Biblio
Statistical structure learning (SSL)-based approaches have been employed in the recent years to detect different types of anomalies in a variety of cyber-physical systems (CPS). Although these approaches outperform conventional methods in the literature, their computational complexity, need for large number of measurements and centralized computations have limited their applicability to large-scale networks. In this work, we propose a distributed, multi-agent maximum likelihood (ML) approach to detect anomalies in smart grid applications aiming at reducing computational complexity, as well as preserving data privacy among different players in the network. The proposed multi-agent detector breaks the original ML problem into several local (smaller) ML optimization problems coupled by the alternating direction method of multipliers (ADMM). Then, these local ML problems are solved by their corresponding agents, eventually resulting in the construction of the global solution (network's information matrix). The numerical results obtained from two IEEE test (power transmission) systems confirm the accuracy and efficiency of the proposed approach for anomaly detection.
Learning-enabled components (LECs) are widely used in cyber-physical systems (CPS) since they can handle the uncertainty and variability of the environment and increase the level of autonomy. However, it has been shown that LECs such as deep neural networks (DNN) are not robust and adversarial examples can cause the model to make a false prediction. The paper considers the problem of efficiently detecting adversarial examples in LECs used for regression in CPS. The proposed approach is based on inductive conformal prediction and uses a regression model based on variational autoencoder. The architecture allows to take into consideration both the input and the neural network prediction for detecting adversarial, and more generally, out-of-distribution examples. We demonstrate the method using an advanced emergency braking system implemented in an open source simulator for self-driving cars where a DNN is used to estimate the distance to an obstacle. The simulation results show that the method can effectively detect adversarial examples with a short detection delay.
This paper presents a user-friendly design method for accurately sizing the distributed energy resources of a stand-alone microgrid to meet the critical load demands of a military, commercial, industrial, or residential facility when the utility power is not available. The microgrid combines renewable resources such as photovoltaics (PV) with an energy storage system to increase energy security for facilities with critical loads. The design tool's novelty includes compliance with IEEE standards 1562 and 1013 and addresses resilience, which is not taken into account in existing design methods. Several case studies, simulated with a physics-based model, validate the proposed design method. Additionally, the design and the simulations were validated by 24-hour laboratory experiments conducted on a microgrid assembled using commercial off the shelf components.
The time-varying properties of the wireless channel are a powerful source of information that can complement and enhance traditional security mechanisms. Therefore, we propose a cross-layer authentication mechanism that combines physical layer channel information and traditional authentication mechanism in LTE. To verify the feasibility of the proposed mechanism, we build a cross-layer authentication system that extracts the phase shift information of a typical UE and use the ensemble learning method to train the fingerprint map based on OAI LTE. Experimental results show that our cross-layer authentication mechanism can effectively prompt the security of LTE system.
Nowadays the use of the Internet is growing; E-voting system has been used by different countries because it reduces the cost and the time which used to consumed by using traditional voting. When the voter wants to access the E-voting system through the web application, there are requirements such as a web browser and a server. The voter uses the web browser to reach to a centralized database. The use of a centralized database for the voting system has some security issues such as Data modification through the third party in the network due to the use of the central database system as well as the result of the voting is not shown in real-time. However, this paper aims to provide an E-voting system with high security by using blockchain. Blockchain provides a decentralized model that makes the network Reliable, safe, flexible, and able to support real-time services.
Phishing sends malicious links or attachments through emails that can perform various functions, including capturing the victim's login credentials or account information. These emails harm the victims, cause money loss, and identity theft. In this paper, we contribute to solving the phishing problem by developing an extension for the Google Chrome web browser. In the development of this feature, we used JavaScript PL. To be able to identify and prevent the fishing attack, a combination of Blacklisting and semantic analysis methods was used. Furthermore, a database for phishing sites is generated, and the text, links, images, and other data on-site are analyzed for pattern recognition. Finally, our proposed solution was tested and compared to existing approaches. The results validate that our proposed method is capable of handling the phishing issue substantially.
Machine-to-Machine (M2M) communication is a essential subset of the Internet of Things (IoT). Secure access to communication network systems by M2M devices requires the support of a secure and efficient anonymous authentication protocol. The Direct Anonymous Attestation (DAA) scheme in Trustworthy Computing is a verified security protocol. However, the existing defense system uses a static architecture. The “mimic defense” strategy is characterized by active defense, which is not effective against continuous detection and attack by the attacker. Therefore, in this paper, we propose a Mimic-DAA scheme that incorporates mimic defense to establish an active defense scheme. Multiple heterogeneous and redundant actuators are used to form a DAA verifier and optimization is scheduled so that the behavior of the DAA verifier unpredictable by analysis. The Mimic-DAA proposed in this paper is capable of forming a security mechanism for active defense. The Mimic-DAA scheme effectively safeguard the unpredictability, anonymity, security and system-wide security of M2M communication networks. In comparison with existing DAA schemes, the scheme proposed in this paper improves the safety while maintaining the computational complexity.
We propose a novel attestation architecture for the Internet of Things (IoT). Our distributed attestation network (DAN) utilizes blockchain technology to store and share device information. We present the design of this new attestation architecture as well as a prototype system chosen to emulate an IoT deployment with a network of Raspberry Pi, Infineon TPMs, and a Hyperledger Fabric blockchain.
In recent times cloud services are used widely and due to which there are so many attacks on the cloud devices. One of the major attacks is DDos (distributed denial-of-service) -attack which mainly targeted the Memcached which is a caching system developed for speeding the websites and the networks through Memcached's database. The DDoS attack tries to destroy the database by creating a flood of internet traffic at the targeted server end. Attackers send the spoofing applications to the vulnerable UDP Memcached server which even manipulate the legitimate identity of the sender. In this work, we have proposed a vector quantization approach based on a supervised deep learning approach to detect the Memcached attack performed by the use of malicious firmware on different types of Cloud attached devices. This vector quantization approach detects the DDoas attack performed by malicious firmware on the different types of cloud devices and this also classifies the applications which are vulnerable to attack based on cloud-The Hackbeased services. The result computed during the testing shows the 98.2 % as legally positive and 0.034% as falsely negative.