Yadav, Abhay Kumar, Vishwakarma, Virendra Prasad.
2022.
Adoptation of Blockchain of Things(BCOT): Oppurtunities & Challenges. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1–5.
IoT has been an efficient technology for interconnecting different physical objects with the internet. Several cyber-attacks have resulted in compromise in security. Blockchain distributed ledger provide immutability that can answer IoT security concerns. The paper aims at highlighting the challenges & problems currently associated with IoT implementation in real world and how these problems can be minimized by implementing Blockchain based solutions and smart contracts. Blockchain helps in creation of new highly robust IoT known as Blockchain of Things(BCoT). We will also examine presently employed projects working with integrating Blockchain & IoT together for creating desired solutions. We will also try to understand challenges & roadblocks preventing the further implementation of both technologies merger.
Lai, Chengzhe, Wang, Yinzhen.
2022.
Achieving Efficient and Secure Query in Blockchain-based Traceability Systems. 2022 19th Annual International Conference on Privacy, Security & Trust (PST). :1–5.
With the rapid development of blockchain technology, it provides a new technical solution for secure storage of data and trusted computing. However, in the actual application of data traceability, blockchain technology has an obvious disadvantage: the large amount of data stored in the blockchain system will lead to a long response time for users to query data. Higher query delay severely restricts the development of block chain technology in the traceability system. In order to solve this problem, we propose an efficient, secure and low storage overhead blockchain query scheme. Specifically, we design an index structure independent of Merkle tree to support efficient intra-block query, and create new fields in the block header to optimize inter-block query. Compared with several existing schemes, our scheme ensures the security of data. Finally, we simulate and evaluate our proposed scheme. The results show that the proposed scheme has better execution efficiency while reducing additional overhead.
Kumar, Gaurav, Riaz, Anjum, Prasad, Yamuna, Ahlawat, Satyadev.
2022.
On Attacking IJTAG Architecture based on Locking SIB with Security LFSR. 2022 IEEE 28th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1–6.
In recent decennium, hardware security has gained a lot of attention due to different types of attacks being launched, such as IP theft, reverse engineering, counterfeiting, etc. The critical testing infrastructure incorporated into ICs is very popular among attackers to mount side-channel attacks. The IEEE standard 1687 (IJTAG) is one such testing infrastructure that is the focus of attackers these days. To secure access to the IJTAG network, various techniques based on Locking SIB (LSIB) have been proposed. One such very effective technique makes use of Security Linear Feedback Shift Register (SLFSR) along with LSIB. The SLFSR obfuscates the scan chain information from the attacker and hence makes the brute-force attack against LSIB ineffective.In this work, it is shown that the SLFSR based Locking SIB is vulnerable to side-channel attacks. A power analysis attack along with known-plaintext attack is used to determine the IJTAG network structure. First, the known-plaintext attack is used to retrieve the SLFSR design information. This information is further used along with power analysis attack to determine the exact length of the scan chain which in turn breaks the whole security scheme. Further, a countermeasure is proposed to prevent the aforementioned hybrid attack.
ISSN: 1942-9401
Qian, Jun, Gan, Zijie, Zhang, Jie, Bhunia, Suman.
2022.
Analyzing SocialArks Data Leak - A Brute Force Web Login Attack. 2022 4th International Conference on Computer Communication and the Internet (ICCCI). :21–27.
In this work, we discuss data breaches based on the “2012 SocialArks data breach” case study. Data leakage refers to the security violations of unauthorized individuals copying, transmitting, viewing, stealing, or using sensitive, protected, or confidential data. Data leakage is becoming more and more serious, for those traditional information security protection methods like anti-virus software, intrusion detection, and firewalls have been becoming more and more challenging to deal with independently. Nevertheless, fortunately, new IT technologies are rapidly changing and challenging traditional security laws and provide new opportunities to develop the information security market. The SocialArks data breach was caused by a misconfiguration of ElasticSearch Database owned by SocialArks, owned by “Tencent.” The attack methodology is classic, and five common Elasticsearch mistakes discussed the possibilities of those leakages. The defense solution focuses on how to optimize the Elasticsearch server. Furthermore, the ElasticSearch database’s open-source identity also causes many ethical problems, which means that anyone can download and install it for free, and they can install it almost anywhere. Some companies download it and install it on their internal servers, while others download and install it in the cloud (on any provider they want). There are also cloud service companies that provide hosted versions of Elasticsearch, which means they host and manage Elasticsearch clusters for their customers, such as Company Tencent.
Alcaraz-Velasco, Francisco, Palomares, José M., Olivares, Joaquín.
2022.
Analysis of the random shuffling of message blocks as a low-cost integrity and security measure. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
Recently, a mechanism that randomly shuffles the data sent and allows securing the communication without the need to encrypt all the information has been proposed. This proposal is ideal for IoT systems with low computational capacity. In this work, we analyze the strength of this proposal from a brute-force attack approach to obtain the original message without knowledge of the applied disordering. It is demonstrated that for a set of 10x10 16-bit data, the processing time and the required memory are unfeasible with current technology. Therefore, it is safe.
ISSN: 2166-0727
Debnath, Sristi, Kar, Nirmalya.
2022.
An Approach Towards Data Security Based on DCT and Chaotic Map. 2022 2nd Asian Conference on Innovation in Technology (ASIANCON). :1–5.
Currently, the rapid development of digital communication and multimedia has made security an increasingly prominent issue of communicating, storing, and transmitting digital data such as images, audio, and video. Encryption techniques such as chaotic map based encryption can ensure high levels of security of data and have been used in many fields including medical science, military, and geographic satellite imagery. As a result, ensuring image data confidentiality, integrity, security, privacy, and authenticity while transferring and storing images over an unsecured network like the internet has become a high concern. There have been many encryption technologies proposed in recent years. This paper begins with a summary of cryptography and image encryption basics, followed by a discussion of different kinds of chaotic image encryption techniques and a literature review for each form of encryption. Finally, by examining the behaviour of numerous existing chaotic based image encryption algorithms, this paper hopes to build new chaotic based image encryption strategies in the future.
Safitri, Winda Ayu, Ahmad, Tohari, Hostiadi, Dandy Pramana.
2022.
Analyzing Machine Learning-based Feature Selection for Botnet Detection. 2022 1st International Conference on Information System & Information Technology (ICISIT). :386–391.
In this cyber era, the number of cybercrime problems grows significantly, impacting network communication security. Some factors have been identified, such as malware. It is a malicious code attack that is harmful. On the other hand, a botnet can exploit malware to threaten whole computer networks. Therefore, it needs to be handled appropriately. Several botnet activity detection models have been developed using a classification approach in previous studies. However, it has not been analyzed about selecting features to be used in the learning process of the classification algorithm. In fact, the number and selection of features implemented can affect the detection accuracy of the classification algorithm. This paper proposes an analysis technique for determining the number and selection of features developed based on previous research. It aims to obtain the analysis of using features. The experiment has been conducted using several classification algorithms, namely Decision tree, k-NN, Naïve Bayes, Random Forest, and Support Vector Machine (SVM). The results show that taking a certain number of features increases the detection accuracy. Compared with previous studies, the results obtained show that the average detection accuracy of 98.34% using four features has the highest value from the previous study, 97.46% using 11 features. These results indicate that the selection of the correct number and features affects the performance of the botnet detection model.
Tikekar, Priyanka C., Sherekar, Swati S., Thakre, Vilas M..
2022.
An Approach for P2P Based Botnet Detection Using Machine Learning. 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT). :627–631.
The internet has developed and transformed the world dramatically in recent years, which has resulted in several cyberattacks. Cybersecurity is one of society’s most serious challenge, costing millions of dollars every year. The research presented here will look into this area, focusing on malware that can establish botnets, and in particular, detecting connections made by infected workstations connecting with the attacker’s machine. In recent years, the frequency of network security incidents has risen dramatically. Botnets have previously been widely used by attackers to carry out a variety of malicious activities, such as compromising machines to monitor their activities by installing a keylogger or sniffing traffic, launching Distributed Denial of Service (DDOS) attacks, stealing the identity of the machine or credentials, and even exfiltrating data from the user’s computer. Botnet detection is still a work in progress because no one approach exists that can detect a botnet’s whole ecosystem. A detailed analysis of a botnet, discuss numerous parameter’s result of detection methods related to botnet attacks, as well as existing work of botnet identification in field of machine learning are discuss here. This paper focuses on the comparative analysis of various classifier based on design of botnet detection technique which are able to detect P2P botnet using machine learning classifier.
Hossen, Imran, Hei, Xiali.
2022.
aaeCAPTCHA: The Design and Implementation of Audio Adversarial CAPTCHA. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :430–447.
CAPTCHAs are designed to prevent malicious bot programs from abusing websites. Most online service providers deploy audio CAPTCHAs as an alternative to text and image CAPTCHAs for visually impaired users. However, prior research investigating the security of audio CAPTCHAs found them highly vulnerable to automated attacks using Automatic Speech Recognition (ASR) systems. To improve the robustness of audio CAPTCHAs against automated abuses, we present the design and implementation of an audio adversarial CAPTCHA (aaeCAPTCHA) system in this paper. The aaeCAPTCHA system exploits audio adversarial examples as CAPTCHAs to prevent the ASR systems from automatically solving them. Furthermore, we conducted a rigorous security evaluation of our new audio CAPTCHA design against five state-of-the-art DNN-based ASR systems and three commercial Speech-to-Text (STT) services. Our experimental evaluations demonstrate that aaeCAPTCHA is highly secure against these speech recognition technologies, even when the attacker has complete knowledge of the current attacks against audio adversarial examples. We also conducted a usability evaluation of the proof-of-concept implementation of the aaeCAPTCHA scheme. Our results show that it achieves high robustness at a moderate usability cost compared to normal audio CAPTCHAs. Finally, our extensive analysis highlights that aaeCAPTCHA can significantly enhance the security and robustness of traditional audio CAPTCHA systems while maintaining similar usability.