Biblio
Filters: First Letter Of Title is D [Clear All Filters]
A Dynamic Multi-Threaded Queuing Mechanism for Reducing the Inter-Process Communication Latency on Multi-Core Chips. 2020 3rd International Conference on Data Intelligence and Security (ICDIS). :12–19.
.
2020. Reducing latency in inter-process/inter-thread communication is one of the key challenges in parallel and distributed computing. This is because as the number of threads in an application increases, the communication overhead also increases. Moreover, the presence of background load further increases the latency. Reducing communication latency can have a significant impact on multi-threaded application performance in multi-core environments. In a wide-range of applications that utilize queueing mechanism, inter-process/ inter-thread communication typically involves enqueuing and dequeuing. This paper presents a queueing techniques called eLCRQ, which is a lock-free block-when-necessary multi-producer multi-consumer (MPMC) FIFO queue. It is designed for scenarios where the queue can randomly and frequently become empty during runtime. By combining lock-free performance with blocking resource efficiency, it delivers improved performance. Specifically, it results in a 1.7X reduction in latency and a 2.3X reduction in CPU usage when compared to existing message-passing mechanisms including PIPE and Sockets while running on multi-core Linux based systems. The proposed scheme also provides a 3.4X decrease in CPU usage while maintaining comparable latency when compared to other (MPMC) lock-free queues in low load scenarios. Our work is based on open-source Linux and support libraries.
"Digital Bombs" Neutralization Method. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :446–451.
.
2020. The article discusses new models and methods for timely identification and blocking of malicious code of critically important information infrastructure based on static and dynamic analysis of executable program codes. A two-stage method for detecting malicious code in the executable program codes (the so-called "digital bombs") is described. The first step of the method is to build the initial program model in the form of a control graph, the construction is carried out at the stage of static analysis of the program. The article discusses the purpose, features and construction criteria of an ordered control graph. The second step of the method is to embed control points in the program's executable code for organizing control of the possible behavior of the program using a specially designed recognition automaton - an automaton of dynamic control. Structural criteria for the completeness of the functional control of the subprogram are given. The practical implementation of the proposed models and methods was completed and presented in a special instrumental complex IRIDA.
Detection and Prevention of Blackhole Node. 2020 4th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1–7.
.
2020. Mobile Adhoc networks (MANETs) comprises of mobile devices or nodes that are connected wirelessly and have no infrastructure. Detecting malicious activities in MANETs is a challenging task as they are vulnerable to attacks where the performance of the entire network degrades. Hence it is necessary to provide security to the network so that the nodes are prone to attack. Selecting a good routing protocol in MANET is also important as frequent change of topology causes the route reply to not arrive at the source node. In this paper, R-AODV (Reverse Adhoc On-Demand Distance Vector) protocol along with ECC (Elliptic Key Cryptography) algorithm is designed and implemented to detect and to prevent the malicious node and to secure data transmission against blackhole attack. The main objective is to keep the data packets secure. ECC provides a smaller key size compared to other public-key encryption and eliminates the requirement of pre-distributed keys also makes the path more secure against blackhole attacks in a MANET. The performance of this proposed system is simulated by using the NS-2.35 network simulator. Simulation results show that the proposed protocol provides good experimental results on various metrics like throughput, end-to-end delay, and PDR. Analysis of the results points to an improvement in the overall network performance.
Dynamic Inductance Simulation of a Linear Permanent Magnet Generator Under Different Magnet Configurations. 2020 International Conference on Sustainable Energy Engineering and Application (ICSEEA). :1–8.
.
2020. Recently, some innovations have been applied to the linear permanent magnet generator (LPMG). They are including the introduction of high-remanence rare-earth magnets and the use of different magnet configurations. However, these actions also affect the flow and distribution of the magnetic flux. Under the load condition, the load current will also generate reverse flux. The flux resultant then affects the coil parameters; the significant one is the coil inductance. Since it is influential to the output voltage and output power profiles, the impact study of the permanent magnet settings under load condition is essential. Hence this paper presents the inductance profile study of the LMPG with different magnet configurations. After presenting the initial designs, several magnet settings including the material and configuration were varied. Finite element magnetic simulation and analytical calculations were then performed to obtain the inductance profile of the LPMG. The results show that the inductance value varies with change in load current and magnet position. The different magnet materials (SmCo 30 and N35) do not significantly affect the inductance. Meanwhile, different magnet configuration (radial, axial, halbach) results in different inductance trends.
DoS attack detection model of smart grid based on machine learning method. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :735–738.
.
2020. In recent years, smart grid has gradually become the common development trend of the world's power industry, and its security issues are increasingly valued by researchers. Smart grids have applied technologies such as physical control, data encryption, and authentication to improve their security, but there is still a lack of timely and effective detection methods to prevent the grid from being threatened by malicious intrusions. Aiming at this problem, a model based on machine learning to detect smart grid DoS attacks has been proposed. The model first collects network data, secondly selects features and uses PCA for data dimensionality reduction, and finally uses SVM algorithm for abnormality detection. By testing the SVM, Decision Tree and Naive Bayesian Network classification algorithms on the KDD99 dataset, it is found that the SVM model works best.
Distributed Key Management Authentication Algorithm in Internet of Things (IOT). 2020 Sixth International Conference on Mobile And Secure Services (MobiSecServ). :1–5.
.
2020. Radio frequency identification system (RFID) is a wireless technology based on radio waves. These radio waves transmit data from the tag to a reader, which then transmits the information to a server. RFID tags have several advantages, they can be used in merchandise, to track vehicles, and even patients. Connecting RFID tags to internet terminal or server it called Internet of Things (IoT). Many people have shown interest in connected objects or the Internet of Things (IoT). The IoT is composed of many complementary elements each having their own specificities. The RFID is often seen as a prerequisite for the IoT. The main challenge of RFID is the security issues. Connecting RFID with IoT poses security threats and challenges which are needed to be discussed properly before deployment. In this paper, we proposed a new distributed encryption algorithm to be used in the IoT structure in order to reduce the security risks that are confronted in RFID technology.
Design and Analysis of a New RFID Security Protocol for Internet of Things. 2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT). :16–18.
.
2020. As the core of the third information revolution, the Internet of things plays an important role in the development of the times. According to the relevant investigation and research, we can find that the research on the Internet of things is still in the stage of LAN and private network, and its open advantages have not been fully utilized[1]. In this context, RFID technology as the core technology of the Internet of things, the security protocol plays an important role in the normal use of the technology. With the continuous development of Internet information technology, the disadvantages of security protocol become more and more obvious. These problems seriously affect the popularity of Internet of things technology. Therefore, in the future work, the relevant staff need to continue to strengthen research, according to the future development plan, effectively play the advantages of technology, and further promote its development.
Development of an Intrusion Detection System Using a Botnet with the R Statistical Computing System. 2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI). :59–62.
.
2020. Development of an intrusion detection system, which tries to detect signs of technology of malware, is discussed. The system can detect signs of technology of malware such as peer to peer (P2P) communication, DDoS attack, Domain Generation Algorithm (DGA), and network scanning. The system consists of beneficial botnet and the R statistical computing system. The beneficial botnet is a group of Wiki servers, agent bots and analyzing bots. The script in a Wiki page of the Wiki server controls an agent bot or an analyzing bot. An agent bot is placed between a LAN and its gateway. It can capture every packet between hosts in the LAN and hosts behind the gateway from the LAN. An analyzing bot can be placed anywhere in the LAN or WAN if it can communicate with the Wiki server for controlling the analyzing bot. The analyzing bot has R statistical computing system and it can analyze data which is collected by agent bots.
Deep Learning Based Identification of DDoS Attacks in Industrial Application. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4). :190–196.
.
2020. Denial of Service (DoS) attacks are very common type of computer attack in the world of internet today. Automatically detecting such type of DDoS attack packets & dropping them before passing through is the best prevention method. Conventional solution only monitors and provide the feedforward solution instead of the feedback machine-based learning. A Design of Deep neural network has been suggested in this paper. In this approach, high level features are extracted for representation and inference of the dataset. Experiment has been conducted based on the ISCX dataset for year 2017, 2018 and CICDDoS2019 and program has been developed in Matlab R17b using Wireshark.
Detection and Prevention Mechanisms for DDoS Attack in Cloud Computing Environment. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
.
2020. For optimal use of cloud resources and to reduce the latency of cloud users, the cloud computing model extends the services such as networking facilities, computational capabilities and storage facilities based on demand. Due to the dynamic behavior, distributed paradigm and heterogeneity present among the processing elements, devices and service oriented pay per use policies; the cloud computing environment is having its availability, security and privacy issues. Among these various issues one of the important issues in cloud computing paradigm is DDoS attack. This paper put in plain words the DDoS attack, its detection as well as prevention mechanisms in cloud computing environment. The inclusive study also explains about the effects of DDoS attack on cloud platform and the related defense mechanisms required to be considered.
Distributed Denial of Service Attack Mitigation Using High Availability Proxy and Network Load Balancing. 2020 International Conference on Advanced Science and Engineering (ICOASE). :174–179.
.
2020. Nowadays, cybersecurity threat is a big challenge to all organizations that present their services over the Internet. Distributed Denial of Service (DDoS) attack is the most effective and used attack and seriously affects the quality of service of each E-organization. Hence, mitigation this type of attack is considered a persistent need. In this paper, we used Network Load Balancing (NLB) and High Availability Proxy (HAProxy) as mitigation techniques. The NLB is used in the Windows platform and HAProxy in the Linux platform. Moreover, Internet Information Service (IIS) 10.0 is implemented on Windows server 2016 and Apache 2 on Linux Ubuntu 16.04 as web servers. We evaluated each load balancer efficiency in mitigating synchronize (SYN) DDoS attack on each platform separately. The evaluation process is accomplished in a real network and average response time and average CPU are utilized as metrics. The results illustrated that the NLB in the Windows platform achieved better performance in mitigation SYN DDOS compared to HAProxy in the Linux platform. Whereas, the average response time of the Window webservers is reduced with NLB. However, the impact of the SYN DDoS on the average CPU usage of the IIS 10.0 webservers was more than those of the Apache 2 webservers.
DDoS Mitigation: A Measurement-Based Approach. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–6.
.
2020. Society heavily relies upon the Internet for global communications. Simultaneously, Internet stability and reliability are continuously subject to deliberate threats. These threats include (Distributed) Denial-of-Service (DDoS) attacks, which can potentially be devastating. As a result of DDoS, businesses lose hundreds of millions of dollars annually. Moreover, when it comes to vital infrastructure, national safety and even lives could be at stake. Effective defenses are therefore an absolute necessity. Prospective users of readily available mitigation solutions find themselves having many shapes and sizes to choose from, the right fit of which may, however, not always be apparent. In addition, the deployment and operation of mitigation solutions may come with hidden hazards that need to be better understood. Policy makers and governments also find themselves facing questions concerning what needs to be done to promote cybersafety on a national level. Developing an optimal course of action to deal with DDoS, therefore, also brings about societal challenges. Even though the DDoS problem is by no means new, the scale of the problem is still unclear. We do not know exactly what it is we are defending against and getting a better understanding of attacks is essential to addressing the problem head-on. To advance situational awareness, many technical and societal challenges need still to be tackled. Given the central importance of better understanding the DDoS problem to improve overall Internet security, the thesis that we summarize in this paper has three main contributions. First, we rigorously characterize attacks and attacked targets at scale. Second, we advance knowledge about the Internet-wide adoption, deployment and operational use of various mitigation solutions. Finally, we investigate hidden hazards that can render mitigation solutions altogether ineffective.
Detection of DDoS Based on Gray Level Co-Occurrence Matrix Theory and Deep Learning. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). :1615–1618.
.
2020. There have been researches on Distributed Denial of Service (DDoS) attack detection based on deep learning, but most of them use the feature data processed by data mining for feature learning and classification. Based on the original data flow, this paper combines the method of Gray Level Co-occurrence Matrix (GLCM), which not only retains the original data but also can further extract the potential relationship between the original data. The original data matrix and the reconstructed matrix were taken as the input of the model, and the Convolutional Neural Network(CNN) was used for feature learning. Finally, the classifier model was trained for detection. The experimental part is divided into two parts: comparing the detection effect of different data processing methods and different deep learning algorithms; the effectiveness and objectivity of the proposed method are verified by comparing the detection effect of the deep learning algorithm with that of the statistical analysis feature algorithm.
Deep Q-learning Approach for Congestion Problem In Smart Cities. 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS). :1–6.
.
2020. Traffic congestion is a critical problem in urban area. In this study, our objective is the control of traffic lights in an urban environment, in order to avoid traffic jams and optimize vehicle traffic; we aim to minimize the total waiting time. Our system is based on a new paradigm, which is deep reinforcement learning; it can automatically learn all the useful characteristics of traffic data and develop a strategy optimizing adaptive traffic light control. Our system is coupled to a microscopic simulator based on agents (Simulation of Urban MObility - SUMO) providing a synthetic but realistic environment in which the exploration of the results of potential regulatory actions can be carried out.
Deep Learning Based Response Generation using Emotion Feature Extraction. 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). :255–262.
.
2020. Neural response generation is to generate human-like response given human utterance by using a deep learning. In the previous studies, expressing emotion in response generation improve user performance, user engagement, and user satisfaction. Also, the conversational agents can communicate with users at the human level. However, the previous emotional response generation model cannot understand the subtle part of emotions, because this model use the desired emotion of response as a token form. Moreover, this model is difficult to generate natural responses related to input utterance at the content level, since the information of input utterance can be biased to the emotion token. To overcome these limitations, we propose an emotional response generation model which generates emotional and natural responses by using the emotion feature extraction. Our model consists of two parts: Extraction part and Generation part. The extraction part is to extract the emotion of input utterance as a vector form by using the pre-trained LSTM based classification model. The generation part is to generate an emotional and natural response to the input utterance by reflecting the emotion vector from the extraction part and the thought vector from the encoder. We evaluate our model on the emotion-labeled dialogue dataset: DailyDialog. We evaluate our model on quantitative analysis and qualitative analysis: emotion classification; response generation modeling; comparative study. In general, experiments show that the proposed model can generate emotional and natural responses.
A Design Implementation and Comparative Analysis of Advanced Encryption Standard (AES) Algorithm on FPGA. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :182—185.
.
2020. As the technology is getting advanced continuously the problem for the security of data is also increasing. The hackers are equipped with new advanced tools and techniques to break any security system. Therefore people are getting more concern about data security. The data security is achieved by either software or hardware implementations. In this work Field Programmable Gate Arrays (FPGA) device is used for hardware implementation since these devices are less complex, more flexible and provide more efficiency. This work focuses on the hardware execution of one of the security algorithms that is the Advanced Encryption Standard (AES) algorithm. The AES algorithm is executed on Vivado 2014.2 ISE Design Suite and the results are observed on 28 nanometers (nm) Artix-7 FPGA. This work discusses the design implementation of the AES algorithm and the resources consumed in implementing the AES design on Artix-7 FPGA. The resources which are consumed are as follows-Slice Register (SR), Look-Up Tables (LUTs), Input/Output (I/O) and Global Buffer (BUFG).
Design of an efficient image protection method based on QR code. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :1448—1450.
.
2020. This paper presents the design and the verification of an efficient image protection method based on the QR code, which is a type of two-dimensional barcode widely used in various fields. For this purpose, we design a new image protection system consisting of a secure image generator and a secure image recognizer. One adds a new pre-processing block to the typical QR code generator and the other combines the existing QR code reader with a new post-processing block. The new architecture provides image de-identification. It is also flexible, allowing the use of text-based compression and encryption. We have implemented prototype applications for verifying the functions of the secure image generator and those of the secure image recognizer. As a result, it is shown that the proposed architecture can be used as a good solution for image privacy protection, especially in offline environments.
Design of Intelligent Access Control System Based on DES Encrypted QR Code. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :1005—1008.
.
2020. In order to solve the problems of inconvenient carrying and management of the access card used in the existing market access control system, a set of intelligent access control system based on DES encrypted two-dimensional code is designed. The system consists of Android smart phone, embedded access controller and server. By sending and receiving QR code via smart phone, access to the door is obtained, which realizes centralized management of office buildings, companies, senior office buildings, luxury residences and other middle and high-rise places, effectively preventing unauthorized people from entering the high security area. In order to ensure information security, the two-dimensional code is encrypted by DES algorithm. This system has the characteristics of low cost, high security and flexible operation. It is still blank in the application field and has certain promotion value.
A distortion-free watermarking approach for verifying integrity of relational databases. 2020 International Conference on Smart Innovations in Design, Environment, Management, Planning and Computing (ICSIDEMPC). :192—195.
.
2020. Due to high availability and easy accessibility of information, it has become quite difficult to assure security of data. Even though watermarking seems to be an effective solution to protect data, it is still challenging to be used with relational databases. Moreover, inserting a watermark in database may lead to distortion. As a result, the contents of database can no longer remain useful. Our proposed distortion-free watermarking approach ensures that integrity of database can be preserved by generating an image watermark from its contents. This image is registered with Certification Authority (CA) before the database is distributed for use. In case, the owner suspects any kind of tampering in the database, an image watermark is generated and compared with the registered image watermark. If both do not match, it can be concluded that the integrity of database has been compromised. Experiments are conducted on Forest Cover Type data set to localize tampering to the finest granularity. Results show that our approach can detect all types of attack with 100% accuracy.
Design of a New Lightweight Stream Cipher VHFO Algorithm. 2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :379—382.
.
2020. This paper designed the lightweight stream ciphers named VHFO. It used OFB. The key-stream size is 128-bit while the IV is specified to be 128 bits. Our security evaluation shows that VHFO can achieve enough security margin against known attacks. The implementation efficiency of both software and hardware based on VHFO is higher than others in RFID environment.
A Decentralized Hierarchical Key Management Scheme for Grid-Organized Wireless Sensor Networks (DHKM). 2020 International Wireless Communications and Mobile Computing (IWCMC). :1613–1617.
.
2020. Wireless Sensor Networks (WSNs) are attracted great attention in the past decade due to the unlimited number of applications they support. However, security has always been a serious concern for these networks due to the insecure communication links they exploit. In order to mitigate the possible security threats, sophisticated key management schemes must be employed to ensure the generating, distributing and revocation of the cryptographic keys that are needed to implement variety of security measures. In this paper, we propose a novel decentralized key management scheme for hierarchical grid organized WSNs. The main goal of our scheme is to reduce the total number of cryptographic keys stored in sensor nodes while maintaining the desired network connectivity. The performance analysis shows the efficiency of the proposed protocol in terms of communication overhead, storage cost and network connectivity.
Development of IoT Security Exercise Contents for Cyber Security Exercise System. 2020 13th International Conference on Human System Interaction (HSI). :1—6.
.
2020. In this paper, we discuss the development of the IoT security exercise content and the implementation of it to the CyExec. While the Internet of Things (IoT) devices are becoming more popular, vulnerability countermeasures are insufficient, and many incidents have occurred. It is because there is insufficient protection against vulnerabilities specific to IoT equipment. Also, the developers and users have low awareness of IoT devices against vulnerabilities from the past. Therefore, the importance of security education on IoT devices is increasing. However, the enormous burden of introduction and operation costs limited the use of commercial cybersecurity exercise systems. CyExec (Cyber Security Exercise System), consisting of a virtual environment using VirtualBox and Docker, is a low-cost and flexible cybersecurity exercise system, which we have proposed for the dissemination of security education. And the content of the exercises for CyExec is composed of the Basic exercises and Applied exercises.
On Development of a Game‐Theoretic Model for Deception‐Based Security. Modeling and Design of Secure Internet of Things. :123–140.
.
2020. This chapter presents a game‐theoretic model to analyze attack–defense scenarios that use fake nodes (computing devices) for deception under consideration of the system deploying defense resources to protect individual nodes in a cost‐effective manner. The developed model has important applications in the Internet of Battlefield Things (IoBT). Our game‐theoretic model illustrates how the concept of the Nash equilibrium can be used by the defender to intelligently choose which nodes should be used for performing a computation task while deceiving the attacker into expending resources for attacking fake nodes. Our model considers the fact that defense resources may become compromised under an attack and suggests that the defender, in a probabilistic manner, may utilize unprotected nodes for performing a computation while the attacker is deceived into attacking a node with defense resources installed. The chapter also presents a deception‐based strategy to protect a target node that can be accessed via a tree network. Numerical results provide insights into the strategic deception techniques presented in this chapter.
Decentralized Latency-aware Edge Node Grouping with Fault Tolerance for Internet of Battlefield Things. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :420–423.
.
2020. In this paper, our objective is to focus on the recent trend of military fields where they brought Internet of Things (IoT) to have better impact on the battlefield by improving the effectiveness and this is called Internet of Battlefield Things(IoBT). Due to the requirements of high computing capability and minimum response time with minimum fault tolerance this paper proposed a decentralized IoBT architecture. The proposed method can increase the reliability in the battlefield environment by searching the reliable nodes among all the edge nodes in the environment, and by adding the fault tolerance in the edge nodes will increase the effectiveness of overall battlefield scenario. This suggested fault tolerance approach is worth for decentralized mode to handle the issue of latency requirements and maintaining the task reliability of the battlefield. Our experimental results ensure the effectiveness of the proposed approach as well as enjoy the requirements of latency-aware military field while ensuring the overall reliability of the network.
Distributed DDoS Defense:A collaborative Approach at Internet Scale. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–6.
.
2020. Distributed large-scale cyber attacks targeting the availability of computing and network resources still remain a serious threat. To limit the effects caused by those attacks and to provide a proactive defense, mitigation should move to the networks of Internet Service Providers (ISPs). In this context, this thesis focuses on a development of a collaborative, automated approach to mitigate the effects of Distributed Denial of Service (DDoS) attacks at Internet Scale. This thesis has the following contributions: i) a systematic and multifaceted study on mitigation of large-scale cyber attacks at ISPs. ii) A detailed guidance selecting an exchange format and protocol suitable to use to disseminate threat information. iii) To overcome the shortcomings of missing flow-based interoperability of current exchange formats, a development of the exchange format Flow-based Event Exchange Format (FLEX). iv) A communication process to facilitate the automated defense in response to ongoing network-based attacks, v) a model to select and perform a semi-automatic deployment of suitable response actions. vi) An investigation of the effectiveness of the defense techniques moving-target using Software Defined Networking (SDN) and their applicability in context of large-scale cyber attacks and the networks of ISPs. Finally, a trust model that determines a trust and a knowledge level of a security event to deploy semi-automated remediations and facilitate the dissemination of security event information using the exchange format FLEX in context of ISP networks.