Visible to the public Biblio

Found 1422 results

Filters: First Letter Of Title is A  [Clear All Filters]
2020-01-27
Akinrolabu, Olusola, New, Steve, Martin, Andrew.  2019.  Assessing the Security Risks of Multicloud SaaS Applications: A Real-World Case Study. 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :81–88.

Cloud computing is widely believed to be the future of computing. It has grown from being a promising idea to one of the fastest research and development paradigms of the computing industry. However, security and privacy concerns represent a significant hindrance to the widespread adoption of cloud computing services. Likewise, the attributes of the cloud such as multi-tenancy, dynamic supply chain, limited visibility of security controls and system complexity, have exacerbated the challenge of assessing cloud risks. In this paper, we conduct a real-world case study to validate the use of a supply chaininclusive risk assessment model in assessing the risks of a multicloud SaaS application. Using the components of the Cloud Supply Chain Cyber Risk Assessment (CSCCRA) model, we show how the model enables cloud service providers (CSPs) to identify critical suppliers, map their supply chain, identify weak security spots within the chain, and analyse the risk of the SaaS application, while also presenting the value of the risk in monetary terms. A key novelty of the CSCCRA model is that it caters for the complexities involved in the delivery of SaaS applications and adapts to the dynamic nature of the cloud, enabling CSPs to conduct risk assessments at a higher frequency, in response to a change in the supply chain.

Tang, Xuemei, Liang, Shichen, Liu, Zhiying.  2019.  Authorship Attribution of The Golden Lotus Based on Text Classification Methods. Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence. :69–72.

In this paper, we explore the authorship attribution of The Golden Lotus using the traditional machine learning method of text classification. There are four candidate authors: Shizhen Wang, Wei Xu, Kaixian Li and Zhideng Wang. We choose The Golden Lotus's poems and four candidate authors' poems as data set. According to the characteristics of Chinese ancient poem, we choose Chinese character, rhyme, genre and overlapped word as features. We use six supervised machine learning algorithms, including Logistic Regression, Random Forests, Decision Tree and Naive Bayes, SVM and KNN classifiers respectively for text binary classification and multi-classification. According to two experiments results, the style of writing of Wei Xu's poems is the most similar to that of The Golden Lotus. It is proved that among four authors, Wei Xu most likely be the author of The Golden Lotus.

Matyukhina, Alina, Stakhanova, Natalia, Dalla Preda, Mila, Perley, Celine.  2019.  Adversarial Authorship Attribution in Open-Source Projects. Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy. :291–302.

Open-source software is open to anyone by design, whether it is a community of developers, hackers or malicious users. Authors of open-source software typically hide their identity through nicknames and avatars. However, they have no protection against authorship attribution techniques that are able to create software author profiles just by analyzing software characteristics. In this paper we present an author imitation attack that allows to deceive current authorship attribution systems and mimic a coding style of a target developer. Withing this context we explore the potential of the existing attribution techniques to be deceived. Our results show that we are able to imitate the coding style of the developers based on the data collected from the popular source code repository, GitHub. To subvert author imitation attack, we propose a novel author obfuscation approach that allows us to hide the coding style of the author. Unlike existing obfuscation tools, this new obfuscation technique uses transformations that preserve code readability. We assess the effectiveness of our attacks on several datasets produced by actual developers from GitHub, and participants of the GoogleCodeJam competition. Throughout our experiments we show that the author hiding can be achieved by making sensible transformations which significantly reduce the likelihood of identifying the author's style to 0% by current authorship attribution systems.

2020-01-21
Jain, Jay Kumar, Chauhan, Dipti.  2019.  Analytical Study on Mobile Ad Hoc Networks for IPV6. 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). :1–6.
The ongoing progressions in wireless innovation have lead to the advancement of another remote framework called Mobile Ad hoc Networks. The Mobile Ad hoc Network is a self arranging system of wireless gadgets associated by wireless connections. The traditional protocol, for example, TCP/IP has restricted use in Mobile impromptu systems in light of the absence of portability and assets. This has lead to the improvement of many steering conventions, for example, proactive, receptive and half breed. One intriguing examination zone in MANET is steering. Steering in the MANETs is a testing assignment and has gotten a colossal measure of consideration from examines. An uncommon consideration is paid on to feature the combination of MANET with the critical highlights of IPv6, for example, coordinated security, start to finish correspondence. This has prompted advancement of various directing conventions for MANETs, and every creator of each developed convention contends that the technique proposed gives an improvement over various distinctive systems considered in the writing for a given system situation. In this way, it is very hard to figure out which conventions may perform best under various diverse system situations, for example, expanding hub thickness and traffic. In this paper, we give the ongoing expository investigation on MANETs for IPV6 systems.
Ye, Hui, Ma, Xiaopeng, Pan, Qingfeng, Fang, Huaqiang, Xiang, Hang, Shao, Tongzhen.  2019.  An Adaptive Approach for Anomaly Detector Selection and Fine-Tuning in Time Series. Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. :1–7.
The anomaly detection of time series is a hotspot of time series data mining. The own characteristics of different anomaly detectors determine the abnormal data that they are good at. There is no detector can be optimizing in all types of anomalies. Moreover, it still has difficulties in industrial production due to problems such as a single detector can't be optimized at different time windows of the same time series. This paper proposes an adaptive model based on time series characteristics and selecting appropriate detector and run-time parameters for anomaly detection, which is called ATSDLN(Adaptive Time Series Detector Learning Network). We take the time series as the input of the model, and learn the time series representation through FCN. In order to realize the adaptive selection of detectors and run-time parameters according to the input time series, the outputs of FCN are the inputs of two sub-networks: the detector selection network and the run-time parameters selection network. In addition, the way that the variable layer width design of the parameter selection sub-network and the introduction of transfer learning make the model be with more expandability. Through experiments, it is found that ATSDLN can select appropriate anomaly detector and run-time parameters, and have strong expandability, which can quickly transfer. We investigate the performance of ATSDLN in public data sets, our methods outperform other methods in most cases with higher effect and better adaptation. We also show experimental results on public data sets to demonstrate how model structure and transfer learning affect the effectiveness.
Ace Dimitrievski, Eftim Zdravevski, Petre Lameski.  2019.  Addressing Privacy and Security in Connected Health with Fog Computing | Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good. GoodTechs '19: Proceedings of the 5th EAI International Conference on Smart Objects and Technologies for Social Good.

One of the main pillars of connected health is the application of technology to provide healthcare services remotely. Electronic health records are integrated with remote patient monitoring systems using various sensors. However, these ecosystems raise many privacy and security concerns. This paper analyzes and proposes a fog-based solution to address privacy and security challenges in connected health. Privacy protection is investigated for two types of data: less invasive sensors, such as sleep monitor; and highly invasive sensors, such as microphones. In this paper, we show how adding computing resources in the edge can improve privacy and data security, while reducing the computational and bandwidth cost in the cloud.

Rana, Rima, Zaeem, Razieh Nokhbeh, Barber, K. Suzanne.  2019.  An Assessment of Blockchain Identity Solutions: Minimizing Risk and Liability of Authentication. 2019 IEEE/WIC/ACM International Conference on Web Intelligence (WI). :26–33.
Personally Identifiable Information (PII) is often used to perform authentication and acts as a gateway to personal and organizational information. One weak link in the architecture of identity management services is sufficient to cause exposure and risk identity. Recently, we have witnessed a shift in identity management solutions with the growth of blockchain. Blockchain-the decentralized ledger system-provides a unique answer addressing security and privacy with its embedded immutability. In a blockchain-based identity solution, the user is given the control of his/her identity by storing personal information on his/her device and having the choice of identity verification document used later to create blockchain attestations. Yet, the blockchain technology alone is not enough to produce a better identity solution. The user cannot make informed decisions as to which identity verification document to choose if he/she is not presented with tangible guidelines. In the absence of scientifically created practical guidelines, these solutions and the choices they offer may become overwhelming and even defeat the purpose of providing a more secure identity solution.We analyze different PII options given to users for authentication on current blockchain-based solutions. Based on our Identity Ecosystem model, we evaluate these options and their risk and liability of exposure. Powered by real world data of about 6,000 identity theft and fraud stories, our model recommends some authentication choices and discourages others. Our work paves the way for a truly effective identity solution based on blockchain by helping users make informed decisions and motivating blockchain identity solution providers to introduce better options to their users.
Haddouti, Samia El, Ech-Cherif El Kettani, M. Dafir.  2019.  Analysis of Identity Management Systems Using Blockchain Technology. 2019 International Conference on Advanced Communication Technologies and Networking (CommNet). :1–7.
The emergence of Blockchain technology as the biggest innovations of the 21stcentury, has given rise to new concepts of Identity Management to deal with the privacy and security challenges on the one hand, and to enhance the decentralization and user control in transactions on Blockchain infrastructures on the other hand. This paper investigates and gives analysis of the most popular Identity Management Systems using Blockchain: uPort, Sovrin, and ShoCard. It then evaluates them under a set of features of digital identity that characterizes the successful of an Identity Management solution. The result of the comparative analysis is presented in a concise way to allow readers to find out easily which systems satisfy what requirements in order to select the appropriate one to fit into a specific scenario.
2020-01-20
Yihunie, Fekadu, Abdelfattah, Eman, Regmi, Amish.  2019.  Applying Machine Learning to Anomaly-Based Intrusion Detection Systems. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT). :1–5.

The enormous growth of Internet-based traffic exposes corporate networks with a wide variety of vulnerabilities. Intrusive traffics are affecting the normal functionality of network's operation by consuming corporate resources and time. Efficient ways of identifying, protecting, and mitigating from intrusive incidents enhance productivity. As Intrusion Detection System (IDS) is hosted in the network and at the user machine level to oversee the malicious traffic in the network and at the individual computer, it is one of the critical components of a network and host security. Unsupervised anomaly traffic detection techniques are improving over time. This research aims to find an efficient classifier that detects anomaly traffic from NSL-KDD dataset with high accuracy level and minimal error rate by experimenting with five machine learning techniques. Five binary classifiers: Stochastic Gradient Decent, Random Forests, Logistic Regression, Support Vector Machine, and Sequential Model are tested and validated to produce the result. The outcome demonstrates that Random Forest Classifier outperforms the other four classifiers with and without applying the normalization process to the dataset.

2020-01-13
Farzaneh, Behnam, Montazeri, Mohammad Ali, Jamali, Shahram.  2019.  An Anomaly-Based IDS for Detecting Attacks in RPL-Based Internet of Things. 2019 5th International Conference on Web Research (ICWR). :61–66.
The Internet of Things (IoT) is a concept that allows the networking of various objects of everyday life and communications on the Internet without human interaction. The IoT consists of Low-Power and Lossy Networks (LLN) which for routing use a special protocol called Routing over Low-Power and Lossy Networks (RPL). Due to the resource-constrained nature of RPL networks, they may be exposed to a variety of internal attacks. Neighbor attack and DIS attack are the specific internal attacks at this protocol. This paper presents an anomaly-based lightweight Intrusion Detection System (IDS) based on threshold values for detecting attacks on the RPL protocol. The results of the simulation using Cooja show that the proposed model has a very high True Positive Rate (TPR) and in some cases, it can be 100%, while the False Positive Rate (FPR) is very low. The results show that the proposed model is fully effective in detecting attacks and applicable to large-scale networks.
Yugha, R., Chithra, S..  2019.  Attribute Based Trust Evaluation for Secure RPL Protocol in IoT Environment. 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). :1–7.
Internet of Things (IoT) is an advanced automation technology and analytics systems which connected physical objects that have access through the Internet and have their unique flexibility and an ability to be suitable for any environment. There are some critical applications like smart health care system, in which the data collection, sharing and routing through IoT has to be handled in sensitive way. The IPv6 Routing Protocol for LL(Low-power and Lossy) networks (RPL) is the routing protocols to ensure reliable data transfer in 6LOWPAN networks. However, RPL is vulnerable to number of security attacks which creates a major impact on energy consumption and memory requirements which is not suitable for energy constraint networks like IoT. This requires secured RPL protocol to be used for critical data transfer. This paper introduces a novel approach of combining a lightweight LBS (Location Based Service) authentication and Attribute Based Trust Evaluation (ABTE). The algorithm has been implemented for smart health care system and analyzed how its perform in the RPL protocol for IoT constrained environments.
2020-01-06
Abdullah, Ghazi Muhammad, Mehmood, Quzal, Khan, Chaudry Bilal Ahmad.  2018.  Adoption of Lamport signature scheme to implement digital signatures in IoT. 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). :1–4.
The adoption of Internet of Things (IoT) technology is increasing at a fast rate. With improving software technologies and growing security threats, there is always a need to upgrade the firmware in the IoT devices. Digital signatures are an integral part of digital communication to cope with the threat of these devices being exploited by attackers to run malicious commands, codes or patches on them. Digital Signatures measure the authenticity of the transmitted data as well as are a source of record keeping (repudiation). This study proposes the adoption of Lamport signature scheme, which is quantum resistant, for authentication of data transmission and its feasibility in IoT devices.
Fan, Zexuan, Xu, Xiaolong.  2019.  APDPk-Means: A New Differential Privacy Clustering Algorithm Based on Arithmetic Progression Privacy Budget Allocation. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1737–1742.
How to protect users' private data during network data mining has become a hot issue in the fields of big data and network information security. Most current researches on differential privacy k-means clustering algorithms focus on optimizing the selection of initial centroids. However, the traditional privacy budget allocation has the problem that the random noise becomes too large as the number of iterations increases, which will reduce the performance of data clustering. To solve the problem, we improved the way of privacy budget allocation in differentially private clustering algorithm DPk-means, and proposed APDPk-means, a new differential privacy clustering algorithm based on arithmetic progression privacy budget allocation. APDPk-means decomposes the total privacy budget into a decreasing arithmetic progression, allocating the privacy budgets from large to small in the iterative process, so as to ensure the rapid convergence in early iteration. The experiment results show that compared with the other differentially private k-means algorithms, APDPk-means has better performance in availability and quality of the clustering result under the same level of privacy protection.
2020-01-02
Aslan, Ça\u grı B., Sa\u glam, Rahime Belen, Li, Shujun.  2018.  Automatic Detection of Cyber Security Related Accounts on Online Social Networks: Twitter As an Example. Proceedings of the 9th International Conference on Social Media and Society. :236–240.
Recent studies have revealed that cyber criminals tend to exchange knowledge about cyber attacks in online social networks (OSNs). Cyber security experts are another set of information providers on OSNs who frequently share information about cyber security incidents and their personal opinions and analyses. Therefore, in order to improve our knowledge about evolving cyber attacks and the underlying human behavior for different purposes (e.g., crime investigation, understanding career development of cyber criminals and cyber security professionals, detection of impeding cyber attacks), it will be very useful to detect cyber security related accounts on OSNs automatically, and monitor their activities. This paper reports our preliminarywork on automatic detection of cyber security related accounts on OSNs using Twitter as an example. Three machine learning based classification algorithms were applied and compared: decision trees, random forests, and SVM (support vector machines). Experimental results showed that both decision trees and random forests had performed well with an overall accuracy over 95%, and when random forests were used with behavioral features the accuracy had reached as high as 97.877%.
Harris, Albert, Snader, Robin, Kravets, Robin.  2018.  Aggio: A Coupon Safe for Privacy-Preserving Smart Retail Environments. 2018 IEEE/ACM Symposium on Edge Computing (SEC). :174–186.

Researchers and industry experts are looking at how to improve a shopper's experience and a store's revenue by leveraging and integrating technologies at the edges of the network, such as Internet-of-Things (IoT) devices, cloud-based systems, and mobile applications. The integration of IoT technology can now be used to improve purchasing incentives through the use of electronic coupons. Research has shown that targeted electronic coupons are the most effective and coupons presented to the shopper when they are near the products capture the most shoppers' dollars. Although it is easy to imagine coupons being broadcast to a shopper's mobile device over a low-power wireless channel, such a solution must be able to advertise many products, target many individual shoppers, and at the same time, provide shoppers with their desired level of privacy. To support this type of IoT-enabled shopping experience, we have designed Aggio, an electronic coupon distribution system that enables the distribution of localized, targeted coupons while supporting user privacy and security. Aggio uses cryptographic mechanisms to not only provide security but also to manage shopper groups e.g., bronze, silver, and gold reward programs) and minimize resource usage, including bandwidth and energy. The novel use of cryptographic management of coupons and groups allows Aggio to reduce bandwidth use, as well as reduce the computing and energy resources needed to process incoming coupons. Through the use of local coupon storage on the shopper's mobile device, the shopper does not need to query the cloud and so does not need to expose all of the details of their shopping decisions. Finally, the use of privacy preserving communication between the shopper's mobile device and the CouponHubs that are distributed throughout the retail environment allows the shopper to expose their location to the store without divulging their location to all other shoppers present in the store.

2019-12-30
Iqbal, Maryam, Iqbal, Mohammad Ayman.  2019.  Attacks Due to False Data Injection in Smart Grids: Detection Protection. 2019 1st Global Power, Energy and Communication Conference (GPECOM). :451-455.

As opposed to a traditional power grid, a smart grid can help utilities to save energy and therefore reduce the cost of operation. It also increases reliability of the system In smart grids the quality of monitoring and control can be adequately improved by incorporating computing and intelligent communication knowledge. However, this exposes the system to false data injection (FDI) attacks and the system becomes vulnerable to intrusions. Therefore, it is important to detect such false data injection attacks and provide an algorithm for the protection of system against such attacks. In this paper a comparison between three FDI detection methods has been made. An H2 control method has then been proposed to detect and control the false data injection on a 12th order model of a smart grid. Disturbances and uncertainties were added to the system and the results show the system to be fully controllable. This paper shows the implementation of a feedback controller to fully detect and mitigate the false data injection attacks. The controller can be incorporated in real life smart grid operations.

Kee, Ruitao, Sie, Jovan, Wong, Rhys, Yap, Chern Nam.  2019.  Arithmetic Circuit Homomorphic Encryption and Multiprocessing Enhancements. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–5.
This is a feasibility study on homomorphic encryption using the TFHE library [1] in daily computing using cloud services. A basic set of arithmetic operations namely - addition, subtraction, multiplication and division were created from the logic gates provide. This research peeks into the impact of logic gates on these operations such as latency of the gates and the operation itself. Multiprocessing enhancement were done for multiplication operation using MPI and OpenMP to reduce latency.
Ahn, Surin, Gorlatova, Maria, Naghizadeh, Parinaz, Chiang, Mung, Mittal, Prateek.  2018.  Adaptive Fog-Based Output Security for Augmented Reality. Proceedings of the 2018 Morning Workshop on Virtual Reality and Augmented Reality Network. :1–6.
Augmented reality (AR) technologies are rapidly being adopted across multiple sectors, but little work has been done to ensure the security of such systems against potentially harmful or distracting visual output produced by malicious or bug-ridden applications. Past research has proposed to incorporate manually specified policies into AR devices to constrain their visual output. However, these policies can be cumbersome to specify and implement, and may not generalize well to complex and unpredictable environmental conditions. We propose a method for generating adaptive policies to secure visual output in AR systems using deep reinforcement learning. This approach utilizes a local fog computing node, which runs training simulations to automatically learn an appropriate policy for filtering potentially malicious or distracting content produced by an application. Through empirical evaluations, we show that these policies are able to intelligently displace AR content to reduce obstruction of real-world objects, while maintaining a favorable user experience.
2019-12-18
Dincalp, Uygar, Güzel, Mehmet Serdar, Sevine, Omer, Bostanci, Erkan, Askerzade, Iman.  2018.  Anomaly Based Distributed Denial of Service Attack Detection and Prevention with Machine Learning. 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1-4.

Everyday., the DoS/DDoS attacks are increasing all over the world and the ways attackers are using changing continuously. This increase and variety on the attacks are affecting the governments, institutions, organizations and corporations in a bad way. Every successful attack is causing them to lose money and lose reputation in return. This paper presents an introduction to a method which can show what the attack and where the attack based on. This is tried to be achieved with using clustering algorithm DBSCAN on network traffic because of the change and variety in attack vectors.

Kuka, Mário, Vojanec, Kamil, Kučera, Jan, Benáček, Pavel.  2019.  Accelerated DDoS Attacks Mitigation using Programmable Data Plane. 2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). :1–3.

DDoS attacks are a significant threat to internet service or infrastructure providers. This poster presents an FPGA-accelerated device and DDoS mitigation technique to overcome such attacks. Our work addresses amplification attacks whose goal is to generate enough traffic to saturate the victims links. The main idea of the device is to efficiently filter malicious traffic at high-speeds directly in the backbone infrastructure before it even reaches the victim's network. We implemented our solution for two FPGA platforms using the high-level description in P4, and we report on its performance in terms of throughput and hardware resources.

2019-12-17
Guo, Shengjian, Wu, Meng, Wang, Chao.  2018.  Adversarial Symbolic Execution for Detecting Concurrency-Related Cache Timing Leaks. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. :377-388.
The timing characteristics of cache, a high-speed storage between the fast CPU and the slow memory, may reveal sensitive information of a program, thus allowing an adversary to conduct side-channel attacks. Existing methods for detecting timing leaks either ignore cache all together or focus only on passive leaks generated by the program itself, without considering leaks that are made possible by concurrently running some other threads. In this work, we show that timing-leak-freedom is not a compositional property: a program that is not leaky when running alone may become leaky when interleaved with other threads. Thus, we develop a new method, named adversarial symbolic execution, to detect such leaks. It systematically explores both the feasible program paths and their interleavings while modeling the cache, and leverages an SMT solver to decide if there are timing leaks. We have implemented our method in LLVM and evaluated it on a set of real-world ciphers with 14,455 lines of C code in total. Our experiments demonstrate both the efficiency of our method and its effectiveness in detecting side-channel leaks.
2019-12-16
Zhou, Liming, Shan, Yingzi, Chen, Xiaopan.  2019.  An Anonymous Routing Scheme for Preserving Location Privacy in Wireless Sensor Networks. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :262-265.

Wireless sensor networks consist of various sensors that are deployed to monitor the physical world. And many existing security schemes use traditional cryptography theory to protect message content and contextual information. However, we are concerned about location security of nodes. In this paper, we propose an anonymous routing strategy for preserving location privacy (ARPLP), which sets a proxy source node to hide the location of real source node. And the real source node randomly selects several neighbors as receivers until the packets are transmitted to the proxy source. And the proxy source is randomly selected so that the adversary finds it difficult to obtain the location information of the real source node. Meanwhile, our scheme sets a branch area around the sink, which can disturb the adversary by increasing the routing branch. According to the analysis and simulation experiments, our scheme can reduce traffic consumption and communication delay, and improve the security of source node and base station.

Lin, Ping-Hsien, Chang, Yu-Ming, Li, Yung-Chun, Wang, Wei-Chen, Ho, Chien-Chung, Chang, Yuan-Hao.  2018.  Achieving Fast Sanitization with Zero Live Data Copy for MLC Flash Memory. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–8.
As data security has become the major concern in modern storage systems with low-cost multi-level-cell (MLC) flash memories, it is not trivial to realize data sanitization in such a system. Even though some existing works employ the encryption or the built-in erase to achieve this requirement, they still suffer the risk of being deciphered or the issue of performance degradation. In contrast to the existing work, a fast sanitization scheme is proposed to provide the highest degree of security for data sanitization; that is, every old version of data could be immediately sanitized with zero live-data-copy overhead once the new version of data is created/written. In particular, this scheme further considers the reliability issue of MLC flash memories; the proposed scheme includes a one-shot sanitization design to minimize the disturbance during data sanitization. The feasibility and the capability of the proposed scheme were evaluated through extensive experiments based on real flash chips. The results demonstrate that this scheme can achieve the data sanitization with zero live-data-copy, where performance overhead is less than 1%.
2019-12-09
Nozaki, Yusuke, Yoshikawa, Masaya.  2018.  Area Constraint Aware Physical Unclonable Function for Intelligence Module. 2018 3rd International Conference on Computational Intelligence and Applications (ICCIA). :205-209.

Artificial intelligence technology such as neural network (NN) is widely used in intelligence module for Internet of Things (IoT). On the other hand, the risk of illegal attacks for IoT devices is pointed out; therefore, security countermeasures such as an authentication are very important. In the field of hardware security, the physical unclonable functions (PUFs) have been attracted attention as authentication techniques to prevent the semiconductor counterfeits. However, implementation of the dedicated hardware for both of NN and PUF increases circuit area. Therefore, this study proposes a new area constraint aware PUF for intelligence module. The proposed PUF utilizes the propagation delay time from input layer to output layer of NN. To share component for operation, the proposed PUF reduces the circuit area. Experiments using a field programmable gate array evaluate circuit area and PUF performance. In the result of circuit area, the proposed PUF was smaller than the conventional PUFs was showed. Then, in the PUF performance evaluation, for steadiness, diffuseness, and uniqueness, favorable results were obtained.

Tomić, Ivana, Chen, Po-Yu, Breza, Michael J., McCann, Julie A..  2018.  Antilizer: Run Time Self-Healing Security for Wireless Sensor Networks. Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :107–116.
Wireless Sensor Network (WSN) applications range from domestic Internet of Things systems like temperature monitoring of homes to the monitoring and control of large-scale critical infrastructures. The greatest risk with the use of WSNs in critical infrastructure is their vulnerability to malicious network level attacks. Their radio communication network can be disrupted, causing them to lose or delay data which will compromise system functionality. This paper presents Antilizer, a lightweight, fully-distributed solution to enable WSNs to detect and recover from common network level attack scenarios. In Antilizer each sensor node builds a self-referenced trust model of its neighbourhood using network overhearing. The node uses the trust model to autonomously adapt its communication decisions. In the case of a network attack, a node can make neighbour collaboration routing decisions to avoid affected regions of the network. Mobile agents further bound the damage caused by attacks. These agents enable a simple notification scheme which propagates collaborative decisions from the nodes to the base station. A filtering mechanism at the base station further validates the authenticity of the information shared by mobile agents. We evaluate Antilizer in simulation against several routing attacks. Our results show that Antilizer reduces data loss down to 1% (4% on average), with operational overheads of less than 1% and provides fast network-wide convergence.