Biblio
Filters: First Letter Of Title is A [Clear All Filters]
Applying Chemical Linguistics and Stylometry for Deriving an Author’s Scientific Profile. 2021 International Symposium on Signals, Circuits and Systems (ISSCS). :1—4.
.
2021. The study exercises computational linguistics, specifically chemical linguistics methods for profiling an author. We analyze the vocabulary and the style of the titles of the most visible works of Cristofor I. Simionescu, an internationally well-known chemist, for detecting specific patterns of his research interests and methods. Somewhat surprisingly, while the tools used are elementary and there is only a small number of words in the analysis, some interesting details emerged about the work of the analyzed personality. Some of these aspects were confirmed by experts in the field. We believe this is the first study aiming to author profiling in chemical linguistics, moreover the first to question the usefulness of Google Scholar for author profiling.
Assessing Time Transfer Methods for Accuracy and Reliability : Navigating the Time Transfer Trade-off Triangle. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). :1—4.
.
2021. We present a collected overview on how to assess both the accuracy and reliability levels and relate them to the required effort, for different digital methods of synchronizing clocks. The presented process is intended for end users who require time synchronization but are not certain about how to judge at least one of the aspects. It can not only be used on existing technologies but should also be transferable to many future approaches. We further relate this approach to several examples. We discuss in detail the approach of medium-range White Rabbit connections over dedicated fibers, a method that occupies an extreme corner in the evaluation, where the effort is exceedingly high, but also yields excellent accuracy and significant reliability.
Asymptotically Stable Fault Tolerant Control for Nonlinear Systems Through Differential Game Theory. 2021 17th International Conference on Computational Intelligence and Security (CIS). :262—266.
.
2021. This paper investigates an asymptotically stable fault tolerant control (FTC) method for nonlinear continuous-time systems (NCTS) with actuator failures via differential game theory (DGT). Based on DGT, the FTC problem can be regarded as a two-player differential game problem with control player and fault player, which is solved by utilizing adaptive dynamic programming technique. Using a critic-only neural network, the cost function is approximated to obtain the solution of the Hamilton-Jacobi-Isaacs equation (HJIE). Then, the FTC strategy can be obtained based on the saddle point of HJIE, and ensures the satisfactory control performance for NCTS. Furthermore, the closed-loop NCTS can be guaranteed to be asymptotically stable, rather than ultimately uniformly bounded in corresponding existing methods. Finally, a simulation example is provided to verify the safe and reliable fault tolerance performance of the designed control method.
Analysis of Attack Effectiveness Evaluation of AD hoc Networks based on Rough Set Theory. 2021 17th International Conference on Computational Intelligence and Security (CIS). :489—492.
.
2021. This paper mainly studies an attack effectiveness evaluation method for AD hoc networks based on rough set theory. Firstly, we use OPNET to build AD hoc network simulation scenario, design and develop attack module, and obtain network performance parameters before and after the attack. Then the rough set theory is used to evaluate the attack effectiveness. The results show that this method can effectively evaluate the performance of AD hoc networks before and after attacks.
Analysis for crime prevention using ICT. A review of the scientific literature from 2015 – 2021. 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON). :1—6.
.
2021. Crime is a social problem that after the confinement of COVID-19 has increased significantly worldwide, which is why it is important to know what technological tools can be used to prevent criminal acts. In the present work, a systemic analysis was carried out to determine the importance of how to prevent crime using new information technologies. Fifty research articles were selected between 2015 and 2021. The information was obtained from different databases such as IEEE Xplore, Redalyc, Scopus, SciELO and Medline. Keywords were used to delimit the search and be more precise in our inquiry on the web. The results obtained show specific information on how to prevent crime using new information technologies. We conclude that new information technologies help to prevent crime since several developed countries have implemented their security system effectively, while underdeveloped countries do not have adequate technologies to prevent crime.
Adaptive Control of Differentially Private Linear Quadratic Systems. 2021 IEEE International Symposium on Information Theory (ISIT). :485—490.
.
2021. In this paper we study the problem of regret minimization in reinforcement learning (RL) under differential privacy constraints. This work is motivated by the wide range of RL applications for providing personalized service, where privacy concerns are becoming paramount. In contrast to previous works, we take the first step towards non-tabular RL settings, while providing a rigorous privacy guarantee. In particular, we consider the adaptive control of differentially private linear quadratic (LQ) systems. We develop the first private RL algorithm, Private-OFU-RL which is able to attain a sub-linear regret while guaranteeing privacy protection. More importantly, the additional cost due to privacy is only on the order of \$\textbackslashtextbackslashfrac\textbackslashtextbackslashln(1/\textbackslashtextbackslashdelta)ˆ1/4\textbackslashtextbackslashvarepsilonˆ1/2\$ given privacy parameters \$\textbackslashtextbackslashvarepsilon, \textbackslashtextbackslashdelta \textbackslashtextgreater 0\$. Through this process, we also provide a general procedure for adaptive control of LQ systems under changing regularizers, which not only generalizes previous non-private controls, but also serves as the basis for general private controls.
Artificial Conversational Agent using Robust Adversarial Reinforcement Learning. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1–7.
.
2021. Reinforcement learning (R.L.) is an effective and practical means for resolving problems where the broker possesses no information or knowledge about the environment. The agent acquires knowledge that is conditioned on two components: trial-and-error and rewards. An R.L. agent determines an effective approach by interacting directly with the setting and acquiring information regarding the circumstances. However, many modern R.L.-based strategies neglect to theorise considering there is an enormous rift within the simulation and the physical world due to which policy-learning tactics displease that stretches from simulation to physical world Even if design learning is achieved in the physical world, the knowledge inadequacy leads to failed generalization policies from suiting to test circumstances. The intention of robust adversarial reinforcement learning(RARL) is where an agent is instructed to perform in the presence of a destabilizing opponent(adversary agent) that connects impedance to the system. The combined trained adversary is reinforced so that the actual agent i.e. the protagonist is equipped rigorously.
An Axiomatic Approach to Detect Information Leaks in Concurrent Programs. 2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). :31—35.
.
2021. Realizing flow security in a concurrent environment is extremely challenging, primarily due to non-deterministic nature of execution. The difficulty is further exacerbated from a security angle if sequential threads disclose control locations through publicly observable statements like print, sleep, delay, etc. Such observations lead to internal and external timing attacks. Inspired by previous works that use classical Hoare style proof systems for establishing correctness of distributed (real-time) programs, in this paper, we describe a method for finding information leaks in concurrent programs through the introduction of leaky assertions at observable program points. Specifying leaky assertions akin to classic assertions, we demonstrate how information leaks can be detected in a concurrent context. To our knowledge, this is the first such work that enables integration of different notions of non-interference used in functional and security context. While the approach is sound and relatively complete in the classic sense, it enables the use of algorithmic techniques that enable programmers to come up with leaky assertions that enable checking for information leaks in sensitive applications.
Attack Detection and Mitigation using Multi-Agent System in the Deregulated Market. 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia). :821—826.
.
2021. Over the past decade, cyber-attack events on the electricity grid are on the rise and have proven to result in severe consequences in grid operation. These attacks are becoming more intelligent and can bypass existing protection protocols, resulting in economic losses due to system operating in a falsified and non-optimal condition over a prolonged period. Hence, it is crucial to develop defense tools to detect and mitigate the attack to minimize the cost of malicious operation. This paper aims to develop a novel command verification strategy to detect and mitigate False Data Injection Attacks (FDIAs) targeting the system centralized Economic Dispatch (ED) control signals. Firstly, we describe the ED problem in Singapore's deregulated market. We then perform a risk assessment and formulate two FDIA vectors - Man in the Middle (MITM) and Stealth attack on the ED control process. Subsequently, we propose a novel verification technique based on Multi-Agent System (MAS) to validate the control commands. This algorithm has been tested on the IEEE 6-Bus 3-generator test system, and experimental results verified that the proposed algorithm can detect and mitigate the FDIA vectors.
ASAF: Android Static Analysis Framework. 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH). :197–202.
.
2020. Android Operating System becomes a major target for malicious attacks. Static analysis approach is widely used to detect malicious applications. Most of existing studies on static analysis frameworks are limited to certain features. This paper presents an Android Static Analysis Framework (ASAF) which models the overall static analysis phases and approaches for Android applications. ASAF can be implemented for different purposes including Android malicious apps detection. The proposed framework utilizes a parsing tool, Android Static Parse (ASParse) which is also introduced in this paper. Through the extendibility of the ASParse tool, future research studies can easily extend the parsed features and the parsed files to perform parsing based on their specific requirements and goals. Moreover, a case study is conducted to illustrate the implementation of the proposed ASAF.
An Android Application Vulnerability Mining Method Based On Static and Dynamic Analysis. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :599–603.
.
2020. Due to the advantages and limitations of the two kinds of vulnerability mining methods of static and dynamic analysis of android applications, the paper proposes a method of Android application vulnerability mining based on dynamic and static combination. Firstly, the static analysis method is used to obtain the basic vulnerability analysis results of the application, and then the input test case of dynamic analysis is constructed on this basis. The fuzzy input test is carried out in the real machine environment, and the application security vulnerability is verified with the taint analysis technology, and finally the application vulnerability report is obtained. Experimental results show that compared with static analysis results, the method can significantly improve the accuracy of vulnerability mining.
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations. 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). :1–12.
.
2019. Fix pattern-based patch generation is a promising direction in Automated Program Repair (APR). Notably, it has been demonstrated to produce more acceptable and correct patches than the patches obtained with mutation operators through genetic programming. The performance of pattern-based APR systems, however, depends on the fix ingredients mined from fix changes in development histories. Unfortunately, collecting a reliable set of bug fixes in repositories can be challenging. In this paper, we propose to investigate the possibility in an APR scenario of leveraging code changes that address violations by static bug detection tools. To that end, we build the AVATAR APR system, which exploits fix patterns of static analysis violations as ingredients for patch generation. Evaluated on the Defects4J benchmark, we show that, assuming a perfect localization of faults, AVATAR can generate correct patches to fix 34/39 bugs. We further find that AVATAR yields performance metrics that are comparable to that of the closely-related approaches in the literature. While AVATAR outperforms many of the state-of-the-art pattern-based APR systems, it is mostly complementary to current approaches. Overall, our study highlights the relevance of static bug finding tools as indirect contributors of fix ingredients for addressing code defects identified with functional test cases.
Active Learning to Improve Static Analysis. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). :1322–1327.
.
2019. Static analysis tools are programs that run on source code prior to their compilation to binary executables and attempt to find flaws or defects in the code during the early stages of development. If left unresolved, these flaws could pose security risks. While numerous static analysis tools exist, there is no single tool that is optimal. Therefore, many static analysis tools are often used to analyze code. Further, some of the alerts generated by the static analysis tools are low-priority or false alarms. Machine learning algorithms have been developed to distinguish between true alerts and false alarms, however significant man hours need to be dedicated to labeling data sets for training. This study investigates the use of active learning to reduce the number of labeled alerts needed to adequately train a classifier. The numerical experiments demonstrate that a query by committee active learning algorithm can be utilized to significantly reduce the number of labeled alerts needed to achieve similar performance as a classifier trained on a data set of nearly 60,000 labeled alerts.
A2L: Anonymous Atomic Locks for Scalability in Payment Channel Hubs. 2021 IEEE Symposium on Security and Privacy (SP). :1834–1851.
.
2021. Payment channel hubs (PCHs) constitute a promising solution to the inherent scalability problem of blockchain technologies, allowing for off-chain payments between sender and receiver through an intermediary, called the tumbler. While state-of-the-art PCHs provide security and privacy guarantees against a malicious tumbler, they do so by relying on the scripting-based functionality available only at few cryptocurrencies, and they thus fall short of fundamental properties such as backwards compatibility and efficiency.In this work, we present the first PCH protocol to achieve all aforementioned properties. Our PCH builds upon A2L, a novel cryptographic primitive that realizes a three-party protocol for conditional transactions, where the tumbler pays the receiver only if the latter solves a cryptographic challenge with the help of the sender, which implies the sender has paid the tumbler. We prove the security and privacy guarantees of A2L (which carry over to our PCH construction) in the Universal Composability framework and present a provably secure instantiation based on adaptor signatures and randomizable puzzles. We implemented A2L and compared it to TumbleBit, the state-of-the-art Bitcoin-compatible PCH. Asymptotically, A2L has a communication complexity that is constant, as opposed to linear in the security parameter like in TumbleBit. In practice, A2L requires 33x less bandwidth than TumleBit, while retaining the computational cost (or providing 2x speedup with a preprocessing technique). This demonstrates that A2L (and thus our PCH construction) is ready to be deployed today.In theory, we demonstrate for the first time that it is possible to design a secure and privacy-preserving PCH while requiring only digital signatures and timelock functionality from the underlying scripting language. In practice, this result makes our PCH backwards compatible with virtually all cryptocurrencies available today, even those offering a highly restricted form of scripting language such as Ripple or Stellar. The practical appealing of our construction has resulted in a proof-of-concept implementation in the COMIT Network, a blockchain technology focused on cross-currency payments.
Abstract Modeling of System Communication in Constructive Cryptography using CryptHOL. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1–16.
.
2021. Proofs in simulation-based frameworks have the greatest rigor when they are machine checked. But the level of details in these proofs surpasses what the formal-methods community can handle with existing tools. Existing formal results consider streamlined versions of simulation-based frameworks to cope with this complexity. Hence, a central question is how to abstract details from composability results and enable their formal verification.In this paper, we focus on the modeling of system communication in composable security statements. Existing formal models consider fixed communication patterns to reduce the complexity of their proofs. However, as we will show, this can affect the reusability of security statements. We propose an abstract approach to modeling system communication in Constructive Cryptography that avoids this problem. Our approach is suitable for mechanized verification and we use CryptHOL, a framework for developing mechanized cryptography proofs, to implement it in the Isabelle/HOL theorem prover. As a case study, we formalize the construction of a secure channel using Diffie-Hellman key exchange and a one-time-pad.
Autonomous Application in Requirements Analysis of Information System Development for Producing a Design Model. 2021 2nd International Conference on Communication, Computing and Industry 4.0 (C2I4). :1—8.
.
2021. The main technology of traditional information security is firewall, intrusion detection and anti-virus software, which is used in the first anti-outer defence, the first anti-service terminal defence terminal passive defence ideas, the complexity and complexity of these security technologies not only increase the complexity of the autonomous system, reduce the efficiency of the system, but also cannot solve the security problem of the information system, and cannot satisfy the security demand of the information system. After a significant stretch of innovative work, individuals utilize the secret word innovation, network security innovation, set forward the idea “confided in figuring” in view of the equipment security module support, Trusted processing from changing the customary protection thoughts, center around the safety efforts taken from the terminal to forestall framework assaults, from the foundation of the stage, the acknowledgment of the security of data frameworks. Believed figuring is chiefly worried about the security of the framework terminal, utilizing a progression of safety efforts to ensure the protection of clients to work on the security of independent frameworks. Its principle plan thought is implanted in a typical machine to oppose altering the equipment gadget - confided in stage module as the base of the trust, the utilization of equipment and programming innovation to join the trust of the base of trust through the trust bind level to the entire independent framework, joined with the security of information stockpiling insurance, client validation and stage respectability of the three significant safety efforts guarantee that the terminal framework security and unwavering quality, to guarantee that the terminal framework is consistently in a condition of conduct anticipated.
Assessing Trustworthiness of IoT Applications Using Logic Circuits. 2021 IEEE East-West Design & Test Symposium (EWDTS). :1—4.
.
2021. The paper describes a methodology for assessing non-functional requirements, such as trust characteristics for applications running on computationally constrained devices in the Internet of Things. The methodology is demonstrated through an example of a microcontroller-based temperature monitoring system. The concepts of trust and trustworthiness for software and devices of the Internet of Things are complex characteristics for describing the correct and secure operation of such systems and include aspects of operational and information security, reliability, resilience and privacy. Machine learning models, which are increasingly often used for such tasks in recent years, are resource-consuming software implementations. The paper proposes to use a logic circuit model to implement the above algorithms as an additional module for computationally constrained devices for checking the trustworthiness of applications running on them. Such a module could be implemented as a hardware, for example, as an FPGA in order to achieve more effectiveness.
Automatic Security Inspection Framework for Trustworthy Supply Chain. 2021 IEEE/ACIS 19th International Conference on Software Engineering Research, Management and Applications (SERA). :45—50.
.
2021. Threats and risks against supply chains are increasing and a framework to add the trustworthiness of supply chain has been considered. In this framework, organisations in the supply chain validate the conformance to the pre-defined requirements. The results of validations are linked each other to achieve the trustworthiness of the entire supply chain. In this paper, we further consider this framework for data supply chains. First, we implement the framework and evaluate the performance. The evaluation shows 500 digital evidences (logs) can be checked in 0.28 second. We also propose five methods to improve the performance as well as five new functionalities to improve usability. With these functionalities, the framework also supports maintaining the certificate chain.
Applied Cryptography in Network Systems Security for Cyberattack Prevention. 2021 International Conference on Cyber Security and Internet of Things (ICSIoT). :43—48.
.
2021. Application of cryptography and how various encryption algorithms methods are used to encrypt and decrypt data that traverse the network is relevant in securing information flows. Implementing cryptography in a secure network environment requires the application of secret keys, public keys, and hash functions to ensure data confidentiality, integrity, authentication, and non-repudiation. However, providing secure communications to prevent interception, interruption, modification, and fabrication on network systems has been challenging. Cyberattacks are deploying various methods and techniques to break into network systems to exploit digital signatures, VPNs, and others. Thus, it has become imperative to consider applying techniques to provide secure and trustworthy communication and computing using cryptography methods. The paper explores applied cryptography concepts in information and network systems security to prevent cyberattacks and improve secure communications. The contribution of the paper is threefold: First, we consider the various cyberattacks on the different cryptography algorithms in symmetric, asymmetric, and hashing functions. Secondly, we apply the various RSA methods on a network system environment to determine how the cyberattack could intercept, interrupt, modify, and fabricate information. Finally, we discuss the secure implementations methods and recommendations to improve security controls. Our results show that we could apply cryptography methods to identify vulnerabilities in the RSA algorithm in secure computing and communications networks.
AI-Assisted Risk Based Two Factor Authentication Method (AIA-RB-2FA). 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES). :1—5.
.
2021. Authentication, forms an important step in any security system to allow access to resources that are to be restricted. In this paper, we propose a novel artificial intelligence-assisted risk-based two-factor authentication method. We begin with the details of existing systems in use and then compare the two systems viz: Two Factor Authentication (2FA), Risk-Based Two Factor Authentication (RB-2FA) with each other followed by our proposed AIA-RB-2FA method. The proposed method starts by recording the user features every time the user logs in and learns from the user behavior. Once sufficient data is recorded which could train the AI model, the system starts monitoring each login attempt and predicts whether the user is the owner of the account they are trying to access. If they are not, then we fallback to 2FA.
Automatic patch installation method of operating system based on deep learning. 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). 5:1072—1075.
.
2021. In order to improve the security and reliability of information system and reduce the risk of vulnerability intrusion and attack, an automatic patch installation method of operating systems based on deep learning is proposed, If the installation is successful, the basic information of the system will be returned to the visualization server. If the installation fails, it is recommended to upgrading manually and display it on the patch detection visualization server. Through the practical application of statistical analysis, the statistical results show that the proposed method is significantly better than the original and traditional installation methods, which can effectively avoid the problem of client repeated download, and greatly improve the success rate of patch automatic upgrades. It effectively saves the upgrade cost and ensures the security and reliability of the information system.
An Authenticated Key Agreement Scheme for Secure Communication in Smart Grid. 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS). :447—455.
.
2021. Rapid development of wireless technologies has driven the evolution of smart grid application. In smart grid, authentication plays an important role for secure communication between smart meter and service provider. Hence, the design of secure authenticated key agreement schemes has received significant attention from researchers. In these schemes, a trusted third party directly participates in key agreement process. Although, this third party is assumed as trusted, however we cannot reject the possibility that being a third party, it can also be malicious. In the existing works, either the established session key is revealed to the agents of a trusted third party, or a trusted third party agent can impersonate the smart meter and establish a valid session key with the service provider, which is likely to cause security vulnerabilities. Therefore, there is a need to design a secure authentication scheme so that only the deserving entities involved in the communication can establish and know the session key. This paper proposes a new secure authenticated key agreement scheme for smart grid considering the fact that the third party can also be malicious. The security of the proposed scheme has been thoroughly evaluated using an adversary model. Correctness of the scheme has been analyzed using the broadly accepted Burrows-Abadi-Needham (BAN) Logic. In addition, the formal security verification of the proposed scheme has been performed using the widely accepted Automated Validation of Internet Security Protocols and Applications (AVISPA) simulation tool. Results of this simulation confirm that the proposed scheme is safe. Detailed security analysis shows the robustness of the scheme against various known attacks. Moreover, the comparative performance study of the proposed scheme with other relevant schemes is presented to demonstrate its practicality.
An Automated Pipeline for Privacy Leak Analysis of Android Applications. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1048—1050.
.
2021. We propose an automated pipeline for analyzing privacy leaks in Android applications. By using a combination of dynamic and static analysis, we validate the results from each other to improve accuracy. Compare to the state-of-the-art approaches, we not only capture the network traffic for analysis, but also look into the data flows inside the application. We particularly focus on the privacy leakage caused by third-party services and high-risk permissions. The proposed automated approach will combine taint analysis, permission analysis, network traffic analysis, and dynamic function tracing during run-time to identify private information leaks. We further implement an automatic validation and complementation process to reduce false positives. A small-scale experiment has been conducted on 30 Android applications and a large-scale experiment on more than 10,000 Android applications is in progress.
Attacking Black-box Recommendations via Copying Cross-domain User Profiles. 2021 IEEE 37th International Conference on Data Engineering (ICDE). :1583—1594.
.
2021. Recommender systems, which aim to suggest personalized lists of items for users, have drawn a lot of attention. In fact, many of these state-of-the-art recommender systems have been built on deep neural networks (DNNs). Recent studies have shown that these deep neural networks are vulnerable to attacks, such as data poisoning, which generate fake users to promote a selected set of items. Correspondingly, effective defense strategies have been developed to detect these generated users with fake profiles. Thus, new strategies of creating more ‘realistic’ user profiles to promote a set of items should be investigated to further understand the vulnerability of DNNs based recommender systems. In this work, we present a novel framework CopyAttack. It is a reinforcement learning based black-box attacking method that harnesses real users from a source domain by copying their profiles into the target domain with the goal of promoting a subset of items. CopyAttack is constructed to both efficiently and effectively learn policy gradient networks that first select, then further refine/craft user profiles from the source domain, and ultimately copy them into the target domain. CopyAttack’s goal is to maximize the hit ratio of the targeted items in the Top-k recommendation list of the users in the target domain. We conducted experiments on two real-world datasets and empirically verified the effectiveness of the proposed framework. The implementation of CopyAttack is available at https://github.com/wenqifan03/CopyAttack.
Adversarial Attacks to API Recommender Systems: Time to Wake Up and Smell the Coffee? 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :253—265.
.
2021. Recommender systems in software engineering provide developers with a wide range of valuable items to help them complete their tasks. Among others, API recommender systems have gained momentum in recent years as they became more successful at suggesting API calls or code snippets. While these systems have proven to be effective in terms of prediction accuracy, there has been less attention for what concerns such recommenders’ resilience against adversarial attempts. In fact, by crafting the recommenders’ learning material, e.g., data from large open-source software (OSS) repositories, hostile users may succeed in injecting malicious data, putting at risk the software clients adopting API recommender systems. In this paper, we present an empirical investigation of adversarial machine learning techniques and their possible influence on recommender systems. The evaluation performed on three state-of-the-art API recommender systems reveals a worrying outcome: all of them are not immune to malicious data. The obtained result triggers the need for effective countermeasures to protect recommender systems against hostile attacks disguised in training data.