Visible to the public Biblio

Found 1126 results

Filters: First Letter Of Title is I  [Clear All Filters]
2022-12-09
Hussain, Karrar, Vanathi, D., Jose, Bibin K, Kavitha, S, Rane, Bhuvaneshwari Yogesh, Kaur, Harpreet, Sandhya, C..  2022.  Internet of Things- Cloud Security Automation Technology Based on Artificial Intelligence. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC). :42—47.
The development of industrial robots, as a carrier of artificial intelligence, has played an important role in promoting the popularisation of artificial intelligence super automation technology. The paper introduces the system structure, hardware structure, and software system of the mobile robot climber based on computer big data technology, based on this research background. At the same time, the paper focuses on the climber robot's mechanism compound method and obstacle avoidance control algorithm. Smart home computing focuses on “home” and brings together related peripheral industries to promote smart home services such as smart appliances, home entertainment, home health care, and security monitoring in order to create a safe, secure, energy-efficient, sustainable, and comfortable residential living environment. It's been twenty years. There is still no clear definition of “intelligence at home,” according to Philips Inc., a leading consumer electronics manufacturer, which once stated that intelligence should comprise sensing, connectedness, learning, adaption, and ease of interaction. S mart applications and services are still in the early stages of development, and not all of them can yet exhibit these five intelligent traits.
2022-12-07
Leiko, Oleksandr, Derepa, Anatolii, Pozdniakova, Olha, Kocharian, Oksana.  2022.  On the Influence of the Acoustic Interaction of Cylindrical Piezoceramic Radiators in Planar Systems on their Physical Fields. 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO). :617—622.
Recently, in solving problems of sound radiation by systems of piezoceramic radiators, new approaches have emerged, which make it possible to significantly approximate the design parameters of systems to the actually measured ones. These approaches are associated with taking into account the specific features of these systems performing two functions - the function of converting electrical energy into acoustic energy and the function of forming the latter in the surrounding space. The peculiarity of the first function is the interconnection of the electric, mechanical and acoustic fields during energy conversion. The peculiarity of the second function is the interaction of the radiators in the system during the formation of its acoustic field. The aim of the work is to study the effect of acoustic interaction of cylindrical piezoceramic radiators in the composition of flat systems on their physical fields. Using the method of coupled fields in multiply connected domains, using the addition theorems for cylindrical wave functions, we obtain analytical relations that allow one to calculate the numerical results for the parameters of three interconnected physical fields that ensure the emission of sound by plane systems. Their analysis showed that with the radial symmetry of electrical excitation of cylindrical radiators, the conversion of electrical energy into mechanical energy is carried out on one - zero mode of oscillation. The placement of the radiators in the composition of the flat systems leads to the appearance of the effect of acoustic interaction between them in an external field, due to the multiple exchange of radiated and scattered waves. This effect destroys the radial symmetry of the acoustic loading of a single radiator. The violation of symmetry in the conversion of mechanical energy into acoustic energy leads to the appearance of oscillations that follow the zero mode. As a result, there is an effective redistribution of energy “pumped” into the radiators in the zero mode, between subsequent oscillations of the radiators. In turn, the emergence of new modes changes the acoustic field of a flat system. The results show the need to take into account the above features of the physical fields of the radiators in the composition of flat systems when choosing methods and developing methods for measuring field characteristics.
2022-12-06
Kiran, Usha.  2022.  IDS To Detect Worst Parent Selection Attack In RPL-Based IoT Network. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :769-773.

The most widely used protocol for routing across the 6LoWPAN stack is the Routing Protocol for Low Power and Lossy (RPL) Network. However, the RPL lacks adequate security solutions, resulting in numerous internal and external security vulnerabilities. There is still much research work left to uncover RPL's shortcomings. As a result, we first implement the worst parent selection (WPS) attack in this paper. Second, we offer an intrusion detection system (IDS) to identify the WPS attack. The WPS attack modifies the victim node's objective function, causing it to choose the worst node as its preferred parent. Consequently, the network does not achieve optimal convergence, and nodes form the loop; a lower rank node selects a higher rank node as a parent, effectively isolating many nodes from the network. In addition, we propose DWA-IDS as an IDS for detecting WPS attacks. We use the Contiki-cooja simulator for simulation purposes. According to the simulation results, the WPS attack reduces system performance by increasing packet transmission time. The DWA-IDS simulation results show that our IDS detects all malicious nodes that launch the WPS attack. The true positive rate of the proposed DWA-IDS is more than 95%, and the detection rate is 100%. We also deliberate the theoretical proof for the false-positive case as our DWA-IDS do not have any false-positive case. The overhead of DWA-IDS is modest enough to be set up with low-power and memory-constrained devices.

2022-12-01
Yu, Jialin, Cristea, Alexandra I., Harit, Anoushka, Sun, Zhongtian, Aduragba, Olanrewaju Tahir, Shi, Lei, Moubayed, Noura Al.  2022.  INTERACTION: A Generative XAI Framework for Natural Language Inference Explanations. 2022 International Joint Conference on Neural Networks (IJCNN). :1—8.
XAI with natural language processing aims to produce human-readable explanations as evidence for AI decision-making, which addresses explainability and transparency. However, from an HCI perspective, the current approaches only focus on delivering a single explanation, which fails to account for the diversity of human thoughts and experiences in language. This paper thus addresses this gap, by proposing a generative XAI framework, INTERACTION (explain aNd predicT thEn queRy with contextuAl CondiTional varIational autO-eNcoder). Our novel framework presents explanation in two steps: (step one) Explanation and Label Prediction; and (step two) Diverse Evidence Generation. We conduct intensive experiments with the Transformer architecture on a benchmark dataset, e-SNLI [1]. Our method achieves competitive or better performance against state-of-the-art baseline models on explanation generation (up to 4.7% gain in BLEU) and prediction (up to 4.4% gain in accuracy) in step one; it can also generate multiple diverse explanations in step two.
2022-11-25
Shipunov, Ilya S., Nyrkov, Anatoliy P., Ryabenkov, Maksim U., Morozova, Elena V., Goloskokov, Konstantin P..  2021.  Investigation of Computer Incidents as an Important Component in the Security of Maritime Transportation. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :657—660.
The risk of detecting incidents in the field of computer technology in Maritime transport is considered. The structure of the computer incident investigation system and its functions are given. The system of conducting investigations of computer incidents on sea transport is considered. A possible algorithm for investigating the incident using the tools of forensic science and an algorithm for transmitting the received data for further processing are presented.
2022-11-18
Alali, Mohammad, Shimim, Farshina Nazrul, Shahooei, Zagros, Bahramipanah, Maryam.  2021.  Intelligent Line Congestion Prognosis in Active Distribution System Using Artificial Neural Network. 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
This paper proposes an intelligent line congestion prognosis scheme based on wide-area measurements, which accurately identifies an impending congestion and the problem causing the congestion. Due to the increasing penetration of renewable energy resources and uncertainty of load/generation patterns in the Active Distribution Networks (ADNs), power line congestion is one of the issues that could happen during peak load conditions or high-power injection by renewable energy resources. Congestion would have devastating effects on both the economical and technical operation of the grid. Hence, it is crucial to accurately predict congestions to alleviate the problem in-time and command proper control actions; such as, power redispatch, incorporating ancillary services and energy storage systems, and load curtailment. We use neural network methods in this work due to their outstanding performance in predicting the nonlinear behavior of the power system. Bayesian Regularization, along with Levenberg-Marquardt algorithm, is used to train the proposed neural networks to predict an impending congestion and its cause. The proposed method is validated using the IEEE 13-bus test system. Utilizing the proposed method, extreme control actions (i.e., protection actions and load curtailment) can be avoided. This method will improve the distribution grid resiliency and ensure the continuous supply of power to the loads.
Tall, Anne M., Zou, Cliff C., Wang, Jun.  2021.  Integrating Cybersecurity Into a Big Data Ecosystem. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :69—76.
This paper provides an overview of the security service controls that are applied in a big data processing (BDP) system to defend against cyber security attacks. We validate this approach by modeling attacks and effectiveness of security service controls in a sequence of states and transitions. This Finite State Machine (FSM) approach uses the probable effectiveness of security service controls, as defined in the National Institute of Standards and Technology (NIST) Risk Management Framework (RMF). The attacks used in the model are defined in the ATT&CK™ framework. Five different BDP security architecture configurations are considered, spanning from a low-cost default BDP configuration to a more expensive, industry supported layered security architecture. The analysis demonstrates the importance of a multi-layer approach to implementing security in BDP systems. With increasing interest in using BDP systems to analyze sensitive data sets, it is important to understand and justify BDP security architecture configurations with their significant costs. The output of the model demonstrates that over the run time, larger investment in security service controls results in significantly more uptime. There is a significant increase in uptime with a linear increase in security service control investment. We believe that these results support our recommended BDP security architecture. That is, a layered architecture with security service controls integrated into the user interface, boundary, central management of security policies, and applications that incorporate privacy preserving programs. These results enable making BDP systems operational for sensitive data accessed in a multi-tenant environment.
Alfassa, Shaik Mirra, Nagasundari, S, Honnavalli, Prasad B.  2021.  Invasion Analysis of Smart Meter In AMI System. 2021 IEEE Mysore Sub Section International Conference (MysuruCon). :831—836.
Conventional systems has to be updated as the technology advances at quick pace. A smart grid is a renovated and digitalized version of a standard electrical infrastructure that allows two-way communication between customers and the utility, which overcomes huge manual hustle. Advanced Metering Infrastructure plays a major role in a smart grid by automatically reporting the power consumption readings to the utility through communication networks. However, there is always a trade-off. Security of AMI communication is a major problem that must be constantly monitored if this technology is to be fully utilized. This paper mainly focuses on developing a virtual setup of fully functional smart meter and a web application for generating electricity bill which allows consumer to obtain demand response, where the data is managed at server side. It also focuses on analyzing the potential security concerns posed by MITM-Arp-spoofing attacks on AMI systems and session hijacking attacks on web interfaces. This work also focusses on mitigating the vulnerabilities of session hijacking on web interface by restricting the cookies so that the attacker is unable to acquire any confidential data.
Aleksandrov, Mark N., Vasiliev, Victor A., Aleksandrova, Svetlana V..  2021.  Implementation of the Risk-based Approach Methodology in Information Security Management Systems. 2021 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :137—139.
Currently, most companies systematically face challenges related to the loss of significant confidential information, including legally significant information, such as personal data of customers. To solve the problem of maintaining the confidentiality, integrity and availability of information, companies are increasingly using the methodology laid down in the basis of the international standard ISO / IEC 27001. Information security risk management is a process of continuous monitoring and systematic analysis of the internal and external environment of the IT environment, associated with the further adoption and implementation of management decisions aimed at reducing the likelihood of an unfavorable result and minimizing possible threats to business caused by the loss of manageability of information that is important for the organization. The article considers the problems and approaches to the development, practical implementation, and methodology of risk management based on the international standard ISO 31000 in the modern information security management system.
2022-11-08
Mode, Gautam Raj, Calyam, Prasad, Hoque, Khaza Anuarul.  2020.  Impact of False Data Injection Attacks on Deep Learning Enabled Predictive Analytics. NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium. :1–7.
Industry 4.0 is the latest industrial revolution primarily merging automation with advanced manufacturing to reduce direct human effort and resources. Predictive maintenance (PdM) is an industry 4.0 solution, which facilitates predicting faults in a component or a system powered by state-of-the- art machine learning (ML) algorithms (especially deep learning algorithms) and the Internet-of-Things (IoT) sensors. However, IoT sensors and deep learning (DL) algorithms, both are known for their vulnerabilities to cyber-attacks. In the context of PdM systems, such attacks can have catastrophic consequences as they are hard to detect due to the nature of the attack. To date, the majority of the published literature focuses on the accuracy of DL enabled PdM systems and often ignores the effect of such attacks. In this paper, we demonstrate the effect of IoT sensor attacks (in the form of false data injection attack) on a PdM system. At first, we use three state-of-the-art DL algorithms, specifically, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Convolutional Neural Network (CNN) for predicting the Remaining Useful Life (RUL) of a turbofan engine using NASA's C-MAPSS dataset. The obtained results show that the GRU-based PdM model outperforms some of the recent literature on RUL prediction using the C-MAPSS dataset. Afterward, we model and apply two different types of false data injection attacks (FDIA), specifically, continuous and interim FDIAs on turbofan engine sensor data and evaluate their impact on CNN, LSTM, and GRU-based PdM systems. The obtained results demonstrate that FDI attacks on even a few IoT sensors can strongly defect the RUL prediction in all cases. However, the GRU-based PdM model performs better in terms of accuracy and resiliency to FDIA. Lastly, we perform a study on the GRU-based PdM model using four different GRU networks with different sequence lengths. Our experiments reveal an interesting relationship between the accuracy, resiliency and sequence length for the GRU-based PdM models.
2022-11-02
Zhang, Minghao, He, Lingmin, Wang, Xiuhui.  2021.  Image Translation based on Attention Residual GAN. 2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE). :802–805.
Using Generative Adversarial Networks (GAN) to translate images is a significant field in computer vision. There are partial distortion, artifacts and detail loss in the images generated by current image translation algorithms. In order to solve this problem, this paper adds attention-based residual neural network to the generator of GAN. Attention-based residual neural network can improve the representation ability of the generator by weighting the channels of the feature map. Experiment results on the Facades dataset show that Attention Residual GAN can translate images with excellent quality.
Zhao, Li, Jiao, Yan, Chen, Jie, Zhao, Ruixia.  2021.  Image Style Transfer Based on Generative Adversarial Network. 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA). :191–195.
Image style transfer refers to the transformation of the style of image, so that the image details are retained to the maximum extent while the style is transferred. Aiming at the problem of low clarity of style transfer images generated by CycleGAN network, this paper improves the CycleGAN network. In this paper, the network model of auto-encoder and variational auto-encoder is added to the structure. The encoding part of the auto-encoder is used to extract image content features, and the variational auto-encoder is used to extract style features. At the same time, the generating network of the model in this paper uses first to adjust the image size and then perform the convolution operation to replace the traditional deconvolution operation. The discriminating network uses a multi-scale discriminator to force the samples generated by the generating network to be more realistic and approximate the target image, so as to improve the effect of image style transfer.
2022-10-20
Elharrouss, Omar, Almaadeed, Noor, Al-Maadeed, Somaya.  2020.  An image steganography approach based on k-least significant bits (k-LSB). 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT). :131—135.
Image steganography is the operation of hiding a message into a cover image. the message can be text, codes, or image. Hiding an image into another is the proposed approach in this paper. Based on LSB coding, a k-LSB-based method is proposed using k least bits to hide the image. For decoding the hidden image, a region detection operation is used to know the blocks contains the hidden image. The resolution of stego image can be affected, for that, an image quality enhancement method is used to enhance the image resolution. To demonstrate the effectiveness of the proposed approach, we compare it with some of the state-of-the-art methods.
Mohamed, Nour, Rabie, Tamer, Kamel, Ibrahim.  2020.  IoT Confidentiality: Steganalysis breaking point for J-UNIWARD using CNN. 2020 Advances in Science and Engineering Technology International Conferences (ASET). :1—4.
The Internet of Things (IoT) technology is being utilized in endless applications nowadays and the security of these applications is of great importance. Image based IoT applications serve a wide variety of fields such as medical application and smart cities. Steganography is a great threat to these applications where adversaries can use the images in these applications to hide malicious messages. Therefore, this paper presents an image steganalysis technique that employs Convolutional Neural Networks (CNN) to detect the infamous JPEG steganography technique: JPEG universal wavelet relative distortion (J-UNIWARD). Several experiments were conducted to determine the breaking point of J-UNIWARD, whether the hiding technique relies on correlation of the images, and the effect of utilizing Discrete Cosine Transform (DCT) on the performance of the CNN. The results of the CNN display that the breaking point of J-UNIWARD is 1.5 (bpnzAC), the correlation of the database affects the detection accuracy, and DCT increases the detection accuracy by 13%.
Nahar, Nazmun, Ahmed, Md. Kawsher, Miah, Tareq, Alam, Shahriar, Rahman, Kh. Mustafizur, Rabbi, Md. Anayt.  2021.  Implementation of Android Based Text to Image Steganography Using 512-Bit Algorithm with LSB Technique. 2021 5th International Conference on Electrical Information and Communication Technology (EICT). :1—6.
Steganography security is the main concern in today’s informative world. The fact is that communication takes place to hide information secretly. Steganography is the technique of hiding secret data within an ordinary, non-secret, file, text message and images. This technique avoids detection of the secret data then extracted at its destination. The main reason for using steganography is, we can hide any secret message behind its ordinary file. This work presents a unique technique for image steganography based on a 512-bit algorithm. The secure stego image is a very challenging task to give protection. Therefore we used the least significant bit (LSB) techniques for implementing stego and cover image. However, data encryption and decryption are used to embedded text and replace data into the least significant bit (LSB) for better approaches. Android-based interface used in encryption-decryption techniques that evaluated in this process.Contribution—this research work with 512-bit data simultaneously in a block cipher to reduce the time complexity of a system, android platform used for data encryption decryption process. Steganography model works with stego image that interacts with LSB techniques for data hiding.
Ma, Tengchao, Xu, Changqiao, Zhou, Zan, Kuang, Xiaohui, Zhong, Lujie, Grieco, Luigi Alfredo.  2020.  Intelligent-Driven Adapting Defense Against the Client-Side DNS Cache Poisoning in the Cloud. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1—6.
A new Domain Name System (DNS) cache poisoning attack aiming at clients has emerged recently. It induced cloud users to visit fake web sites and thus reveal information such as account passwords. However, the design of current DNS defense architecture does not formally consider the protection of clients. Although the DNS traffic encryption technology can alleviate this new attack, its deployment is as slow as the new DNS architecture. Thus we propose a lightweight adaptive intelligent defense strategy, which only needs to be deployed on the client without any configuration support of DNS. Firstly, we model the attack and defense process as a static stochastic game with incomplete information under bounded rationality conditions. Secondly, to solve the problem caused by uncertain attack strategies and large quantities of game states, we adopt a deep reinforcement learning (DRL) with guaranteed monotonic improvement. Finally, through the prototype system experiment in Alibaba Cloud, the effectiveness of our method is proved against multiple attack modes with a success rate of 97.5% approximately.
Nassar, Reem, Elhajj, Imad, Kayssi, Ayman, Salam, Samer.  2021.  Identifying NAT Devices to Detect Shadow IT: A Machine Learning Approach. 2021 IEEE/ACS 18th International Conference on Computer Systems and Applications (AICCSA). :1—7.
Network Address Translation (NAT) is an address remapping technique placed at the borders of stub domains. It is present in almost all routers and CPEs. Most NAT devices implement Port Address Translation (PAT), which allows the mapping of multiple private IP addresses to one public IP address. Based on port number information, PAT matches the incoming traffic to the corresponding "hidden" client. In an enterprise context, and with the proliferation of unauthorized wired and wireless NAT routers, NAT can be used for re-distributing an Intranet or Internet connection or for deploying hidden devices that are not visible to the enterprise IT or under its oversight, thus causing a problem known as shadow IT. Thus, it is important to detect NAT devices in an intranet to prevent this particular problem. Previous methods in identifying NAT behavior were based on features extracted from traffic traces per flow. In this paper, we propose a method to identify NAT devices using a machine learning approach from aggregated flow features. The approach uses multiple statistical features in addition to source and destination IPs and port numbers, extracted from passively collected traffic data. We also use aggregated features extracted within multiple window sizes and feed them to a machine learning classifier to study the effect of timing on NAT detection. Our approach works completely passively and achieves an accuracy of 96.9% when all features are utilized.
2022-10-16
Chen, Kejin, Yang, Shiwen, Chen, Yikai, Qu, Shi-Wei, Hu, Jun.  2020.  Improving Physical Layer Security Technique Based on 4-D Antenna Arrays with Pre-Modulation. 2020 14th European Conference on Antennas and Propagation (EuCAP). :1–3.
Four-dimensional (4-D) antenna arrays formed by introducing time as the forth controlling variable are able to be used to regulate the radiation fields in space, time and frequency domains. Thus, 4-D antenna arrays are actually the excellent platform for achieving physical layer secure transmission. However, traditional direction modulation technique of 4-D antenna arrays always inevitably leads to higher sidelobe level of radiation pattern or less randomness. Regarding to the problem, this paper proposed a physical layer secure transmission technique based on 4-D antenna arrays, which combine the advantages of traditional phased arrays, and 4-D arrays for improving the physical layer security in wireless networks. This technique is able to reduce the radiated power at sidelobe region by optimizing the time sequences. Moreover, the signal distortion caused by time modulation can be compensated in the desired direction by pre-modulating transmitted signals.
Sharma Oruganti, Pradeep, Naghizadeh, Parinaz, Ahmed, Qadeer.  2021.  The Impact of Network Design Interventions on CPS Security. 2021 60th IEEE Conference on Decision and Control (CDC). :3486–3492.
We study a game-theoretic model of the interactions between a Cyber-Physical System’s (CPS) operator (the defender) against an attacker who launches stepping-stone attacks to reach critical assets within the CPS. We consider that, in addition to optimally allocating its security budget to protect the assets, the defender may choose to modify the CPS through network design interventions. In particular, we propose and motivate four ways in which the defender can introduce additional nodes in the CPS: these nodes may be intended as additional safeguards, be added for functional or structural redundancies, or introduce additional functionalities in the system. We analyze the security implications of each of these design interventions, and evaluate their impacts on the security of an automotive network as our case study. We motivate the choice of the attack graph for this case study and elaborate how the parameters in the resulting security game are selected using the CVSS metrics and the ISO-26262 ASIL ratings as guidance. We then use numerical experiments to verify and evaluate how our proposed network interventions may be used to guide improvements in automotive security.
2022-10-06
Ganivev, Abduhalil, Mavlonov, Obid, Turdibekov, Baxtiyor, Uzoqova, Ma'mura.  2021.  Improving Data Hiding Methods in Network Steganography Based on Packet Header Manipulation. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1–5.
In this paper, internet is among the basic necessities of life. Internet has changed each and everybody's lives. So confidentiality of messages is very important over the internet. Steganography is the science of sending secret messages between the sender and intended receiver. It is such a technique that makes the exchange of covert messages possible. Each time a carrier is to be used for achieving steganography. The carrier plays a major role in establishing covert communication channel. This survey paper introduces steganography and its carriers. This paper concentrates on network protocols to be used as a carrier of steganograms. There are a number of protocols available to do so in the networks. Network steganography describes various methods used for transmitting data over a network without it being detected. Most of the methods proposed for hiding data in a network do not offer an additional protection to the covert data as it is sent as plain text. This paper presents a framework that offers the protection to the covert data by encrypting it and compresses it for gain in efficiency.
Zhang, Zhiyi, Won, Su Yong, Zhang, Lixia.  2021.  Investigating the Design Space for Name Confidentiality in Named Data Networking. MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM). :570–576.
As a fundamental departure from the IP design which encodes source and destination addresses in each packet, Named Data Networking (NDN) directly uses application-defined data names for network layer communications. While bringing important data-centric benefits, the semantic richness of NDN names has also raised confidentiality and privacy concerns. In this paper, we first define the problem of name confidentiality, and then investigate the solution space through a comprehensive examination of all the proposed solutions up to date. Our work shows that the proposed solutions are simply different means to hide the actual data names via a layer of translation; they differ in where and how the translation takes place, which lead to different trade-offs in feasibility, efficiency, security, scalability, and different degrees of adherence to NDN's data-centric communications. Our investigation suggests the feasibility of a systematic design that can enable NDN to provide stronger name confidentiality and user privacy as compared to today's TCP/IP Internet.
2022-10-03
Mutalemwa, Lilian C., Shin, Seokjoo.  2021.  The Impact of Energy-Inefficient Communications on Location Privacy Protection in Monitoring Wireless Networks. 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN). :289–294.
Wireless sensor networks (WSNs) have gained increasing popularity in ubiquitous support of sensing system services. Often, WSNs are energy-constrained and they are deployed in harsh and unattended environments. Consequently, WSNs are vulnerable to energy and environmental factors. To ensure secure and reliable operations in safety-critical monitoring WSNs, it is important to guarantee energy-efficient communications, location privacy protection, and reliability. Fake packet-based source location privacy (SLP) protocols are known to be energy-inefficient. Therefore, in this study, we investigate the impact of energy-inefficient communications on the privacy performance of the fake packet-based SLP protocols. Experiment results show that the protocols achieve short-term and less reliable SLP protection.
Wang, Youning, Liu, Qi, Wang, Yang.  2021.  An Improved Bi-LSTM Model for Entity Extraction of Intellectual Property Using Complex Graph. 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). :1920–1925.
The protection of Intellectual Property (IP) has gradually increased in recent years. Traditional intellectual property management service has lower efficiency for such scale of data. Considering that the maturity of deep learning models has led to the development of knowledge graphs. Relevant researchers have investigated the application of knowledge graphs in different domains, such as medical services, social media, etc. However, few studies of knowledge graphs have been undertaken in the domain of intellectual property. In this paper, we introduce the process of building a domain knowledge graph and start from data preparation to conduct the research of named entity recognition.
2022-09-30
Robert Doebbert, Thomas, Krush, Dmytro, Cammin, Christoph, Jockram, Jonas, Heynicke, Ralf, Scholl, Gerd.  2021.  IO-Link Wireless Device Cryptographic Performance and Energy Efficiency. 2021 22nd IEEE International Conference on Industrial Technology (ICIT). 1:1106–1112.
In the context of the Industry 4.0 initiative, Cyber-Physical Production Systems (CPPS) or Cyber Manufacturing Systems (CMS) can be characterized as advanced networked mechatronic production systems gaining their added value by interaction with different systems using advanced communication technologies. Appropriate wired and wireless communication technologies and standards need to add timing in combination with security concepts to realize the potential improvements in the production process. One of these standards is IO-Link Wireless, which is used for sensor/actuator network operation. In this paper cryptographic performance and energy efficiency of an IO-Link Wireless Device are analyzed. The power consumption and the influence of the cryptographic operations on the trans-mission timing of the IO-Link Wireless protocol are exemplary measured employing a Phytec module based on a CC2650 system-on-chip (SoC) radio transceiver [2]. Confidentiality is considered in combination with the cryptographic performance as well as the energy efficiency. Different cryptographic algorithms are evaluated using the on chip hardware accelerator compared to a cryptographic software implementation.
2022-09-20
Sreemol, R, Santosh Kumar, M B, Sreekumar, A.  2021.  Improvement of Security in Multi-Biometric Cryptosystem by Modulus Fuzzy Vault Algorithm. 2021 International Conference on Advances in Computing and Communications (ICACC). :1—7.
Numerous prevalent techniques build a Multi-Modal Biometric (MMB) system that struggles in offering security and also revocability onto the templates. This work proffered a MMB system centred on the Modulus Fuzzy Vault (MFV) aimed at resolving these issues. The methodology proposed includes Fingerprint (FP), Palmprint (PP), Ear and also Retina images. Utilizing the Boosted Double Plateau Histogram Equalization (BDPHE) technique, all images are improved. Aimed at removing the unnecessary things as of the ear and the blood vessels are segmented as of the retina images utilizing the Modified Balanced Iterative Reducing and Clustering using Hierarchy (MBIRCH) technique. Next, the input traits features are extracted; then the essential features are chosen as of the features extracted utilizing the Bidirectional Deer Hunting optimization Algorithm (BDHOA). The features chosen are merged utilizing the Normalized Feature Level and Score Level (NFLSL) fusion. The features fused are saved securely utilizing Modulus Fuzzy Vault. Upto fusion, the procedure is repeated aimed at the query image template. Next, the de-Fuzzy Vault procedure is executed aimed at the query template, and then the key is detached by matching the query template’s and input biometric template features. The key separated is analogized with the threshold that categorizes the user as genuine or else imposter. The proposed BDPHE and also MFV techniques function efficiently than the existent techniques.