and in particular stripped functionality logic locking is discussed and its resiliency against the state-of-the-art attacks is investigated.
To accurately detect Hardware Trojans in integrated circuits design process, a machine-learning-based detection method at the register transfer level (RTL) is proposed. In this method, circuit features are extracted from the RTL source codes and a training database is built using circuits in a Hardware Trojans library. The training database is used to train an efficient detection model based on the gradient boosting algorithm. In order to expand the Hardware Trojans library for detecting new types of Hardware Trojans and update the detection model in time, a server-client mechanism is used. The proposed method can achieve 100% true positive rate and 89% true negative rate, on average, based on the benchmark from Trust-Hub.
Due to the recent technological development, home appliances and electric devices are equipped with high-performance hardware device. Since demand of hardware devices is increased, production base become internationalized to mass-produce hardware devices with low cost and hardware vendors outsource their products to third-party vendors. Accordingly, malicious third-party vendors can easily insert malfunctions (also known as "hardware Trojans'') into their products. In this paper, we design six kinds of hardware Trojans at a gate-level netlist, and apply a neural-network (NN) based hardware-Trojan detection method to them. The designed hardware Trojans are different in trigger circuits. In addition, we insert them to normal circuits, and detect hardware Trojans using a machine-learning-based hardware-Trojan detection method with neural networks. In our experiment, we learned Trojan-infected benchmarks using NN, and performed cross validation to evaluate the learned NN. The experimental results demonstrate that the average TPR (True Positive Rate) becomes 72.9%, the average TNR (True Negative Rate) becomes 90.0%.
Pre-Silicon hardware Trojan detection has been studied for years. The most popular benchmark circuits are from the Trust-Hub. Their common feature is that the probability of activating hardware Trojans is very low. This leads to a series of machine learning based hardware Trojan detection methods which try to find the nets with low signal probability of 0 or 1. On the other hand, it is considered that, if the probability of activating hardware Trojans is high, these hardware Trojans can be easily found through behaviour simulations or during functional test. This paper explores the "grey zone" between these two opposite scenarios: if the activation probability of a hardware Trojan is not low enough for machine learning to detect it and is not high enough for behaviour simulation or functional test to find it, it can escape from detection. Experiments show the existence of such hardware Trojans, and this paper suggests a new set of hardware Trojan benchmark circuits for future study.
State-of-the-art convolutional neural networks (ConvNets) are now able to achieve near human performance on a wide range of classification tasks. Unfortunately, current hardware implementations of ConvNets are memory power intensive, prohibiting deployment in low-power embedded systems and IoE platforms. One method of reducing memory power is to exploit the error resilience of ConvNets and accept bit errors under reduced supply voltages. In this paper, we extensively study the effectiveness of this idea and show that further savings are possible by injecting bit errors during ConvNet training. Measurements on an 8KB SRAM in 28nm UTBB FD-SOI CMOS demonstrate supply voltage reduction of 310mV, which results in up to 5.4× leakage power reduction and up to 2.9× memory access power reduction at 99% of floating-point classification accuracy, with no additional hardware cost. To our knowledge, this is the first silicon-validated study on the effect of bit errors in ConvNets.
This paper addresses the potential danger using integrated circuits which contain malicious hardware modifications hidden in the silicon structure. A so called hardware Trojan may be added at several stages of the chip development process. This work concentrates on formal hardware Trojan detection during the design phase and highlights applied verification techniques. Selected methods are discussed and their combination used to increase an introduced “Trojan Assurance Level”.
Due to design and fabrication outsourcing to foundries, the problem of malicious modifications to integrated circuits known as hardware Trojans has attracted attention in academia as well as industry. To reduce the risks associated with Trojans, researchers have proposed different approaches to detect them. Among these approaches, test-time detection approaches have drawn the greatest attention and most approaches assume the existence of a “golden model”. Prior works suggest using reverse-engineering to identify such Trojan-free ICs for the golden model but they did not state how to do this efficiently. In this paper, we propose an innovative and robust reverseengineering approach to identify the Trojan-free ICs. We adapt a well-studied machine learning method, one-class support vector machine, to solve our problem. Simulation results using state-of-the-art tools on several publicly available circuits show that our approach can detect hardware Trojans with high accuracy rate across different modeling and algorithm parameters.
This paper discusses the detection of hardware Trojans (HTs) by their breaking of symmetries within integrated circuits (ICs), as measured by path delays. Typically, path delay or side channel methods rely on comparisons to a golden, or trusted, sample. However, golden standards are affected by inter-and intra-die variations which limit the confidence in such comparisons. Symmetry is a way to detect modifications to an IC with increased confidence by confirming subcircuit consistencies within as it was originally designed. The difference in delays from a given path to a set of symmetric paths will be the same unless an inserted HT breaks symmetry. Symmetry can naturally exist in ICs or be artificially added. We describe methods to find and measure path delays against symmetric paths, as well as the advantages and disadvantages of this method. We discuss results of examples from benchmark circuits demonstrating the detection of hardware Trojans.