Biblio
Cryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterises the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is applied to generate pseudo-random keys that produce more complexity for the proposed cipher algorithm. The goal of the proposed algorithm is to present a hybrid algorithm by enhancing the complexity of the current PRESENT algorithm while keeping the performance of computational operations as minimal. The proposed algorithm proved working efficiently with fast executed time, and the analysed result of the generated sequence keys passed the randomness of the NIST suite.
It is a well-known fact that the use of Cloud Computing is becoming very common all over the world for data storage and analysis. But the proliferation of the threats in cloud is also their; threats like Information breaches, Data thrashing, Cloud account or Service traffic hijacking, Insecure APIs, Denial of Service, Malicious Insiders, Abuse of Cloud services, Insufficient due Diligence and Shared Technology Vulnerable. This paper tries to come up with the solution for the threat (Denial of Service) in cloud. We attempt to give our newly proposed model by the hybridization of Genetic algorithm and extension of Diffie Hellman algorithm and tries to make cloud transmission secure from upcoming intruders.
Human action recognition in video is one of the most widely applied topics in the field of image and video processing, with many applications in surveillance (security, sports, etc.), activity detection, video-content-based monitoring, man-machine interaction, and health/disability care. Action recognition is a complex process that faces several challenges such as occlusion, camera movement, viewpoint move, background clutter, and brightness variation. In this study, we propose a novel human action recognition method using convolutional neural networks (CNN) and deep bidirectional LSTM (DB-LSTM) networks, using only raw video frames. First, deep features are extracted from video frames using a pre-trained CNN architecture called ResNet152. The sequential information of the frames is then learned using the DB-LSTM network, where multiple layers are stacked together in both forward and backward passes of DB-LSTM, to increase depth. The evaluation results of the proposed method using PyTorch, compared to the state-of-the-art methods, show a considerable increase in the efficiency of action recognition on the UCF 101 dataset, reaching 95% recognition accuracy. The choice of the CNN architecture, proper tuning of input parameters, and techniques such as data augmentation contribute to the accuracy boost in this study.
Mobile and IoT operating systems–and their ensuing software updates–are usually distributed as binary files. Given that these binary files are commonly closed source, users or businesses who want to assess the security of the software need to rely on reverse engineering. Further, verifying the correct application of the latest software patches in a given binary is an open problem. The regular application of software patches is a central pillar for improving mobile and IoT device security. This requires developers, integrators, and vendors to propagate patches to all affected devices in a timely and coordinated fashion. In practice, vendors follow different and sometimes improper security update agendas for both mobile and IoT products. Moreover, previous studies revealed the existence of a hidden patch gap: several vendors falsely reported that they patched vulnerabilities. Therefore, techniques to verify whether vulnerabilities have been patched or not in a given binary are essential. Deep learning approaches have shown to be promising for static binary analyses with respect to inferring binary similarity as well as vulnerability detection. However, these approaches fail to capture the dynamic behavior of these systems, and, as a result, they may inundate the analysis with false positives when performing vulnerability discovery in the wild. In particular, they cannot capture the fine-grained characteristics necessary to distinguish whether a vulnerability has been patched or not. In this paper, we present PATCHECKO, a vulnerability and patch presence detection framework for executable binaries. PATCHECKO relies on a hybrid, cross-platform binary code similarity analysis that combines deep learning-based static binary analysis with dynamic binary analysis. PATCHECKO does not require access to the source code of the target binary nor that of vulnerable functions. We evaluate PATCHECKO on the most recent Google Pixel 2 smartphone and the Android Things IoT firmware images, within which 25 known CVE vulnerabilities have been previously reported and patched. Our deep learning model shows a vulnerability detection accuracy of over 93%. We further prune the candidates found by the deep learning stage–which includes false positives–via dynamic binary analysis. Consequently, PATCHECKO successfully identifies the correct matches among the candidate functions in the top 3 ranked outcomes 100% of the time. Furthermore, PATCHECKO's differential engine distinguishes between functions that are still vulnerable and those that are patched with an accuracy of 96%.
In recent years, humanoid robots have become quite ubiquitous finding wide applicability in many different fields, spanning from education to entertainment and assistance. They can be considered as more complex cyber-physical systems (CPS) and, as such, they are exposed to the same vulnerabilities. This can be very dangerous for people acting that close with these robots, since attackers by exploiting their vulnerabilities, can not only violate people's privacy, but, more importantly, they can command the robot behavior causing them bodily harm, thus leading to devastating consequences. In this paper, we propose a solution not yet investigated in this field, which relies on the use of secure enclaves, which in our opinion could represent a valuable solution for coping with most of the possible attacks, while suggesting developers to adopt such a precaution during the robot design phase.
In multi-tenant datacenters, the hardware may be homogeneous but the traffic often is not. For instance, customers who pay an equal amount of money can get an unequal share of the bottleneck capacity when they do not open the same number of TCP connections. To address this problem, several recent proposals try to manipulate the traffic that TCP sends from the VMs. VCC and AC/DC are two new mechanisms that let the hypervisor control traffic by influencing the TCP receiver window (rwnd). This avoids changing the guest OS, but has limitations (it is not possible to make TCP increase its rate faster than it normally would). Seawall, on the other hand, completely rewrites TCP's congestion control, achieving fairness but requiring significant changes to both the hypervisor and the guest OS. There seems to be a need for a middle ground: a method to control TCP's sending rate without requiring a complete redesign of its congestion control. We introduce a minimally-invasive solution that is flexible enough to cater for needs ranging from weighted fairness in multi-tenant datacenters to potentially offering Internet-wide benefits from reduced interflow competition.
Nowadays big data has getting more and more attention in both the academic and the industrial research. With the development of big data, people pay more attention to data security. A significant feature of big data is the large size of the data. In order to improve the encryption speed of the large size of data, this paper uses the deep pipeline and full expansion technology to implement the AES encryption algorithm on FPGA. Achieved throughput of 31.30 Gbps with a minimum latency of 0.134 us. This design can quickly encrypt large amounts of data and provide technical support for the development of big data.
The presence of robots is becoming more apparent as technology progresses and the market focus transitions from smart phones to robotic personal assistants such as those provided by Amazon and Google. The integration of robots in our societies is an inevitable tendency in which robots in many forms and with many functionalities will provide services to humans. This calls for an understanding of how humans are affected by both the presence of and the reliance on robots to perform services for them. In this paper we explore the effects that robots have on humans when a service is performed on request. We expose three groups of human participants to three levels of service completion performed by robots. We record and analyse human perceptions such as propensity to trust, competency, responsiveness, sociability, and team work ability. Our results demonstrate that humans tend to trust robots and are more willing to interact with them when they autonomously recover from failure by requesting help from other robots to fulfil their service. This supports the view that autonomy and team working capabilities must be brought into robots in an effort to strengthen trust in robots performing a service.
The purpose of this study was to propose a model of development of trust in social robots. Insights in interpersonal trust were adopted from social psychology and a novel model was proposed. In addition, this study aimed to investigate the relationship among trust development and self-esteem. To validate the proposed model, an experiment using a communication robot NAO was conducted and changes in categories of trust as well as self-esteem were measured. Results showed that general and category trust have been developed in the early phase. Self-esteem is also increased along the interactions with the robot.
Numerous antenna design approaches for wearable applications have been investigated in the literature. As on-body wearable communications become more ingrained in our daily activities, the necessity to investigate the impacts of these networks burgeons as a major requirement. In this study, we investigate the human electromagnetic field (EMF) exposure effect from on-body wearable devices at 2.4 GHz and 60 GHz, and compare the results to illustrate how the technology evolution to higher frequencies from wearable communications can impact our health. Our results suggest the average specific absorption rate (SAR) at 60 GHz can exceed the regulatory guidelines within a certain separation distance between a wearable device and the human skin surface. To the best of authors' knowledge, this is the first work that explicitly compares the human EMF exposure at different operating frequencies for on-body wearable communications, which provides a direct roadmap in design of wearable devices to be deployed in the Internet of Battlefield Things (IoBT).
Data can be stored securely in various storage servers. But in the case of a server failure, or data theft from a certain number of servers, the remaining data becomes inadequate for use. Data is stored securely using secret sharing schemes, so that data can be reconstructed even if some of the servers fail. But not much work has been carried out in the direction of updation of this data. This leads to the problem of updation when two or more concurrent requests arrive and thus, it results in inconsistency. Our work proposes a novel method to store data securely with concurrent update requests using Petri Nets, under the assumption that the number of nodes is very large and the requests for updates are very frequent.
The proliferation of IoT devices in smart homes, hospitals, and enterprise networks is wide-spread and continuing to increase in a superlinear manner. The question is: how can one assess the security of an IoT network in a holistic manner? In this paper, we have explored two dimensions of security assessment- using vulnerability information and attack vectors of IoT devices and their underlying components (compositional security scores) and using SIEM logs captured from the communications and operations of such devices in a network (dynamic activity metrics). These measures are used to evaluate the security of IoT devices and the overall IoT network, demonstrating the effectiveness of attack circuits as practical tools for computing security metrics (exploitability, impact, and risk to confidentiality, integrity, and availability) of the network. We decided to approach threat modeling using attack graphs. To that end, we propose the notion of attack circuits, which are generated from input/output pairs constructed from CVEs using NLP, and an attack graph composed of these circuits. Our system provides insight into possible attack paths an adversary may utilize based on their exploitability, impact, or overall risk. We have performed experiments on IoT networks to demonstrate the efficacy of the proposed techniques.
Although sequence-to-sequence attentional neural machine translation (NMT) has achieved great progress recently, it is confronted with two challenges: learning optimal model parameters for long parallel sentences and well exploiting different scopes of contexts. In this paper, partially inspired by the idea of segmenting a long sentence into short clauses, each of which can be easily translated by NMT, we propose a hierarchy-to-sequence attentional NMT model to handle these two challenges. Our encoder takes the segmented clause sequence as input and explores a hierarchical neural network structure to model words, clauses, and sentences at different levels, particularly with two layers of recurrent neural networks modeling semantic compositionality at the word and clause level. Correspondingly, the decoder sequentially translates segmented clauses and simultaneously applies two types of attention models to capture contexts of interclause and intraclause for translation prediction. In this way, we can not only improve parameter learning, but also well explore different scopes of contexts for translation. Experimental results on Chinese-English and English-German translation demonstrate the superiorities of the proposed model over the conventional NMT model.
This paper provides hardware-independent authentication named as Intelligent Authentication Scheme, which rectifies the design weaknesses that may be exploited by various security attacks. The Intelligent Authentication Scheme protects against various types of security attacks such as password-guessing attack, replay attack, streaming bots attack (denial of service), keylogger, screenlogger and phishing attack. Besides reducing the overall cost, it also balances both security and usability. It is a unique authentication scheme.