Acharya, Abiral, Oluoch, Jared.
2021.
A Dual Approach for Preventing Blackhole Attacks in Vehicular Ad Hoc Networks Using Statistical Techniques and Supervised Machine Learning. 2021 IEEE International Conference on Electro Information Technology (EIT). :230–235.
Vehicular Ad Hoc Networks (VANETs) have the potential to improve road safety and reduce traffic congestion by enhancing sharing of messages about road conditions. Communication in VANETs depends upon a Public Key Infrastructure (PKI) that checks for message confidentiality, integrity, and authentication. One challenge that the PKI infrastructure does not eliminate is the possibility of malicious vehicles mounting a Distributed Denial of Service (DDoS) attack. We present a scheme that combines statistical modeling and machine learning techniques to detect and prevent blackhole attacks in a VANET environment.Simulation results demonstrate that on average, our model produces an Area Under The Curve (ROC) and Receiver Operating Characteristics (AUC) score of 96.78% which is much higher than a no skill ROC AUC score and only 3.22% away from an ideal ROC AUC score. Considering all the performance metrics, we show that the Support Vector Machine (SVM) and Gradient Boosting classifier are more accurate and perform consistently better under various circumstances. Both have an accuracy of over 98%, F1-scores of over 95%, and ROC AUC scores of over 97%. Our scheme is robust and accurate as evidenced by its ability to identify and prevent blackhole attacks. Moreover, the scheme is scalable in that addition of vehicles to the network does not compromise its accuracy and robustness.
Ugwu, Chukwuemeka Christian, Obe, Olumide Olayinka, Popoọla, Olugbemiga Solomon, Adetunmbi, Adebayo Olusọla.
2021.
A Distributed Denial of Service Attack Detection System using Long Short Term Memory with Singular Value Decomposition. 2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA). :112–118.
The increase in online activity during the COVID 19 pandemic has generated a surge in network traffic capable of expanding the scope of DDoS attacks. Cyber criminals can now afford to launch massive DDoS attacks capable of degrading the performances of conventional machine learning based IDS models. Hence, there is an urgent need for an effective DDoS attack detective model with the capacity to handle large magnitude of DDoS attack traffic. This study proposes a deep learning based DDoS attack detection system using Long Short Term Memory (LSTM). The proposed model was evaluated on UNSW-NB15 and NSL-KDD intrusion datasets, whereby twenty-three (23) and twenty (20) attack features were extracted from UNSW-NB15 and NSL-KDD, respectively using Singular Value Decomposition (SVD). The results from the proposed model show significant improvement when compared with results from some conventional machine learning techniques such as Naïve Bayes (NB), Decision Tree (DT), and Support Vector Machine (SVM) with accuracies of 94.28% and 90.59% on both datasets, respectively. Furthermore, comparative analysis of LSTM with other deep learning results reported in literature justified the choice of LSTM among its deep learning peers in detecting DDoS attacks over a network.
Shirmarz, Alireza, Ghaffari, Ali, Mohammadi, Ramin, Akleylek, Sedat.
2021.
DDOS Attack Detection Accuracy Improvement in Software Defined Network (SDN) Using Ensemble Classification. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :111–115.
Nowadays, Denial of Service (DOS) is a significant cyberattack that can happen on the Internet. This attack can be taken place with more than one attacker that in this case called Distributed Denial of Service (DDOS). The attackers endeavour to make the resources (server & bandwidth) unavailable to legitimate traffic by overwhelming resources with malicious traffic. An appropriate security module is needed to discriminate the malicious flows with high accuracy to prevent the failure resulting from a DDOS attack. In this paper, a DDoS attack discriminator will be designed for Software Defined Network (SDN) architecture so that it can be deployed in the POX controller. The simulation results present that the proposed model can achieve an accuracy of about 99.4%which shows an outstanding percentage of improvement compared with Decision Tree (DT), K-Nearest Neighbour (KNN), Support Vector Machine (SVM) approaches.
Sudar, K.Muthamil, Beulah, M., Deepalakshmi, P., Nagaraj, P., Chinnasamy, P..
2021.
Detection of Distributed Denial of Service Attacks in SDN using Machine learning techniques. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1–5.
Software-defined network (SDN) is a network architecture that used to build, design the hardware components virtually. We can dynamically change the settings of network connections. In the traditional network, it's not possible to change dynamically, because it's a fixed connection. SDN is a good approach but still is vulnerable to DDoS attacks. The DDoS attack is menacing to the internet. To prevent the DDoS attack, the machine learning algorithm can be used. The DDoS attack is the multiple collaborated systems that are used to target the particular server at the same time. In SDN control layer is in the center that link with the application and infrastructure layer, where the devices in the infrastructure layer controlled by the software. In this paper, we propose a machine learning technique namely Decision Tree and Support Vector Machine (SVM) to detect malicious traffic. Our test outcome shows that the Decision Tree and Support Vector Machine (SVM) algorithm provides better accuracy and detection rate.
Padma, Bh, Chandravathi, D, Pratibha, Lanka.
2021.
Defense Against Frequency Analysis In Elliptic Curve Cryptography Using K-Means Clustering. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :64–69.
Elliptic Curve Cryptography (ECC) is a revolution in asymmetric key cryptography which is based on the hardness of discrete logarithms. ECC offers lightweight encryption as it presents equal security for smaller keys, and reduces processing overhead. But asymmetric schemes are vulnerable to several cryptographic attacks such as plaintext attacks, known cipher text attacks etc. Frequency analysis is a type of cipher text attack which is a passive traffic analysis scenario, where an opponent studies the frequency or occurrence of single letter or groups of letters in a cipher text to predict the plain text part. Block cipher modes are not used in asymmetric key encryption because encrypting many blocks with an asymmetric scheme is literally slow and CBC propagates transmission errors. Therefore, in this research we present a new approach to defence against frequency analysis in ECC using K-Means clustering to defence against Frequency Analysis. In this proposed methodology, security of ECC against frequency analysis is achieved by clustering the points of the curve and selecting different cluster for encoding a text each time it is encrypted. This technique destroys the regularities in the cipher text and thereby guards against cipher text attacks.
Yao, Bing, Xie, Jianmin, Wang, Hongyu, Su, Jing.
2021.
Degree-sequence Homomorphisms For Homomorphic Encryption Of Information. 2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC). 5:132–136.
The cipher-text homomorphism encryption algorithm (homomorphic encryption) are used for the cloud safe and to solve the integrity, availability and controllability of information. For homomorphic encryption, we, by Topsnut-gpw technique, design: degree-sequence homomorphisms and their inverses, degree-sequence homomorphic chain, graph-set homomorphism, colored degree-sequence matrices and every-zero Cds-matrix groups, degree-coinciding degree-sequence lattice, degree-joining degree-sequence lattice, as well as degree-sequence lattice homomorphism, since number-based strings made by Topsnut-gpws of topological coding are irreversible, and Topsnut-gpws can realize: one public-key corresponds two or more privatekeys, and more public-key correspond one or more private-keys for asymmetric encryption algorithm.