Visible to the public Biblio

Found 479 results

Filters: First Letter Of Title is H  [Clear All Filters]
2022-12-07
Chedurupalli, Shivakumar, Karthik Reddy, K, Akhil Raman, T S, James Raju, K.C.  2022.  High Overtone Bulk Acoustic Resonator with improved effective coupling coefficient. 2022 IEEE International Symposium on Applications of Ferroelectrics (ISAF). :1—4.
A High Overtone Bulk Acoustic Wave Resonator (HBAR) is fabricated with the active material being Ba0.5Sr0.5TiO3 (BST). Owing to its strong electrostrictive property, the BST needs an external dc voltage to yield an electromechanical coupling. The variations in resonances with respect to varying dc fields are noted and analyzed with the aid of an Resonant Spectrum Method (RSM) model. Effective coupling coefficient \$(\textbackslashmathrmK\_\textbackslashmathrme\textbackslashmathrmf\textbackslashmathrmfˆ2(%))\$ in the case of employed MIM based structure is observed and the comparisons are drawn with the corresponding values of the CPC structures. An improvement of 70% in the value of \$\textbackslashmathrmK\_\textbackslashmathrme\textbackslashmathrmf\textbackslashmathrmfˆ2\$(%)at 1.34 GHz is witnessed in MIM structures because of direct access to the bottom electrode of the structure.
2022-12-06
Han, May Pyone, Htet, Soe Ye, Wuttisttikulkij, Lunchakorn.  2022.  Hybrid GNS3 and Mininet-WiFi Emulator for SDN Backbone Network Supporting Wireless IoT Traffic. 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :768-771.

In the IoT (Internet of Things) domain, it is still a challenge to modify the routing behavior of IoT traffic at the decentralized backbone network. In this paper, centralized and flexible software-defined networking (SDN) is utilized to route the IoT traffic. The management of IoT data transmission through the SDN core network gives the chance to choose the path with the lowest delay, minimum packet loss, or hops. Therefore, fault-tolerant delay awareness routing is proposed for the emulated SDN-based backbone network to handle delay-sensitive IoT traffic. Besides, the hybrid form of GNS3 and Mininet-WiFi emulation is introduced to collaborate the SDN-based backbone network in GNS3 and the 6LoWPAN (IPv6 over Low Power Personal Area Network) sensor network in Mininet-WiFi.

2022-11-18
Goman, Maksim.  2021.  How to Improve Risk Management in IT Frameworks. 2021 62nd International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS). :1—6.
This paper continues analysis of approaches of IT risk assessment and management in modern IT management frameworks. Building on systematicity principles and the review of concepts of risk and methods of risk analysis in the frameworks, we discuss applicability of the methods for business decision-making in the real world and propose ways to their improvement.
2022-11-08
HeydariGorji, Ali, Rezaei, Siavash, Torabzadehkashi, Mahdi, Bobarshad, Hossein, Alves, Vladimir, Chou, Pai H..  2020.  HyperTune: Dynamic Hyperparameter Tuning for Efficient Distribution of DNN Training Over Heterogeneous Systems. 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). :1–8.
Distributed training is a novel approach to accelerating training of Deep Neural Networks (DNN), but common training libraries fall short of addressing the distributed nature of heterogeneous processors or interruption by other workloads on the shared processing nodes. This paper describes distributed training of DNN on computational storage devices (CSD), which are NAND flash-based, high-capacity data storage with internal processing engines. A CSD-based distributed architecture incorporates the advantages of federated learning in terms of performance scalability, resiliency, and data privacy by eliminating the unnecessary data movement between the storage device and the host processor. The paper also describes Stannis, a DNN training framework that improves on the shortcomings of existing distributed training frameworks by dynamically tuning the training hyperparameters in heterogeneous systems to maintain the maximum overall processing speed in term of processed images per second and energy efficiency. Experimental results on image classification training benchmarks show up to 3.1x improvement in performance and 2.45x reduction in energy consumption when using Stannis plus CSD compare to the generic systems.
2022-10-20
Liu, Xiyao, Fang, Yaokun, He, Feiyi, Li, Zhaoying, Zhang, Yayun, Zeng, Xiongfei.  2021.  High capacity coverless image steganography method based on geometrically robust and chaotic encrypted image moment feature. 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1455—1460.
In recent years, coverless image steganography attracts significant attentions due to its distortion-free trait on carrier images to avoid the detection by steganalysis tools. Despite this advantage, current coverless methods face several challenges, e.g., vulnerability to geometrical attacks and low hidden capacity. In this paper, we propose a novel coverless steganography algorithm based on chaotic encrypted dual radial harmonic Fourier moments (DRHFM) to tackle the challenges. In specific, we build mappings between the extracted DRHFM features and secret messages. These features are robust to various of attacks, especially to geometrical attacks. We further deploy the DRHFM parameters to adjust the feature length, thus ensuring the high hidden capacity. Moreover, we introduce a chaos encryption algorithm to enhance the security of the mapping features. The experimental results demonstrate that our proposed scheme outperforms the state-of-the-art coverless steganography based on image mapping in terms of robustness and hidden capacity.
2022-10-13
Yerima, Suleiman Y., Alzaylaee, Mohammed K..  2020.  High Accuracy Phishing Detection Based on Convolutional Neural Networks. 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS). :1—6.
The persistent growth in phishing and the rising volume of phishing websites has led to individuals and organizations worldwide becoming increasingly exposed to various cyber-attacks. Consequently, more effective phishing detection is required for improved cyber defence. Hence, in this paper we present a deep learning-based approach to enable high accuracy detection of phishing sites. The proposed approach utilizes convolutional neural networks (CNN) for high accuracy classification to distinguish genuine sites from phishing sites. We evaluate the models using a dataset obtained from 6,157 genuine and 4,898 phishing websites. Based on the results of extensive experiments, our CNN based models proved to be highly effective in detecting unknown phishing sites. Furthermore, the CNN based approach performed better than traditional machine learning classifiers evaluated on the same dataset, reaching 98.2% phishing detection rate with an F1-score of 0.976. The method presented in this paper compares favourably to the state-of-the art in deep learning based phishing website detection.
2022-10-12
Musthyala, Harish, Reddy, P. Nagarjuna.  2021.  Hacking wireless network credentials by performing phishing attack using Python Scripting. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS). :248—253.
The availability of number of open-source hacking tools over the internet and many hacking tools in-built with the Kali Linux operating system led to easy understanding and performing hacking by individuals. Even though, hacking the Wi-Fi passwords is considered a tedious task with open-source tools, they can be hacked easily with phishing. Phishing involves tricking the users with malicious emails and obtaining sensitive information from them. This paper describes the different wireless security protocols and tools for hacking wireless networks. A python script is developed which can be sent as phishing to get all the SSID's and passwords to which the system has been connected. The script has been executed and the results are presented.
2022-10-04
Lee, Jian-Hsing, Nidhi, Karuna, Hung, Chung-Yu, Liao, Ting-Wei, Liu, Wu-Yang, Su, Hung-Der.  2021.  Hysteresis Effect Induces the Inductor Power Loss of Converter during the Voltage Conversion. 2021 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1–7.
A new methodology to calculate the hysteresis induced power loss of inductor from the measured waveforms of DC-to-DC converter during the voltage conversion is presented. From this study, we find that the duty cycles (D) of the buck and boost converters used till date for inductance current calculation are not exactly equal to VOUT/VIN and 1-VIN/VOUT as the inductance change induced by the hysteresis effect cannot be neglected. Although the increase in the loading currents of the converter increases the remanence magnetization of inductor at the turn-off time (toff), this remanence magnetization is destroyed by the turbulence induced vortex current at the transistor turn-on transient. So, the core power loss of inductor increases with the loading current of the converter and becomes much larger than other power losses and cannot be neglected for the power efficiency calculation during power stage design.
2022-09-29
López-Aguilar, Pablo, Solanas, Agusti.  2021.  Human Susceptibility to Phishing Attacks Based on Personality Traits: The Role of Neuroticism. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :1363–1368.
The COVID19 pandemic situation has opened a wide range of opportunities for cyber-criminals, who take advantage of the anxiety generated and the time spent on the Internet, to undertake massive phishing campaigns. Although companies are adopting protective measures, the psychological traits of the victims are still considered from a very generic perspective. In particular, current literature determines that the model proposed in the Big-Five personality traits (i.e., Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism) might play an important role in human behaviour to counter cybercrime. However, results do not provide unanimity regarding the correlation between phishing susceptibility and neuroticism. With the aim to understand this lack of consensus, this article provides a comprehensive literature review of papers extracted from relevant databases (IEEE Xplore, Scopus, ACM Digital Library, and Web of Science). Our results show that there is not a well-established psychological theory explaining the role of neuroticism in the phishing context. We sustain that non-representative samples and the lack of homogeneity amongst the studies might be the culprits behind this lack of consensus on the role of neuroticism on phishing susceptibility.
2022-08-12
Liu, Songsong, Feng, Pengbin, Sun, Kun.  2021.  HoneyBog: A Hybrid Webshell Honeypot Framework against Command Injection. 2021 IEEE Conference on Communications and Network Security (CNS). :218—226.
Web server is an appealing target for attackers since it may be exploited to gain access to an organization’s internal network. After compromising a web server, the attacker can construct a webshell to maintain a long-term and stealthy access for further attacks. Among all webshell-based attacks, command injection is a powerful attack that can be launched to steal sensitive data from the web server or compromising other computers in the network. To monitor and analyze webshell-based command injection, we develop a hybrid webshell honeypot framework called HoneyBog, which intercepts and redirects malicious injected commands from the front-end honeypot to the high-fidelity back-end honeypot for execution. HoneyBog can achieve two advantages by using the client-server honeypot architecture. First, since the webshell-based injected commands are transferred from the compromised web server to a remote constrained execution environment, we can prevent the attacker from launching further attacks in the protected network. Second, it facilitates the centralized management of high-fidelity honeypots for remote honeypot service providers. Moreover, we increase the system fidelity of HoneyBog by synchronizing the website files between the front-end and back-end honeypots. We implement a prototype of HoneyBog using PHP and the Apache web server. Our experiments on 260 PHP webshells show that HoneyBog can effectively intercept and redirect injected commands with a low performance overhead.
2022-07-13
Wang, Yuanfa, Pang, Yu, Huang, Huan, Zhou, Qianneng, Luo, Jiasai.  2021.  Hardware Design of Gaussian Kernel Function for Non-Linear SVM Classification. 2021 IEEE 14th International Conference on ASIC (ASICON). :1—4.
High-performance implementation of non-linear support vector machine (SVM) function is important in many applications. This paper develops a hardware design of Gaussian kernel function with high-performance since it is one of the most modules in non-linear SVM. The designed Gaussian kernel function consists of Norm unit and exponentiation function unit. The Norm unit uses fewer subtractors and multiplexers. The exponentiation function unit performs modified coordinate rotation digital computer algorithm with wide range of convergence and high accuracy. The presented circuit is implemented on a Xilinx field-programmable gate array platform. The experimental results demonstrate that the designed circuit achieves low resource utilization and high efficiency with relative error 0.0001.
2022-07-12
T⊘ndel, Inger Anne, Vefsnmo, Hanne, Gjerde, Oddbj⊘rn, Johannessen, Frode, Fr⊘ystad, Christian.  2021.  Hunting Dependencies: Using Bow-Tie for Combined Analysis of Power and Cyber Security. 2020 2nd International Conference on Societal Automation (SA). :1—8.
Modern electric power systems are complex cyber-physical systems. The integration of traditional power and digital technologies result in interdependencies that need to be considered in risk analysis. In this paper we argue the need for analysis methods that can combine the competencies of various experts in a common analysis focusing on the overall system perspective. We report on our experiences on using the Vulnerability Analysis Framework (VAF) and bow-tie diagrams in a combined analysis of the power and cyber security aspects in a realistic case. Our experiences show that an extended version of VAF with increased support for interdependencies is promising for this type of analysis.
2022-07-01
Cody, Tyler, Beling, Peter A..  2021.  Heterogeneous Transfer in Deep Learning for Spectrogram Classification in Cognitive Communications. 2021 IEEE Cognitive Communications for Aerospace Applications Workshop (CCAAW). :1—5.
Machine learning offers performance improvements and novel functionality, but its life cycle performance is understudied. In areas like cognitive communications, where systems are long-lived, life cycle trade-offs are key to system design. Herein, we consider the use of deep learning to classify spectrograms. We vary the label-space over which the network makes classifications, as may emerge with changes in use over a system’s life cycle, and compare heterogeneous transfer learning performance across label-spaces between model architectures. Our results offer an empirical example of life cycle challenges to using machine learning for cognitive communications. They evidence important trade-offs among performance, training time, and sensitivity to the order in which the label-space is changed. And they show that fine-tuning can be used in the heterogeneous transfer of spectrogram classifiers.
2022-06-14
Hofbauer, Heinz, Martínez-Díaz, Yoanna, Kirchgasser, Simon, Méndez-Vázquez, Heydi, Uhl, Andreas.  2021.  Highly Efficient Protection of Biometric Face Samples with Selective JPEG2000 Encryption. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :2580–2584.
When biometric databases grow larger, a security breach or leak can affect millions. In order to protect against such a threat, the use of encryption is a natural choice. However, a biometric identification attempt then requires the decryption of a potential huge database, making a traditional approach potentially unfeasible. The use of selective JPEG2000 encryption can reduce the encryption’s computational load and enable a secure storage of biometric sample data. In this paper we will show that selective encryption of face biometric samples is secure. We analyze various encoding settings of JPEG2000, selective encryption parameters on the "Labeled Faces in the Wild" database and apply several traditional and deep learning based face recognition methods.
2022-06-10
Nguyen, Tien N., Choo, Raymond.  2021.  Human-in-the-Loop XAI-enabled Vulnerability Detection, Investigation, and Mitigation. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1210–1212.
The need for cyber resilience is increasingly important in our technology-dependent society, where computing systems, devices and data will continue to be the target of cyber attackers. Hence, we propose a conceptual framework called ‘Human-in-the-Loop Explainable-AI-Enabled Vulnerability Detection, Investigation, and Mitigation’ (HXAI-VDIM). Specifically, instead of resolving complex scenario of security vulnerabilities as an output of an AI/ML model, we integrate the security analyst or forensic investigator into the man-machine loop and leverage explainable AI (XAI) to combine both AI and Intelligence Assistant (IA) to amplify human intelligence in both proactive and reactive processes. Our goal is that HXAI-VDIM integrates human and machine in an interactive and iterative loop with security visualization that utilizes human intelligence to guide the XAI-enabled system and generate refined solutions.
2022-06-09
Dekarske, Jason, Joshi, Sanjay S..  2021.  Human Trust of Autonomous Agent Varies With Strategy and Capability in Collaborative Grid Search Task. 2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS). :1–6.
Trust is an important emerging area of study in human-robot cooperation. Many studies have begun to look at the issue of robot (agent) capability as a predictor of human trust in the robot. However, the assumption that agent capability is the sole predictor of human trust could underestimate the complexity of the problem. This study aims to investigate the effects of agent-strategy and agent-capability in a visual search task. Fourteen subjects were recruited to partake in a web-based grid search task. They were each paired with a series of autonomous agents to search an on-screen grid to find a number of outlier objects as quickly as possible. Both the human and agent searched the grid concurrently and the human was able to see the movement of the agent. Each trial, a different autonomous agent with its assigned capability, used one of three search strategies to assist their human counterpart. After each trial, the autonomous agent reported the number of outliers it found, and the human subject was asked to determine the total number of outliers in the area. Some autonomous agents reported only a fraction of the outliers they encountered, thus coding a varying level of agent capability. Human subjects then evaluated statements related to the behavior, reliability, and trust of the agent. The results showed increased measures of trust and reliability with increasing capability. Additionally, the most legible search strategies received the highest average ratings in a measure of familiarity. Remarkably, given no prior information about capabilities or strategies that they would see, subjects were able to determine consistent trustworthiness of the agent. Furthermore, both capability and strategy of the agent had statistically significant effects on the human’s trust in the agent.
Summerer, Christoph, Regnath, Emanuel, Ehm, Hans, Steinhorst, Sebastian.  2021.  Human-based Consensus for Trust Installation in Ontologies. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–3.
In this paper, we propose a novel protocol to represent the human factor on a blockchain environment. Our approach allows single or groups of humans to propose data in blocks which cannot be validated automatically but need human knowledge and collaboration to be validated. Only if human-based consensus on the correctness and trustworthiness of the data is reached, the new block is appended to the blockchain. This human approach significantly extends the possibilities of blockchain applications on data types apart from financial transaction data.
Javid, Farshad, Lighvan, Mina Zolfy.  2021.  Honeypots Vulnerabilities to Backdoor Attack. 2021 International Conference on Information Security and Cryptology (ISCTURKEY). :161–166.
Honeypots are widely used to increase the security of systems and networks, but they only observe the activities that are done against them. A honeypot will not be able to detect an exploit in another system unless it interacts directly with it. In addition to the weakness caused by the normal behavior of honeypots, our research shows that honeypots may succumb to back door attacks. To prove this claim, a backdoor attack is performed on the popular Honeypot system. Experimental results show that the Kfsensor Honeypot is bypassed using a backdoor attack, and network protection is disabled even with the Honeypot enabled.
You, Jianzhou, Lv, Shichao, Sun, Yue, Wen, Hui, Sun, Limin.  2021.  HoneyVP: A Cost-Effective Hybrid Honeypot Architecture for Industrial Control Systems. ICC 2021 - IEEE International Conference on Communications. :1–6.
As a decoy for hackers, honeypots have been proved to be a very valuable tool for collecting real data. However, due to closed source and vendor-specific firmware, there are significant limitations in cost for researchers to design an easy-to-use and high-interaction honeypot for industrial control systems (ICSs). To solve this problem, it’s necessary to find a cost-effective solution. In this paper, we propose a novel honeypot architecture termed HoneyVP to support a semi-virtual and semi-physical honeypot design and implementation to enable high cost performance. Specially, we first analyze cyber-attacks on ICS devices in view of different interaction levels. Then, in order to deal with these attacks, our HoneyVP architecture clearly defines three basic independent and cooperative components, namely, the virtual component, the physical component, and the coordinator. Finally, a local-remote cooperative ICS honeypot system is implemented to validate its feasibility and effectiveness. Our experimental results show the advantages of using the proposed architecture compared with the previous honeypot solutions. HoneyVP provides a cost-effective solution for ICS security researchers, making ICS honeypots more attractive and making it possible to capture physical interactions.
Kadykov, Victor, Levina, Alla.  2021.  Homomorphic Properties Within Lattice-Based Encryption Systems. 2021 10th Mediterranean Conference on Embedded Computing (MECO). :1–4.
Homomorphic encryption allows users to perform mathematical operations on open data in encrypted form by performing homomorphically appropriate operations on encrypted data without knowing the decryption function (key). Nowadays such possibilities for cryptoalgorithm are very important in many areas such as data storage, cloud computing, cryptocurrency, and mush more. In 2009 a system of fully homomorphic encryption was constructed, in the future, many works were done based on it. In this work, is performed the implementation of ideal lattices for constructing homomorphic operations over ciphertexts. The idea, presented in this work, allows to separate relations between homomorphic and security parts of a lattice-based homomorphic encryption system.
Anwar, Ahmed H., Leslie, Nandi O., Kamhoua, Charles A..  2021.  Honeypot Allocation for Cyber Deception in Internet of Battlefield Things Systems. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :1005–1010.
Cyber deception plays an important role in both proactive and reactive defense systems. Internet of Battlefield things connecting smart devices of any military tactical network is of great importance. The goal of cyber deception is to provide false information regarding the network state, and topology to protect the IoBT's network devices. In this paper, we propose a novel deceptive approach based on game theory that takes into account the topological aspects of the network and the criticality of each device. To find the optimal deceptive strategy, we formulate a two-player game to study the interactions between the network defender and the adversary. The Nash equilibrium of the game model is characterized. Moreover, we propose a scalable game-solving algorithm to overcome the curse of dimensionality. This approach is based on solving a smaller in-size subgame per node. Our numerical results show that the proposed deception approach effectively reduced the impact and the reward of the attacker
2022-06-08
Aksoy, Levent, Nguyen, Quang-Linh, Almeida, Felipe, Raik, Jaan, Flottes, Marie-Lise, Dupuis, Sophie, Pagliarini, Samuel.  2021.  High-level Intellectual Property Obfuscation via Decoy Constants. 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1–7.

This paper presents a high-level circuit obfuscation technique to prevent the theft of intellectual property (IP) of integrated circuits. In particular, our technique protects a class of circuits that relies on constant multiplications, such as neural networks and filters, where the constants themselves are the IP to be protected. By making use of decoy constants and a key-based scheme, a reverse engineer adversary at an untrusted foundry is rendered incapable of discerning true constants from decoys. The time-multiplexed constant multiplication (TMCM) block of such circuits, which realizes the multiplication of an input variable by a constant at a time, is considered as our case study for obfuscation. Furthermore, two TMCM design architectures are taken into account; an implementation using a multiplier and a multiplierless shift-adds implementation. Optimization methods are also applied to reduce the hardware complexity of these architectures. The well-known satisfiability (SAT) and automatic test pattern generation (ATPG) based attacks are used to determine the vulnerability of the obfuscated designs. It is observed that the proposed technique incurs small overheads in area, power, and delay that are comparable to the hardware complexity of prominent logic locking methods. Yet, the advantage of our approach is in the insight that constants - instead of arbitrary circuit nodes - become key-protected.

2022-06-06
Uchida, Hikaru, Matsubara, Masaki, Wakabayashi, Kei, Morishima, Atsuyuki.  2020.  Human-in-the-loop Approach towards Dual Process AI Decisions. 2020 IEEE International Conference on Big Data (Big Data). :3096–3098.
How to develop AI systems that can explain how they made decisions is one of the important and hot topics today. Inspired by the dual-process theory in psychology, this paper proposes a human-in-the-loop approach to develop System-2 AI that makes an inference logically and outputs interpretable explanation. Our proposed method first asks crowd workers to raise understandable features of objects of multiple classes and collect training data from the Internet to generate classifiers for the features. Logical decision rules with the set of generated classifiers can explain why each object is of a particular class. In our preliminary experiment, we applied our method to an image classification of Asian national flags and examined the effectiveness and issues of our method. In our future studies, we plan to combine the System-2 AI with System-1 AI (e.g., neural networks) to efficiently output decisions.
Boddy, Aaron, Hurst, William, Mackay, Michael, El Rhalibi, Abdennour.  2019.  A Hybrid Density-Based Outlier Detection Model for Privacy in Electronic Patient Record system. 2019 5th International Conference on Information Management (ICIM). :92–96.
This research concerns the detection of unauthorised access within hospital networks through the real-time analysis of audit logs. Privacy is a primary concern amongst patients due to the rising adoption of Electronic Patient Record (EPR) systems. There is growing evidence to suggest that patients may withhold information from healthcare providers due to lack of Trust in the security of EPRs. Yet, patient record data must be available to healthcare providers at the point of care. Ensuring privacy and confidentiality of that data is challenging. Roles within healthcare organisations are dynamic and relying on access control is not sufficient. Through proactive monitoring of audit logs, unauthorised accesses can be detected and presented to an analyst for review. Advanced data analytics and visualisation techniques can be used to aid the analysis of big data within EPR audit logs to identify and highlight pertinent data points. Employing a human-in-the-loop model ensures that suspicious activity is appropriately investigated and the data analytics is continuously improving. This paper presents a system that employs a Human-in-the-Loop Machine Learning (HILML) algorithm, in addition to a density-based local outlier detection model. The system is able to detect 145 anomalous behaviours in an unlabelled dataset of 1,007,727 audit logs. This equates to 0.014% of the EPR accesses being labelled as anomalous in a specialist Liverpool (UK) hospital.
Fang, Yuan, Li, Lixiang, Li, Yixiao, Peng, Haipeng.  2021.  High Efficient and Secure Chaos-Based Compressed Spectrum Sensing in Cognitive Radio IoT Network. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :670–676.
In recent years, with the rapid update of wireless communication technologies such as 5G and the Internet of Things, as well as the explosive growth of wireless intelligent devices, people's demand for radio spectrum resources is increasing, which leads spectrum scarcity is becoming more serious. To address the scarcity of spectrum, the Internet of Things based on cognitive radio (CR-IoT) has become an effective technique to enable IoT devices to reuse the spectrum that has been fully utilized. The frequency band information is transmitted through wireless communication in the CR-IoT network, so the node is easily to be eavesdropped or tampered with by attackers in the process of transmitting data, which leads to information leakage and wrong perception results. To deal with the security problem of channel data transmission, this paper proposes a chaotic compressed spectrum sensing algorithm. In this algorithm, the chaotic parameter package is utilized to generate the measurement matrix, which makes good use of the sensitivity of the initial value of chaotic system to improve the transmission security. And the introduction of the semi-tensor theory significantly reduces the dimension of the matrix that the secondary user needs to store. In addition, the semi-tensor compressed sensing is used in the fusion center for parallel reconstruction process, which effectively reduces the sensing time delay. The simulation results show that the chaotic compressed spectrum sensing algorithm can achieve faster, high-quality, and low-energy channel energy transmission.