Visible to the public Biblio

Found 479 results

Filters: First Letter Of Title is H  [Clear All Filters]
2023-09-07
Sha, Weinan, Luo, Tianyu, Leng, Jiewu, Lin, Zisheng.  2022.  Heterogeneous Multi-Blockchain Model-based Intellectual Property Protection in Social Manufacturing Paradigm. 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD). :891–896.
[Purpose/meaning] In this paper, a unified scheme based on blockchain technology to realize the three modules of intellectual property confirmation, utilization, and protection of rights at the application layer is constructed, to solve the problem of unbalanced and inadequate resource distribution and development level in the field of industrial intellectual property. [Method/process] Based on the application of the core technology of blockchain in the field of intellectual property, this paper analyzes the pain points in the current field of intellectual property, and selects matching blockchain types according to the protection of intellectual property and the different decisions involved in the transaction process, to build a heterogeneous multi-chain model based on blockchain technology. [Conclusion] The heterogeneous multi-chain model based on Polkadot[1] network is proposed to realize the intellectual property protection scheme of a heterogeneous multi-chain model, to promote collaborative design and product development between regions, and to make up for the shortcomings of technical exchange, and weaken the phenomenon of "information island" in a certain extent. [Limitation/deficiency] The design of smart contracts in the field of intellectual property, the development of cross-chain protocols, and the formulation of national standards for blockchain technology still need to be developed and improved. At the same time, the intellectual property protection model designed in this paper needs to be verified in the application of practical cases.
2023-08-16
Kara, Orhun.  2022.  How to Exploit Biham-Keller ID Characteristic to Minimize Data. 2022 15th International Conference on Information Security and Cryptography (ISCTURKEY). :44—48.
In this work, we examine the following question: How can we improve the best data complexity among the impossible differential (ID) attacks on AES? One of the most efficient attacks on AES are ID attacks. We have seen that the Biham-Keller ID characteristics are frequently used in these ID attacks. We observe the following fact: The probability that a given pair with a wrong key produce an ID characteristic is closely correlated to the data usage negatively. So, we maximize this probability by exploiting a Biham-Keller ID characteristic in a different manner than the other attacks. As a result, we mount an ID attack on 7-round AES-192 and obtain the best data requirement among all the ID attacks on 7-round AES. We make use of only 2$^\textrm58$ chosen plaintexts.
2023-07-13
Hao, Qiang, Xu, Dongdong, Zhang, Zhun, Wang, Jiqing, Le, Tong, Wang, Jiawei, Zhang, Jinlei, Liu, Jiakang, Ma, Jinhui, Wang, Xiang.  2022.  A Hardware-Assisted Security Monitoring Method for Jump Instruction and Jump Address in Embedded Systems. 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC). :197–202.
With the development of embedded systems towards networking and intelligence, the security threats they face are becoming more difficult to prevent. Existing protection methods make it difficult to monitor jump instructions and their target addresses for tampering by attackers at the low hardware implementation overhead and performance overhead. In this paper, a hardware-assisted security monitoring module is designed to monitor the integrity of jump instructions and jump addresses when executing programs. The proposed method has been implemented on the Xilinx Kintex-7 FPGA platform. Experiments show that this method is able to effectively monitor tampering attacks on jump instructions as well as target addresses while the embedded system is executing programs.
2023-07-12
Hassan, Shahriar, Muztaba, Md. Asif, Hossain, Md. Shohrab, Narman, Husnu S..  2022.  A Hybrid Encryption Technique based on DNA Cryptography and Steganography. 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0501—0508.
The importance of data and its transmission rate are increasing as the world is moving towards online services every day. Thus, providing data security is becoming of utmost importance. This paper proposes a secure data encryption and hiding method based on DNA cryptography and steganography. Our approach uses DNA for encryption and data hiding processes due to its high capacity and simplicity in securing various kinds of data. Our proposed method has two phases. In the first phase, it encrypts the data using DNA bases along with Huffman coding. In the second phase, it hides the encrypted data into a DNA sequence using a substitution algorithm. Our proposed method is blind and preserves biological functionality. The result shows a decent cracking probability with comparatively better capacity. Our proposed method has eliminated most limitations identified in the related works. Our proposed hybrid technique can provide a double layer of security to sensitive data.
Xiang, Peng, Peng, ChengWei, Li, Qingshan.  2022.  Hierarchical Association Features Learning for Network Traffic Recognition. 2022 International Conference on Information Processing and Network Provisioning (ICIPNP). :129—133.
With the development of network technology, identifying specific traffic has become important in network monitoring and security. However, designing feature sets that can accurately describe network traffic is still an urgent problem. Most of existing researches cannot realize effectively the identification of targets, and don't perform well in the complex and dynamic network environment. Aiming at these problems, we propose a novel method in this paper, which learns correlation features of network traffic based on the hierarchical structure. Firstly, the method learns the spatial-temporal features using convolutional neural networks (CNNs) and the bidirectional long short-term memory networks (Bi-LSTMs), then builds network topology to capture dependency characteristics between sessions and learns the context-related features through the graph attention networks (GATs). Finally, the network traffic session is classified using a fully connected network. The experimental results show that our method can effectively improve the detection ability and achieve a better classification performance overall.
2023-07-11
Gritti, Fabio, Pagani, Fabio, Grishchenko, Ilya, Dresel, Lukas, Redini, Nilo, Kruegel, Christopher, Vigna, Giovanni.  2022.  HEAPSTER: Analyzing the Security of Dynamic Allocators for Monolithic Firmware Images. 2022 IEEE Symposium on Security and Privacy (SP). :1082—1099.
Dynamic memory allocators are critical components of modern systems, and developers strive to find a balance between their performance and their security. Unfortunately, vulnerable allocators are routinely abused as building blocks in complex exploitation chains. Most of the research regarding memory allocators focuses on popular and standardized heap libraries, generally used by high-end devices such as desktop systems and servers. However, dynamic memory allocators are also extensively used in embedded systems but they have not received much scrutiny from the security community.In embedded systems, a raw firmware image is often the only available piece of information, and finding heap vulnerabilities is a manual and tedious process. First of all, recognizing a memory allocator library among thousands of stripped firmware functions can quickly become a daunting task. Moreover, emulating firmware functions to test for heap vulnerabilities comes with its own set of challenges, related, but not limited, to the re-hosting problem.To fill this gap, in this paper we present HEAPSTER, a system that automatically identifies the heap library used by a monolithic firmware image, and tests its security with symbolic execution and bounded model checking. We evaluate HEAPSTER on a dataset of 20 synthetic monolithic firmware images — used as ground truth for our analyses — and also on a dataset of 799 monolithic firmware images collected in the wild and used in real-world devices. Across these datasets, our tool identified 11 different heap management library (HML) families containing a total of 48 different variations. The security testing performed by HEAPSTER found that all the identified variants are vulnerable to at least one critical heap vulnerability. The results presented in this paper show a clear pattern of poor security standards, and raise some concerns over the security of dynamic memory allocators employed by IoT devices.
2023-06-23
Rajin, S M Ataul Karim, Murshed, Manzur, Paul, Manoranjan, Teng, Shyh Wei, Ma, Jiangang.  2022.  Human pose based video compression via forward-referencing using deep learning. 2022 IEEE International Conference on Visual Communications and Image Processing (VCIP). :1–5.

To exploit high temporal correlations in video frames of the same scene, the current frame is predicted from the already-encoded reference frames using block-based motion estimation and compensation techniques. While this approach can efficiently exploit the translation motion of the moving objects, it is susceptible to other types of affine motion and object occlusion/deocclusion. Recently, deep learning has been used to model the high-level structure of human pose in specific actions from short videos and then generate virtual frames in future time by predicting the pose using a generative adversarial network (GAN). Therefore, modelling the high-level structure of human pose is able to exploit semantic correlation by predicting human actions and determining its trajectory. Video surveillance applications will benefit as stored “big” surveillance data can be compressed by estimating human pose trajectories and generating future frames through semantic correlation. This paper explores a new way of video coding by modelling human pose from the already-encoded frames and using the generated frame at the current time as an additional forward-referencing frame. It is expected that the proposed approach can overcome the limitations of the traditional backward-referencing frames by predicting the blocks containing the moving objects with lower residuals. Our experimental results show that the proposed approach can achieve on average up to 2.83 dB PSNR gain and 25.93% bitrate savings for high motion video sequences compared to standard video coding.

ISSN: 2642-9357

2023-05-19
Vega-Martinez, Valeria, Cooper, Austin, Vera, Brandon, Aljohani, Nader, Bretas, Arturo.  2022.  Hybrid Data-Driven Physics-Based Model Framework Implementation: Towards a Secure Cyber-Physical Operation of the Smart Grid. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). :1—5.
False data injection cyber-attack detection models on smart grid operation have been much explored recently, considering analytical physics-based and data-driven solutions. Recently, a hybrid data-driven physics-based model framework for monitoring the smart grid is developed. However, the framework has not been implemented in real-time environment yet. In this paper, the framework of the hybrid model is developed within a real-time simulation environment. OPAL-RT real-time simulator is used to enable Hardware-in-the-Loop testing of the framework. IEEE 9-bus system is considered as a testing grid for gaining insight. The process of building the framework and the challenges faced during development are presented. The performance of the framework is investigated under various false data injection attacks.
2023-05-12
Wang, Yushen, Yang, Guang, Sun, Tianwen, Yang, Kai, Zheng, Changling.  2022.  High-Performance, All-Scenario COVID-19 Pathogen Detection, Prevention, and Control System. 2022 International Conference on Computers, Information Processing and Advanced Education (CIPAE). :364–368.

Given the COVID-19 pandemic, this paper aims at providing a full-process information system to support the detection of pathogens for a large range of populations, satisfying the requirements of light weight, low cost, high concurrency, high reliability, quick response, and high security. The project includes functional modules such as sample collection, sample transfer, sample reception, laboratory testing, test result inquiry, pandemic analysis, and monitoring. The progress and efficiency of each collection point as well as the status of sample transfer, reception, and laboratory testing are all monitored in real time, in order to support the comprehensive surveillance of the pandemic situation and support the dynamic deployment of pandemic prevention resources in a timely and effective manner. Deployed on a cloud platform, this system can satisfy ultra-high concurrent data collection requirements with 20 million collections per day and a maximum of 5 million collections per hour, due to its advantages of high concurrency, elasticity, security, and manageability. This system has also been widely used in Jiangsu, Shaanxi provinces, for the prevention and control of COVID-19 pandemic. Over 100 million NAT data have been collected nationwide, providing strong informational support for scientific and reasonable formulation and execution of COVID-19 prevention plans.

Wei, Yuecen, Fu, Xingcheng, Sun, Qingyun, Peng, Hao, Wu, Jia, Wang, Jinyan, Li, Xianxian.  2022.  Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation. 2022 IEEE International Conference on Data Mining (ICDM). :528–537.
Social networks are considered to be heterogeneous graph neural networks (HGNNs) with deep learning technological advances. HGNNs, compared to homogeneous data, absorb various aspects of information about individuals in the training stage. That means more information has been covered in the learning result, especially sensitive information. However, the privacy-preserving methods on homogeneous graphs only preserve the same type of node attributes or relationships, which cannot effectively work on heterogeneous graphs due to the complexity. To address this issue, we propose a novel heterogeneous graph neural network privacy-preserving method based on a differential privacy mechanism named HeteDP, which provides a double guarantee on graph features and topology. In particular, we first define a new attack scheme to reveal privacy leakage in the heterogeneous graphs. Specifically, we design a two-stage pipeline framework, which includes the privacy-preserving feature encoder and the heterogeneous link reconstructor with gradients perturbation based on differential privacy to tolerate data diversity and against the attack. To better control the noise and promote model performance, we utilize a bi-level optimization pattern to allocate a suitable privacy budget for the above two modules. Our experiments on four public benchmarks show that the HeteDP method is equipped to resist heterogeneous graph privacy leakage with admirable model generalization.
ISSN: 2374-8486
2023-03-31
Biswas, Ankur, K V, Pradeep, Kumar Pandey, Arvind, Kumar Shukla, Surendra, Raj, Tej, Roy, Abhishek.  2022.  Hybrid Access Control for Atoring Large Data with Security. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). :838–844.
Although the public cloud is known for its incredible capabilities, consumers cannot totally depend on cloud service providers to keep personal data because to the lack of client maneuverability. To protect privacy, data controllers outsourced encryption keys rather than providing information. Crypt - text to conduct out okay and founder access control and provide the encryption keys with others, innate quality Aes (CP-ABE) may be employed. This, however, falls short of effectively protecting against new dangers. The public cloud was unable to validate if a downloader could decode using a number of older methods. Therefore, these files should be accessible to everyone having access to a data storage. A malicious attacker may download hundreds of files in order to launch Economic Deny of Sustain (EDoS) attacks, greatly depleting the cloud resource. The user of cloud storage is responsible for paying the fee. Additionally, the public cloud serves as both the accountant and the payer of resource consumption costs, without offering data owners any information. Cloud infrastructure storage should assuage these concerns in practice. In this study, we provide a technique for resource accountability and defense against DoS attacks for encrypted cloud storage tanks. It uses black-box CP-ABE techniques and abides by the access policy of CP-arbitrary ABE. After presenting two methods for different parameters, speed and security evaluations are given.
2023-03-17
Woralert, Chutitep, Liu, Chen, Blasingame, Zander.  2022.  HARD-Lite: A Lightweight Hardware Anomaly Realtime Detection Framework Targeting Ransomware. 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
Recent years have witnessed a surge in ransomware attacks. Especially, many a new variant of ransomware has continued to emerge, employing more advanced techniques distributing the payload while avoiding detection. This renders the traditional static ransomware detection mechanism ineffective. In this paper, we present our Hardware Anomaly Realtime Detection - Lightweight (HARD-Lite) framework that employs semi-supervised machine learning method to detect ransomware using low-level hardware information. By using an LSTM network with a weighted majority voting ensemble and exponential moving average, we are able to take into consideration the temporal aspect of hardware-level information formed as time series in order to detect deviation in system behavior, thereby increasing the detection accuracy whilst reducing the number of false positives. Testing against various ransomware across multiple families, HARD-Lite has demonstrated remarkable effectiveness, detecting all cases tested successfully. What's more, with a hierarchical design that distributing the classifier from the user machine that is under monitoring to a server machine, Hard-Lite enables good scalability as well.
2023-03-03
Xu, Bo, Zhang, Xiaona, Cao, Heyang, Li, Yu, Wang, Li-Ping.  2022.  HERMS: A Hierarchical Electronic Records Management System Based on Blockchain with Distributed Key Generation. 2022 IEEE International Conference on Services Computing (SCC). :295–304.
In a traditional electronic records management system (ERMS), the legitimacy of the participants’ identities is verified by Certificate Authority (CA) certifications. The authentication process is complicated and takes up lots of memory. To overcome this problem, we construct a hierarchical electronic records management system by using a Hierarchical Identity-Based Cryptosystem (HIBC) to replace CA. However, there exist the threats of malicious behavior from a private key generator (PKG) or an entity in the upper layer because the private keys are generated by a PKG or upper entity in HIBC. Thus, we adopt distributed key generation protocols in HIBC to avoid the threats. Finally, we use blockchain technology in our system to achieve decentralized management.
2023-02-17
Ferrell, Uma D., Anderegg, Alfred H. Andy.  2022.  Holistic Assurance Case for System-of-Systems. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC). :1–9.
Aviation is a highly sophisticated and complex System-of-Systems (SoSs) with equally complex safety oversight. As novel products with autonomous functions and interactions between component systems are adopted, the number of interdependencies within and among the SoS grows. These interactions may not always be obvious. Understanding how proposed products (component systems) fit into the context of a larger SoS is essential to promote the safe use of new as well as conventional technology.UL 4600, is a Standard for Safety for the Evaluation of Autonomous Products specifically written for completely autonomous Load vehicles. The goal-based, technology-neutral features of this standard make it adaptable to other industries and applications.This paper, using the philosophy of UL 4600, gives guidance for creating an assurance case for products in an SoS context. An assurance argument is a cogent structured argument concluding that an autonomous aircraft system possesses all applicable through-life performance and safety properties. The assurance case process can be repeated at each level in the SoS: aircraft, aircraft system, unmodified components, and modified components. The original Equipment Manufacturer (OEM) develops the assurance case for the whole aircraft envisioned in the type certification process. Assurance cases are continuously validated by collecting and analyzing Safety Performance Indicators (SPIs). SPIs provide predictive safety information, thus offering an opportunity to improve safety by preventing incidents and accidents. Continuous validation is essential for risk-based approval of autonomously evolving (dynamic) systems, learning systems, and new technology. System variants, derivatives, and components are captured in a subordinate assurance case by their developer. These variants of the assurance case inherently reflect the evolution of the vehicle-level derivatives and options in the context of their specific target ecosystem. These subordinate assurance cases are nested under the argument put forward by the OEM of components and aircraft, for certification credit.It has become a common practice in aviation to address design hazards through operational mitigations. It is also common for hazards noted in an aircraft component system to be mitigated within another component system. Where a component system depends on risk mitigation in another component of the SoS, organizational responsibilities must be stated explicitly in the assurance case. However, current practices do not formalize accounting for these dependencies by the parties responsible for design; consequently, subsequent modifications are made without the benefit of critical safety-related information from the OEMs. The resulting assurance cases, including 3rd party vehicle modifications, must be scrutinized as part of the holistic validation process.When changes are made to a product represented within the assurance case, their impact must be analyzed and reflected in an updated assurance case. An OEM can facilitate this by integrating affected assurance cases across their customer’s supply chains to ensure their validity. The OEM is expected to exercise the sphere-of-control over their product even if it includes outsourced components. Any organization that modifies a product (with or without assurance argumentation information from other suppliers) is accountable for validating the conditions for any dependent mitigations. For example, the OEM may manage the assurance argumentation by identifying requirements and supporting SPI that must be applied in all component assurance cases. For their part, component assurance cases must accommodate all spheres-of-control that mitigate the risks they present in their respective contexts. The assurance case must express how interdependent mitigations will collectively assure the outcome. These considerations are much more than interface requirements and include explicit hazard mitigation dependencies between SoS components. A properly integrated SoS assurance case reflects a set of interdependent systems that could be independently developed..Even in this extremely interconnected environment, stakeholders must make accommodations for the independent evolution of products in a manner that protects proprietary information, domain knowledge, and safety data. The collective safety outcome for the SoS is based on the interdependence of mitigations by each constituent component and could not be accomplished by any single component. This dependency must be explicit in the assurance case and should include operational mitigations predicated on people and processes.Assurance cases could be used to gain regulatory approval of conventional and new technology. They can also serve to demonstrate consistency with a desired level of safety, especially in SoSs whose existing standards may not be adequate. This paper also provides guidelines for preserving alignment between component assurance cases along a product supply chain, and the respective SoSs that they support. It shows how assurance is a continuous process that spans product evolution through the monitoring of interdependent requirements and SPI. The interdependency necessary for a successful assurance case encourages stakeholders to identify and formally accept critical interconnections between related organizations. The resulting coordination promotes accountability for safety through increased awareness and the cultivation of a positive safety culture.
ISSN: 2155-7209
Sun, Zuntao.  2022.  Hierarchical and Complex Parallel Network Security Threat Situation Quantitative Assessment Method. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :276–279.
Network security is a problem that is of great concern to all countries at this stage. How to ensure that the network provides effective services to people without being exposed to potential security threats has become a major concern for network security researchers. In order to better understand the network security situation, researchers have studied a variety of quantitative assessment methods, and the most scientific and effective one is the hierarchical quantitative assessment method of the network security threat situation. This method allows the staff to have a very clear understanding of the security of the network system and make correct judgments. This article mainly analyzes the quantitative assessment of the hierarchical network security threat situation from the current situation and methods, which is only for reference.
Hutto, Kevin, Grijalva, Santiago, Mooney, Vincent.  2022.  Hardware-Based Randomized Encoding for Sensor Authentication in Power Grid SCADA Systems. 2022 IEEE Texas Power and Energy Conference (TPEC). :1–6.
Supervisory Control and Data Acquisition (SCADA) systems are utilized extensively in critical power grid infrastructures. Modern SCADA systems have been proven to be susceptible to cyber-security attacks and require improved security primitives in order to prevent unwanted influence from an adversarial party. One section of weakness in the SCADA system is the integrity of field level sensors providing essential data for control decisions at a master station. In this paper we propose a lightweight hardware scheme providing inferred authentication for SCADA sensors by combining an analog to digital converter and a permutation generator as a single integrated circuit. Through this method we encode critical sensor data at the time of sensing, so that unencoded data is never stored in memory, increasing the difficulty of software attacks. We show through experimentation how our design stops both software and hardware false data injection attacks occurring at the field level of SCADA systems.
Shi, Jiameng, Guan, Le, Li, Wenqiang, Zhang, Dayou, Chen, Ping, Zhang, Ning.  2022.  HARM: Hardware-Assisted Continuous Re-randomization for Microcontrollers. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :520–536.
Microcontroller-based embedded systems have become ubiquitous with the emergence of IoT technology. Given its critical roles in many applications, its security is becoming increasingly important. Unfortunately, MCU devices are especially vulnerable. Code reuse attacks are particularly noteworthy since the memory address of firmware code is static. This work seeks to combat code reuse attacks, including ROP and more advanced JIT-ROP via continuous randomization. Previous proposals are geared towards full-fledged OSs with rich runtime environments, and therefore cannot be applied to MCUs. We propose the first solution for ARM-based MCUs. Our system, named HARM, comprises a secure runtime and a binary analysis tool with rewriting module. The secure runtime, protected inside the secure world, proactively triggers and performs non-bypassable randomization to the firmware running in a sandbox in the normal world. Our system does not rely on any firmware feature, and therefore is generally applicable to both bare-metal and RTOS-powered firmware. We have implemented a prototype on a development board. Our evaluation results indicate that HARM can effectively thaw code reuse attacks while keeping the performance and energy overhead low.
Esterwood, Connor, Robert, Lionel P..  2022.  Having the Right Attitude: How Attitude Impacts Trust Repair in Human—Robot Interaction. 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). :332–341.
Robot co-workers, like human co-workers, make mistakes that undermine trust. Yet, trust is just as important in promoting human-robot collaboration as it is in promoting human-human collaboration. In addition, individuals can signif-icantly differ in their attitudes toward robots, which can also impact or hinder their trust in robots. To better understand how individual attitude can influence trust repair strategies, we propose a theoretical model that draws from the theory of cognitive dissonance. To empirically verify this model, we conducted a between-subjects experiment with 100 participants assigned to one of four repair strategies (apologies, denials, explanations, or promises) over three trust violations. Individual attitudes did moderate the efficacy of repair strategies and this effect differed over successive trust violations. Specifically, repair strategies were most effective relative to individual attitude during the second of the three trust violations, and promises were the trust repair strategy most impacted by an individual's attitude.
2023-02-03
Rout, Sonali, Mohapatra, Ramesh Kumar.  2022.  Hiding Sensitive Information in Surveillance Video without Affecting Nefarious Activity Detection. 2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP). :1–6.
Protection of private and sensitive information is the most alarming issue for security providers in surveillance videos. So to provide privacy as well as to enhance secrecy in surveillance video without affecting its efficiency in detection of violent activities is a challenging task. Here a steganography based algorithm has been proposed which hides private information inside the surveillance video without affecting its accuracy in criminal activity detection. Preprocessing of the surveillance video has been performed using Tunable Q-factor Wavelet Transform (TQWT), secret data has been hidden using Discrete Wavelet Transform (DWT) and after adding payload to the surveillance video, detection of criminal activities has been conducted with maintaining same accuracy as original surveillance video. UCF-crime dataset has been used to validate the proposed framework. Feature extraction is performed and after feature selection it has been trained to Temporal Convolutional Network (TCN) for detection. Performance measure has been compared to the state-of-the-art methods which shows that application of steganography does not affect the detection rate while preserving the perceptual quality of the surveillance video.
ISSN: 2640-5768
2023-01-20
Sen, Ömer, Eze, Chijioke, Ulbig, Andreas, Monti, Antonello.  2022.  On Holistic Multi-Step Cyberattack Detection via a Graph-based Correlation Approach. 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :380–386.
While digitization of distribution grids through information and communications technology brings numerous benefits, it also increases the grid's vulnerability to serious cyber attacks. Unlike conventional systems, attacks on many industrial control systems such as power grids often occur in multiple stages, with the attacker taking several steps at once to achieve its goal. Detection mechanisms with situational awareness are needed to detect orchestrated attack steps as part of a coherent attack campaign. To provide a foundation for detection and prevention of such attacks, this paper addresses the detection of multi-stage cyber attacks with the aid of a graph-based cyber intelligence database and alert correlation approach. Specifically, we propose an approach to detect multi-stage attacks by lever-aging heterogeneous data to form a knowledge base and employ a model-based correlation approach on the generated alerts to identify multi-stage cyber attack sequences taking place in the network. We investigate the detection quality of the proposed approach by using a case study of a multi-stage cyber attack campaign in a future-orientated power grid pilot.
2023-01-13
Ahmad, Adil, Lee, Sangho, Peinado, Marcus.  2022.  HARDLOG: Practical Tamper-Proof System Auditing Using a Novel Audit Device. 2022 IEEE Symposium on Security and Privacy (SP). :1791—1807.
Audit systems maintain detailed logs of security-related events on enterprise machines to forensically analyze potential incidents. In principle, these logs should be safely stored in a secure location (e.g., network storage) as soon as they are produced, but this incurs prohibitive slowdown to a monitored machine. Hence, existing audit systems protect batched logs asynchronously (e.g., after tens of seconds), but this allows attackers to tamper with unprotected logs.This paper presents HARDLOG, a practical and effective system that employs a novel audit device to provide fine-grained log protection with minimal performance slowdown. HARDLOG implements criticality-aware log protection: it ensures that logs are synchronously protected in the audit device before an infrequent security-critical event is allowed to execute, but logs are asynchronously protected on frequent non-critical events to minimize performance overhead. Importantly, even on non-critical events, HARDLOG ensures bounded-asynchronous protection: it sends log entries to the audit device within a tiny, bounded delay from their creation using well-known real-time techniques. To demonstrate HARDLOG’S effectiveness, we prototyped an audit device using commodity components and implemented a reference audit system for Linux. Our prototype achieves a bounded protection delay of 15 milliseconds at non-critical events alongside undelayed protection at critical events. We also show that, for diverse real-world programs, HARDLOG incurs a geometric mean performance slowdown of only 6.3%, hence it is suitable for many real-world deployment scenarios.
Kapoor, Mehul, Kaur, Puneet Jai.  2022.  Hybridization of Deep Learning & Machine Learning For IoT Based Intrusion Classification. 2022 International Conference on Breakthrough in Heuristics And Reciprocation of Advanced Technologies (BHARAT). :138—143.
With the rise of IoT applications, about 20.4 billion devices will be online in 2020, and that number will rise to 75 billion a month by 2025. Different sensors in IoT devices let them get and process data remotely and in real time. Sensors give them information that helps them make smart decisions and manage IoT environments well. IoT Security is one of the most important things to think about when you're developing, implementing, and deploying IoT platforms. People who use the Internet of Things (IoT) say that it allows people to communicate, monitor, and control automated devices from afar. This paper shows how to use Deep learning and machine learning to make an IDS that can be used on IoT platforms as a service. In the proposed method, a cnn mapped the features, and a random forest classifies normal and attack classes. In the end, the proposed method made a big difference in all performance parameters. Its average performance metrics have gone up 5% to 6%.
Zhao, Lutan, Li, Peinan, HOU, RUI, Huang, Michael C., Qian, Xuehai, Zhang, Lixin, Meng, Dan.  2022.  HyBP: Hybrid Isolation-Randomization Secure Branch Predictor. 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). :346—359.
Recently exposed vulnerabilities reveal the necessity to improve the security of branch predictors. Branch predictors record history about the execution of different processes, and such information from different processes are stored in the same structure and thus accessible to each other. This leaves the attackers with the opportunities for malicious training and malicious perception. Physical or logical isolation mechanisms such as using dedicated tables and flushing during context-switch can provide security but incur non-trivial costs in space and/or execution time. Randomization mechanisms incurs the performance cost in a different way: those with higher securities add latency to the critical path of the pipeline, while the simpler alternatives leave vulnerabilities to more sophisticated attacks.This paper proposes HyBP, a practical hybrid protection and effective mechanism for building secure branch predictors. The design applies the physical isolation and randomization in the right component to achieve the best of both worlds. We propose to protect the smaller tables with physically isolation based on (thread, privilege) combination; and protect the large tables with randomization. Surprisingly, the physical isolation also significantly enhances the security of the last-level tables by naturally filtering out accesses, reducing the information flow to these bigger tables. As a result, key changes can happen less frequently and be performed conveniently at context switches. Moreover, we propose a latency hiding design for a strong cipher by precomputing the "code book" with a validated, cryptographically strong cipher. Overall, our design incurs a performance penalty of 0.5% compared to 5.1% of physical isolation under the default context switching interval in Linux.
2022-12-20
Speith, Julian, Schweins, Florian, Ender, Maik, Fyrbiak, Marc, May, Alexander, Paar, Christof.  2022.  How Not to Protect Your IP – An Industry-Wide Break of IEEE 1735 Implementations. 2022 IEEE Symposium on Security and Privacy (SP). :1656–1671.
Modern hardware systems are composed of a variety of third-party Intellectual Property (IP) cores to implement their overall functionality. Since hardware design is a globalized process involving various (untrusted) stakeholders, a secure management of the valuable IP between authors and users is inevitable to protect them from unauthorized access and modification. To this end, the widely adopted IEEE standard 1735-2014 was created to ensure confidentiality and integrity. In this paper, we outline structural weaknesses in IEEE 1735 that cannot be fixed with cryptographic solutions (given the contemporary hardware design process) and thus render the standard inherently insecure. We practically demonstrate the weaknesses by recovering the private keys of IEEE 1735 implementations from major Electronic Design Automation (EDA) tool vendors, namely Intel, Xilinx, Cadence, Siemens, Microsemi, and Lattice, while results on a seventh case study are withheld. As a consequence, we can decrypt, modify, and re-encrypt all allegedly protected IP cores designed for the respective tools, thus leading to an industry-wide break. As part of this analysis, we are the first to publicly disclose three RSA-based white-box schemes that are used in real-world products and present cryptanalytical attacks for all of them, finally resulting in key recovery.
2022-12-09
Al-Falouji, Ghassan, Gruhl, Christian, Neumann, Torben, Tomforde, Sven.  2022.  A Heuristic for an Online Applicability of Anomaly Detection Techniques. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :107—112.
OHODIN is an online extension for data streams of the kNN-based ODIN anomaly detection approach. It provides a detection-threshold heuristic that is based on extreme value theory. In contrast to sophisticated anomaly and novelty detection approaches the decision-making process of ODIN is interpretable by humans, making it interesting for certain applications. However, it is limited in terms of the underlying detection method. In this article, we present an extension of the OHODIN to further detection techniques to reinforce OHODIN capability of online data streams anomaly detection. We introduce the algorithm modifications and an experimental evaluation with competing state-of-the-art anomaly detection approaches.