Visible to the public Biblio

Found 918 results

Filters: First Letter Of Title is T  [Clear All Filters]
2023-02-13
[Anonymous].  2022.  A Trust Based DNS System to Prevent Eclipse Attack on Blockchain Networks. 2022 15th International Conference on Security of Information and Networks (SIN). :01—08.
The blockchain network is often considered a reliable and secure network. However, some security attacks, such as eclipse attacks, have a significant impact on blockchain networks. In order to perform an eclipse attack, the attacker must be able to control enough IP addresses. This type of attack can be mitigated by blocking incoming connections. Connected machines may only establish outbound connections to machines they trust, such as those on a whitelist that other network peers maintain. However, this technique is not scalable since the solution does not allow nodes with new incoming communications to join the network. In this paper, we propose a scalable and secure trust-based solution against eclipse attacks with a peer-selection strategy that minimizes the probability of eclipse attacks from nodes in the network by developing a trust point. Finally, we experimentally analyze the proposed solution by creating a network simulation environment. The analysis results show that the proposed solution reduces the probability of an eclipse attack and has a success rate of over 97%.
2023-02-03
Chen, Shengjian.  2022.  Trustworthy Internet Based on Generalized Blockchain. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :5–12.
It is the key to the Internet's expansion of social and economic functions by ensuring the credibility of online users' identities and behaviors while taking into account privacy protection. Public Key Infrastructure (PKI) and blockchain technology have provided ways to achieve credibility from different perspectives. Based on these two technologies, we attempt to generalize people's offline activities to online ones with our proposed model, Atom and Molecule. We then present the strict definition of trustworthy system and the trustworthy Internet. The definition of Generalized Blockchain and its practical implementation are provided as well.
Talukdar, Jonti, Chaudhuri, Arjun, Chakrabarty, Krishnendu.  2022.  TaintLock: Preventing IP Theft through Lightweight Dynamic Scan Encryption using Taint Bits. 2022 IEEE European Test Symposium (ETS). :1–6.
We propose TaintLock, a lightweight dynamic scan data authentication and encryption scheme that performs per-pattern authentication and encryption using taint and signature bits embedded within the test pattern. To prevent IP theft, we pair TaintLock with truly random logic locking (TRLL) to ensure resilience against both Oracle-guided and Oracle-free attacks, including scan deobfuscation attacks. TaintLock uses a substitution-permutation (SP) network to cryptographically authenticate each test pattern using embedded taint and signature bits. It further uses cryptographically generated keys to encrypt scan data for unauthenticated users dynamically. We show that it offers a low overhead, non-intrusive secure scan solution without impacting test coverage or test time while preventing IP theft.
ISSN: 1558-1780
2023-02-02
Dang, Fangfang, Yan, Lijing, Li, Shuai, Li, Dingding.  2022.  Trusted Dynamic Threshold Caculation Method in Power IoT. 2022 14th International Conference on Communication Software and Networks (ICCSN). :19–22.
Smart grid is a new generation of grid that inte-grates traditional grid and grid information system, and infor-mation security of smart grid is an extremely important part of the whole grid. The research of trusted computing technology provides new ideas to protect the information security of the power grid. To address the problem of large deviations in the calculation of credible dynamic thresholds due to the existence of characteristics such as self-similarity and traffic bursts in smart grid information collection, a traffic prediction model based on ARMA and Poisson process is proposed. And the Hurst coefficient is determined more accurately using R/S analysis, which finally improves the efficiency and accuracy of the trusted dynamic threshold calculation.
2023-01-13
Minna, Francesco, Massacci, Fabio, Tuma, Katja.  2022.  Towards a Security Stress-Test for Cloud Configurations. 2022 IEEE 15th International Conference on Cloud Computing (CLOUD). :191–196.
Securing cloud configurations is an elusive task, which is left up to system administrators who have to base their decisions on "trial and error" experimentations or by observing good practices (e.g., CIS Benchmarks). We propose a knowledge, AND/OR, graphs approach to model cloud deployment security objects and vulnerabilities. In this way, we can capture relationships between configurations, permissions (e.g., CAP\_SYS\_ADMIN), and security profiles (e.g., AppArmor and SecComp). Such an approach allows us to suggest alternative and safer configurations, support administrators in the study of what-if scenarios, and scale the analysis to large scale deployments. We present an initial validation and illustrate the approach with three real vulnerabilities from known sources.
Park, Sihn-Hye, Lee, Seok-Won.  2022.  Threat-driven Risk Assessment for APT Attacks using Risk-Aware Problem Domain Ontology. 2022 IEEE 30th International Requirements Engineering Conference Workshops (REW). :226–231.
Cybersecurity attacks, which have many business impacts, continuously become more intelligent and complex. These attacks take the form of a combination of various attack elements. APT attacks reflect this characteristic well. To defend against APT attacks, organizations should sufficiently understand these attacks based on the attack elements and their relations and actively defend against these attacks in multiple dimensions. Most organizations perform risk management to manage their information security. Generally, they use the information system risk assessment (ISRA). However, the method has difficulties supporting sufficiently analyzing security risks and actively responding to these attacks due to the limitations of asset-driven qualitative evaluation activities. In this paper, we propose a threat-driven risk assessment method. This method can evaluate how dangerous APT attacks are for an organization, analyze security risks from multiple perspectives, and support establishing an adaptive security strategy.
Ge, Yunfei, Zhu, Quanyan.  2022.  Trust Threshold Policy for Explainable and Adaptive Zero-Trust Defense in Enterprise Networks. 2022 IEEE Conference on Communications and Network Security (CNS). :359–364.
In response to the vulnerabilities in traditional perimeter-based network security, the zero trust framework is a promising approach to secure modern network systems and address the challenges. The core of zero trust security is agent-centric trust evaluation and trust-based security decisions. The challenges, however, arise from the limited observations of the agent's footprint and asymmetric information in the decision-making. An effective trust policy needs to tradeoff between the security and usability of the network. The explainability of the policy facilitates the human understanding of the policy, the trust of the result, as well as the adoption of the technology. To this end, we formulate a zero-trust defense model using Partially Observable Markov Decision Processes (POMDP), which captures the uncertainties in the observations of the defender. The framework leads to an explainable trust-threshold policy that determines the defense policy based on the trust scores. This policy is shown to achieve optimal performance under mild conditions. The trust threshold enables an efficient algorithm to compute the defense policy while providing online learning capabilities. We use an enterprise network as a case study to corroborate the results. We discuss key factors on the trust threshold and illustrate how the trust threshold policy can adapt to different environments.
2023-01-06
Alkoudsi, Mohammad Ibrahim, Fohler, Gerhard, Völp, Marcus.  2022.  Tolerating Resource Exhaustion Attacks in the Time-Triggered Architecture. 2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC). :1—8.
The Time-Triggered Architecture (TTA) presents a blueprint for building safe and real-time constrained distributed systems, based on a set of orthogonal concepts that make extensive use of the availability of a globally consistent notion of time and a priori knowledge of events. Although the TTA tolerates arbitrary failures of any of its nodes by architectural means (active node replication, a membership service, and bus guardians), the design of these means considers only accidental faults. However, distributed safety- and real-time critical systems have been emerging into more open and interconnected systems, operating autonomously for prolonged times and interfacing with other possibly non-real-time systems. Therefore, the existence of vulnerabilities that adversaries may exploit to compromise system safety cannot be ruled out. In this paper, we discuss potential targeted attacks capable of bypassing TTA's fault-tolerance mechanisms and demonstrate how two well-known recovery techniques - proactive and reactive rejuvenation - can be incorporated into TTA to reduce the window of vulnerability for attacks without introducing extensive and costly changes.
Ham, MyungJoo, Woo, Sangjung, Jung, Jaeyun, Song, Wook, Jang, Gichan, Ahn, Yongjoo, Ahn, Hyoungjoo.  2022.  Toward Among-Device AI from On-Device AI with Stream Pipelines. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :285—294.
Modern consumer electronic devices often provide intelligence services with deep neural networks. We have started migrating the computing locations of intelligence services from cloud servers (traditional AI systems) to the corresponding devices (on-device AI systems). On-device AI systems generally have the advantages of preserving privacy, removing network latency, and saving cloud costs. With the emergence of on-device AI systems having relatively low computing power, the inconsistent and varying hardware resources and capabilities pose difficulties. Authors' affiliation has started applying a stream pipeline framework, NNStreamer, for on-device AI systems, saving developmental costs and hardware resources and improving performance. We want to expand the types of devices and applications with on-device AI services products of both the affiliation and second/third parties. We also want to make each AI service atomic, re-deployable, and shared among connected devices of arbitrary vendors; we now have yet another requirement introduced as it always has been. The new requirement of “among-device AI” includes connectivity between AI pipelines so that they may share computing resources and hardware capabilities across a wide range of devices regardless of vendors and manufacturers. We propose extensions of the stream pipeline framework, NNStreamer, for on-device AI so that NNStreamer may provide among-device AI capability. This work is a Linux Foundation (LF AI & Data) open source project accepting contributions from the general public.
Xu, Huikai, Yu, Miao, Wang, Yanhao, Liu, Yue, Hou, Qinsheng, Ma, Zhenbang, Duan, Haixin, Zhuge, Jianwei, Liu, Baojun.  2022.  Trampoline Over the Air: Breaking in IoT Devices Through MQTT Brokers. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :171—187.
MQTT is widely adopted by IoT devices because it allows for the most efficient data transfer over a variety of communication lines. The security of MQTT has received increasing attention in recent years, and several studies have demonstrated the configurations of many MQTT brokers are insecure. Adversaries are allowed to exploit vulnerable brokers and publish malicious messages to subscribers. However, little has been done to understanding the security issues on the device side when devices handle unauthorized MQTT messages. To fill this research gap, we propose a fuzzing framework named ShadowFuzzer to find client-side vulnerabilities when processing incoming MQTT messages. To avoiding ethical issues, ShadowFuzzer redirects traffic destined for the actual broker to a shadow broker under the control to monitor vulnerabilities. We select 15 IoT devices communicating with vulnerable brokers and leverage ShadowFuzzer to find vulnerabilities when they parse MQTT messages. For these devices, ShadowFuzzer reports 34 zero-day vulnerabilities in 11 devices. We evaluated the exploitability of these vulnerabilities and received a total of 44,000 USD bug bounty rewards. And 16 CVE/CNVD/CN-NVD numbers have been assigned to us.
2023-01-05
Ezzahra, Essaber Fatima, Rachid, Benmoussa, Roland, De Guio.  2022.  Toward Lean Green Supply Chain Performance, A Risk Management Approach. 2022 14th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA). :1—6.
The purpose of this research work is to develop an approach based on risk management with a view to provide managers and decision-makers with assistance and appropriate guidelines to combine Lean and Green in a successful and integrated way. Risk cannot be managed if not well-identified; hence, a classification of supply chain risks in a Lean Green context was provided. Subsequently to risk identification an approach based on Weighted Product Method (WPM) was proposed; for risk assessment and prioritization, for its ease of use, flexibility and board adaptability. The output of this analysis provides visibility about organization's position toward desired performance and underlines crucial risks to be addressed which marks the starting point of the way to performance improvement. A case study was introduced to demonstrate the applicability and relevance of the developed framework.
2022-12-20
Van Goethem, Tom, Joosen, Wouter.  2022.  Towards Improving the Deprecation Process of Web Features through Progressive Web Security. 2022 IEEE Security and Privacy Workshops (SPW). :20–30.
To keep up with the continuous modernization of web applications and to facilitate their development, a large number of new features are introduced to the web platform every year. Although new web features typically undergo a security review, issues affecting the privacy and security of users could still surface at a later stage, requiring the deprecation and removal of affected APIs. Furthermore, as the web evolves, so do the expectations in terms of security and privacy, and legacy features might need to be replaced with improved alternatives. Currently, this process of deprecating and removing features is an ad-hoc effort that is largely uncoordinated between the different browser vendors. This causes a discrepancy in terms of compatibility and could eventually lead to the deterrence of the removal of an API, prolonging potential security threats. In this paper we propose a progressive security mechanism that aims to facilitate and standardize the deprecation and removal of features that pose a risk to users’ security, and the introduction of features that aim to provide additional security guarantees.
ISSN: 2770-8411
Zhan, Yike, Zheng, Baolin, Wang, Qian, Mou, Ningping, Guo, Binqing, Li, Qi, Shen, Chao, Wang, Cong.  2022.  Towards Black-Box Adversarial Attacks on Interpretable Deep Learning Systems. 2022 IEEE International Conference on Multimedia and Expo (ICME). :1–6.
Recent works have empirically shown that neural network interpretability is susceptible to malicious manipulations. However, existing attacks against Interpretable Deep Learning Systems (IDLSes) all focus on the white-box setting, which is obviously unpractical in real-world scenarios. In this paper, we make the first attempt to attack IDLSes in the decision-based black-box setting. We propose a new framework called Dual Black-box Adversarial Attack (DBAA) which can generate adversarial examples that are misclassified as the target class, yet have very similar interpretations to their benign cases. We conduct comprehensive experiments on different combinations of classifiers and interpreters to illustrate the effectiveness of DBAA. Empirical results show that in all the cases, DBAA achieves high attack success rates and Intersection over Union (IoU) scores.
2022-12-09
Joseph, Abin John, Sani, Nidhin, V, Vineeth M., Kumar, K. Suresh, Kumar, T. Ananth, Nishanth, R..  2022.  Towards a Novel and Efficient Public Key Management for Peer-Peer Security in Wireless Ad-Hoc/sensor Networks. 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). :1—4.
Key management for self-organized wireless ad-hoc networks using peer-to-peer (P2P) keys is the primary goal of this article (SOWANs). Currently, wireless networks have centralized security architectures, making them difficult to secure. In most cases, ad-hoc wireless networks are not connected to trusted authorities or central servers. They are more prone to fragmentation and disintegration as a result of node and link failures. Traditional security solutions that rely on online trusted authorities do not work together to protect networks that are not planned. With open wireless networks, anyone can join or leave at any time with the right equipment, and no third party is required to verify their identity. These networks are best suited for this proposed method. Each node can make, distribute, and revoke its keying material in this paper. A minimal amount of communication and computation is required to accomplish this task. So that they can authenticate one another and create shared keys, nodes in the self-organized version of the system must communicate via a secure side channel between the users' devices.
Casimiro, Maria, Romano, Paolo, Garlan, David, Rodrigues, Luís.  2022.  Towards a Framework for Adapting Machine Learning Components. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :131—140.
Machine Learning (ML) models are now commonly used as components in systems. As any other component, ML components can produce erroneous outputs that may penalize system utility. In this context, self-adaptive systems emerge as a natural approach to cope with ML mispredictions, through the execution of adaptation tactics such as model retraining. To synthesize an adaptation strategy, the self-adaptation manager needs to reason about the cost-benefit tradeoffs of the applicable tactics, which is a non-trivial task for tactics such as model retraining, whose benefits are both context- and data-dependent.To address this challenge, this paper proposes a probabilistic modeling framework that supports automated reasoning about the cost/benefit tradeoffs associated with improving ML components of ML-based systems. The key idea of the proposed approach is to decouple the problems of (i) estimating the expected performance improvement after retrain and (ii) estimating the impact of ML improved predictions on overall system utility.We demonstrate the application of the proposed framework by using it to self-adapt a state-of-the-art ML-based fraud-detection system, which we evaluate using a publicly-available, real fraud detection dataset. We show that by predicting system utility stemming from retraining a ML component, the probabilistic model checker can generate adaptation strategies that are significantly closer to the optimal, as compared against baselines such as periodic retraining, or reactive retraining.
Hashmi, Saad Sajid, Dam, Hoa Khanh, Smet, Peter, Chhetri, Mohan Baruwal.  2022.  Towards Antifragility in Contested Environments: Using Adversarial Search to Learn, Predict, and Counter Open-Ended Threats. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). :141—146.
Resilience and antifragility under duress present significant challenges for autonomic and self-adaptive systems operating in contested environments. In such settings, the system has to continually plan ahead, accounting for either an adversary or an environment that may negate its actions or degrade its capabilities. This will involve projecting future states, as well as assessing recovery options, counter-measures, and progress towards system goals. For antifragile systems to be effective, we envision three self-* properties to be of key importance: self-exploration, self-learning and self-training. Systems should be able to efficiently self-explore – using adversarial search – the potential impact of the adversary’s attacks and compute the most resilient responses. The exploration can be assisted by prior knowledge of the adversary’s capabilities and attack strategies, which can be self-learned – using opponent modelling – from previous attacks and interactions. The system can self-train – using reinforcement learning – such that it evolves and improves itself as a result of being attacked. This paper discusses those visions and outlines their realisation in AWaRE, a cyber-resilient and self-adaptive multi-agent system.
Alboqmi, Rami, Jahan, Sharmin, Gamble, Rose F..  2022.  Toward Enabling Self-Protection in the Service Mesh of the Microservice Architecture. 2022 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C). :133—138.
The service mesh is a dedicated infrastructure layer in a microservice architecture. It manages service-to-service communication within an application between decoupled or loosely coupled microservices (called services) without modifying their implementations. The service mesh includes APIs for security, traffic and policy management, and observability features. These features are enabled using a pre-defined configuration, which can be changed at runtime with human intervention. However, it has no autonomy to self-manage changes to the microservice application’s operational environment. A better configuration is one that can be customized according to environmental conditions during execution to protect the application from potential threats. This customization requires enabling self-protection mechanisms within the service mesh that evaluate the risk of environmental condition changes and enable appropriate configurations to defend the application from impending threats. In this paper, we design an assessment component into a service mesh that includes a security assurance case to define the threat model and dynamically assess the application given environment changes. We experiment with a demo application, Bookinfo, using an open-source service mesh platform, Istio, to enable self-protection. We consider certain parameters extracted from the service request as environmental conditions. We evaluate those parameters against the threat model and determine the risk of violating a security requirement for controlled and authorized information flow.
Kuri, Sajib Kumar, Islam, Tarim, Jaskolka, Jason, Ibnkahla, Mohamed.  2022.  A Threat Model and Security Recommendations for IoT Sensors in Connected Vehicle Networks. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1—5.
Intelligent transportation systems, such as connected vehicles, are able to establish real-time, optimized and collision-free communication with the surrounding ecosystem. Introducing the internet of things (IoT) in connected vehicles relies on deployment of massive scale sensors, actuators, electronic control units (ECUs) and antennas with embedded software and communication technologies. Combined with the lack of designed-in security for sensors and ECUs, this creates challenges for security engineers and architects to identify, understand and analyze threats so that actions can be taken to protect the system assets. This paper proposes a novel STRIDE-based threat model for IoT sensors in connected vehicle networks aimed at addressing these challenges. Using a reference architecture of a connected vehicle, we identify system assets in connected vehicle sub-systems such as devices and peripherals that mostly involve sensors. Moreover, we provide a prioritized set of security recommendations, with consideration to the feasibility and deployment challenges, which enables practical applicability of the developed threat model to help specify security requirements to protect critical assets within the sensor network.
2022-12-07
İnce, Talha, Çakir, Sertaç.  2022.  Tightly and Loosely Coupled Architectures for Inertial Navigation System and Doppler Velocity Log Integration at Autonomous Underwater Vehicles. 2022 30th Signal Processing and Communications Applications Conference (SIU). :1—4.
The Inertial Navigation System(INS) and Doppler Velocity Logs(DVL) which are used frequently on autonomous underwater vehicles can be fused under different types of integration architectures. These architectures differ in terms of algorithm requirements and complexity. DVL may experience acoustic beam losses during operation due to environmental factors and abilities of the sensor. In these situations, radial velocity information cannot be received from lost acoustic beam. In this paper, the performances of INS and DVL integration under tightly and loosely coupled architectures are comparatively presented with simulations. In the tightly coupled approach, navigation filter is updated with solely available beam measurements by using sequential measurement update method, and the sensitivity of this method is investigated for acoustic beam losses.
2022-12-01
Zhao, Jian, Lin, Zexuan, Huang, Xiaoxiao, Zhang, Yiwei, Xiang, Shaohua.  2020.  TrustCA: Achieving Certificate Transparency Through Smart Contract in Blockchain Platforms. 2020 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS). :1–6.
Certificate Authorities (CAs) are important components for digital certificate issuances in Public Key Infrastructure(PKI). However, current CAs have some intrinsic weaknesses due to the CA-centric implementation. And when browser and operating system vendors contain a CA in the software, they place complete trust in the CA. In this paper, we utilize natural characteristics of tamper-proof and transparency of smart contracts in blockchain platforms to design an independent entity, named the CA proxy, to manage life cycle of digital certificates. This management will achieve the certificate transparency. We propose a new system architecture easy to integrate the CA proxy with current CAs through applying the blockchain oracle service. In this architecture, the CA proxy, CAs, and even professional identity verification parties can accomplish life cycle management of certificates, signature of certificates, identity verification for certificates correspondingly. The achievement of the certificate transparency through life cycle management of digital certificates in blockchain platforms, when compared with traditional CAs, solves traditional CAs' trust model weaknesses and improve the security.
2022-11-22
Aftab, Muhammad Usman, Hussain, Mehdi, Lindgren, Anders, Ghafoor, Abdul.  2021.  Towards A Distributed Ledger Based Verifiable Trusted Protocol For VANET. 2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2). :1—6.
To ensure traffic safety and proper operation of vehicular networks, safety messages or beacons are periodically broadcasted in Vehicular Adhoc Networks (VANETs) to neighboring nodes and road side units (RSU). Thus, authenticity and integrity of received messages along with the trust in source nodes is crucial and highly required in applications where a failure can result in life-threatening situations. Several digital signature based approaches have been described in literature to achieve the authenticity of these messages. In these schemes, scenarios having high level of vehicle density are handled by RSU where aggregated signature verification is done. However, most of these schemes are centralized and PKI based where our goal is to develop a decentralized dynamic system. Along with authenticity and integrity, trust management plays an important role in VANETs which enables ways for secure and verified communication. A number of trust management models have been proposed but it is still an ongoing matter of interest, similarly authentication which is a vital security service to have during communication is not mostly present in the literature work related to trust management systems. This paper proposes a secure and publicly verifiable communication scheme for VANET which achieves source authentication, message authentication, non repudiation, integrity and public verifiability. All of these are achieved through digital signatures, Hash Message Authentication Code (HMAC) technique and logging mechanism which is aided by blockchain technology.
2022-11-02
Costa, Cliona J, Tiwari, Stuti, Bhagat, Krishna, Verlekar, Akash, Kumar, K M Chaman, Aswale, Shailendra.  2021.  Three-Dimensional Reconstruction of Satellite images using Generative Adversarial Networks. 2021 International Conference on Technological Advancements and Innovations (ICTAI). :121–126.
3D reconstruction has piqued the interest of many disciplines, and many researchers have spent the last decade striving to improve on latest automated three-dimensional reconstruction systems. Three Dimensional models can be utilized to tackle a wide range of visualization problems as well as other activities. In this paper, we have implemented a method of Digital Surface Map (DSM) generation from Aerial images using Conditional Generative Adversarial Networks (c-GAN). We have used Seg-net architecture of Convolutional Neural Network (CNN) to segment the aerial images and then the U-net generator of c-GAN generates final DSM. The dataset we used is ISPRS Potsdam-Vaihingen dataset. We also review different stages if 3D reconstruction and how Deep learning is now being widely used to enhance the process of 3D data generation. We provide binary cross entropy loss function graph to demonstrate stability of GAN and CNN. The purpose of our approach is to solve problem of DSM generation using Deep learning techniques. We put forth our method against other latest methods of DSM generation such as Semi-global Matching (SGM) and infer the pros and cons of our approach. Finally, we suggest improvements in our methods that might be useful in increasing the accuracy.
2022-10-20
Alizadeh, Mohammad Iman, Usman, Muhammad, Capitanescu, Florin.  2021.  Toward Stochastic Multi-period AC Security Constrained Optimal Power Flow to Procure Flexibility for Managing Congestion and Voltages. 2021 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.
The accelerated penetration rate of renewable energy sources (RES) brings environmental benefits at the expense of increasing operation cost and undermining the satisfaction of the N-1 security criterion. To address the latter issue, this paper extends the state of the art, i.e. deterministic AC security-constrained optimal power flow (SCOPF), to capture two new dimensions: RES stochasticity and inter-temporal constraints of emerging sources of flexibility such as flexible loads (FL) and energy storage systems (ESS). Accordingly, the paper proposes and solves for the first time a new problem formulation in the form of stochastic multi-period AC SCOPF (S-MP-SCOPF). The S-MP-SCOPF is formulated as a non-linear programming (NLP). It computes optimal setpoints in day-ahead operation of flexibility resources and other conventional control means for congestion management and voltage control. Another salient feature of this paper is the comprehensive and accurate modelling: AC power flow model for both pre-contingency and post-contingency states, joint active/reactive power flows, inter-temporal resources such as FL and ESS in a 24-hours time horizon, and RES uncertainties. The applicability of the proposed model is tested on 5-bus (6 contingencies) and 60 bus Nordic32 (33 contingencies) systems.
Liu, Bo, Bobbio, Andrea, Bai, Jing, Martinez, Jose, Chang, Xiaolin, Trivedi, Kishor S..  2021.  Transient Security and Dependability Analysis of MEC Micro Datacenter under Attack. 2021 Annual Reliability and Maintainability Symposium (RAMS). :1—7.
SUMMARY & CONCLUSIONSA Multi-access Edge Computing (MEC) micro data center (MEDC) consists of multiple MEC hosts close to endpoint devices. MEC service is delivered by instantiating a virtualization system (e.g., Virtual Machines or Containers) on a MEC host. MEDC faces more new security risks due to various device connections in an open environment. When more and more IoT/CPS systems are connected to MEDC, it is necessary for MEC service providers to quantitatively analyze any security loss and then make defense-related decision. This paper develops a CTMC model for quantitatively analyzing the security and dependability of a vulnerable MEDC system under lateral movement attacks, from the adversary’s initial successful access until the MEDC becomes resistant to the attack. The proposed model captures the behavior of the system in a scenario where (i) the rate of vulnerable MEC servers being infected increases with the increasing number of infected MEC servers, (ii) each infected MEC server can perform its compromising activity independently and randomly, and (iii) any infected MEC may fail and then cannot provide service. We also introduce the formulas for computing metrics. The proposed model and formula are verified to be approximately accurate by comparing numerical results and simulation results.
Castanhel, Gabriel R., Heinrich, Tiago, Ceschin, Fabrício, Maziero, Carlos.  2021.  Taking a Peek: An Evaluation of Anomaly Detection Using System calls for Containers. 2021 IEEE Symposium on Computers and Communications (ISCC). :1—6.
The growth in the use of virtualization in the last ten years has contributed to the improvement of this technology. The practice of implementing and managing this type of isolated environment raises doubts about the security of such systems. Considering the host's proximity to a container, approaches that use anomaly detection systems attempt to monitor and detect unexpected behavior. Our work aims to use system calls to identify threats within a container environment, using machine learning based strategies to distinguish between expected and unexpected behaviors (possible threats).