Visible to the public Biblio

Found 16998 results

2023-02-17
Jiang, Jie, Long, Pengyu, Xie, Lijia, Zheng, Zhiming.  2022.  A Percolation-Based Secure Routing Protocol for Wireless Sensor Networks. 2022 IEEE International Conference on Agents (ICA). :60–65.
Wireless Sensor Networks (WSN) have assisted applications of multi-agent system. Abundant sensor nodes, densely distributed around a base station (BS), collect data and transmit to BS node for data analysis. The concept of cluster has been emerged as the efficient communication structure in resource-constrained environment. However, the security still remains a major concern due to the vulnerability of sensor nodes. In this paper, we propose a percolation-based secure routing protocol. We leverage the trust score composed of three indexes to select cluster heads (CH) for unevenly distributed clusters. By considering the reliability, centrality and stability, legitimate nodes with social trust and adequate energy are chosen to provide relay service. Moreover, we design a multi-path inter-cluster routing protocol to construct CH chains for directed inter-cluster data transmission based on the percolation. And the measurement of transit score for on-path CH nodes contributes to load balancing and security. Our simulation results show that our protocol is able to guarantee the security to improve the delivery ratio and packets delay.
Thylashri, S., Femi, D., Devi, C. Thamizh.  2022.  Social Distance Monitoring Method with Deep Learning to prevent Contamination Spread of Coronavirus Disease. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :1157–1160.
The ongoing COVID-19 virus pandemic has resulted in a global tragedy due to its lethal spread. The population's vulnerability grows as a result of a lack of effective helping agents and vaccines against the virus. The spread of viruses can be mitigated by minimizing close connections between people. Social distancing is a critical containment tool for COVID-19 prevention. In this paper, the social distancing violations that are being made by the people when they are in public places are detected. As per CDC (Centers for Disease Control and Prevention) minimum distance that should be maintained by people is 2-3 meters to prevent the spread of COVID- 19, the proposed tool will be used to detect the people who are maintaining less than 2-3 meters of distance between themselves and record them as a violation. As a result, the goal of this work is to develop a deep learning-based system for object detection and tracking models in social distancing detection. For object detection models, You Only Look Once, Version 3 (YOLO v3) is used in conjunction with deep sort algorithms to balance speed and accuracy. To recognize persons in video segments, the approach applies the YOLOv3 object recognition paradigm. An efficient computer vision-based approach centered on legitimate continuous tracking of individuals is presented to determine supportive social distancing in public locations by creating a model to generate a supportive climate that contributes to public safety and detect violations through camera.
Zehnder, E., Dinet, J., Charpillet, F..  2022.  Perception of physical and virtual agents: exploration of factors influencing the acceptance of intrusive domestic agents. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :1050–1057.
Domestic robots and agents are widely sold to the grand public, leading us to ethical issues related to the data harvested by such machines. While users show a general acceptance of these robots, concerns remain when it comes to information security and privacy. Current research indicates that there’s a privacy-security trade-off for better use, but the anthropomorphic and social abilities of a robot are also known to modulate its acceptance and use. To explore and deepen what literature already brought on the subject we examined how users perceived their robot (Replika, Roomba©, Amazon Echo©, Google Home©, or Cozmo©/Vector©) through an online questionnaire exploring acceptance, perceived privacy and security, anthropomorphism, disclosure, perceived intimacy, and loneliness. The results supported the literature regarding the potential manipulative effects of robot’s anthropomorphism for acceptance but also information disclosure, perceived intimacy, security, and privacy.
ISSN: 1944-9437
Noritake, Yoshito, Mizuta, Takanobu, Hemmi, Ryuta, Nagumo, Shota, Izumi, Kiyoshi.  2022.  Investigation on effect of excess buy orders using agent-based model. 2022 9th International Conference on Behavioural and Social Computing (BESC). :1–5.
In financial markets such as stock markets, securities are traded at a price where supply equals demand. Behind the impediments to the short-selling of stock, most participants in the stock market are buyers, so trades are more probable at higher prices than in situations without such restrictions. However, the order imbalance that occurs when buy orders exceed sell orders can change due to many factors. Hence, it is insufficient to discuss the effects of order imbalance caused by impediments to short-selling on the stock price only through empirical studies. Our study used an artificial market to investigate the effects on traded price and quantity of limit orders. The simulation results revealed that the order imbalance when buy orders exceed sell orders increases the traded price and results in fewer quantities of limit sell orders than limit buy orders. In particular, when the sell/buy ratio of the order imbalance model is less than or equal to 0.9, the limit sell/buy ratio becomes lower than that. Lastly, we investigated the mechanisms of the effects on traded price and quantity of limit orders.
Biström, Dennis, Westerlund, Magnus, Duncan, Bob, Jaatun, Martin Gilje.  2022.  Privacy and security challenges for autonomous agents : A study of two social humanoid service robots. 2022 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). :230–237.
The development of autonomous agents have gained renewed interest, largely due to the recent successes of machine learning. Social robots can be considered a special class of autonomous agents that are often intended to be integrated into sensitive environments. We present experiences from our work with two specific humanoid social service robots, and highlight how eschewing privacy and security by design principles leads to implementations with serious privacy and security flaws. The paper introduces the robots as platforms and their associated features, ecosystems and cloud platforms that are required for certain use cases or tasks. The paper encourages design aims for privacy and security, and then in this light studies the implementation from two different manufacturers. The results show a worrisome lack of design focus in handling privacy and security. The paper aims not to cover all the security flaws and possible mitigations, but does look closer into the use of the WebSocket protocol and it’s challenges when used for operational control. The conclusions of the paper provide insights on how manufacturers can rectify the discovered security flaws and presents key policies like accountability when it comes to implementing technical features of autonomous agents.
ISSN: 2330-2186
Mohan, K Venkata Murali, Kodati, Sarangam, Krishna, V..  2022.  Securing SDN Enabled IoT Scenario Infrastructure of Fog Networks From Attacks. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :1239–1243.
Nowadays, lives are very much easier with the help of IoT. Due to lack of protection and a greater number of connections, the management of IoT becomes more difficult To manage the network flow, a Software Defined Networking (SDN) has been introduced. The SDN has a great capability in automatic and dynamic distribution. For harmful attacks on the controller a centralized SDN architecture unlocks the scope. Therefore, to reduce these attacks in real-time, a securing SDN enabled IoT scenario infrastructure of Fog networks is preferred. The virtual switches have network enforcement authorized decisions and these are executed through the SDN network. Apart from this, SDN switches are generally powerful machines and simultaneously these are used as fog nodes. Therefore, SDN looks like a good selection for Fog networks of IoT. Moreover, dynamically distributing the necessary crypto keys are allowed by the centralized and software channel protection management solution, in order to establish the Datagram Transport Layer Security (DTIS) tunnels between the IoT devices, when demanded by the cyber security framework. Through the extensive deployment of this combination, the usage of CPU is observed to be 30% between devices and the latencies are in milliseconds range, and thus it presents the system feasibility with less delay. Therefore, by comparing with the traditional SDN, it is observed that the energy consumption is reduced by more than 90%.
SAHBI, Amina, JAIDI, Faouzi, BOUHOULA, Adel.  2022.  Artificial Intelligence for SDN Security: Analysis, Challenges and Approach Proposal. 2022 15th International Conference on Security of Information and Networks (SIN). :01–07.
The dynamic state of networks presents a challenge for the deployment of distributed applications and protocols. Ad-hoc schedules in the updating phase might lead to a lot of ambiguity and issues. By separating the control and data planes and centralizing control, Software Defined Networking (SDN) offers novel opportunities and remedies for these issues. However, software-based centralized architecture for distributed environments introduces significant challenges. Security is a main and crucial issue in SDN. This paper presents a deep study of the state-of-the-art of security challenges and solutions for the SDN paradigm. The conducted study helped us to propose a dynamic approach to efficiently detect different security violations and incidents caused by network updates including forwarding loop, forwarding black hole, link congestion, network policy violation, etc. Our solution relies on an intelligent approach based on the use of Machine Learning and Artificial Intelligence Algorithms.
Sharma, Pradeep Kumar, Kumar, Brijesh, Tyagi, S.S.  2022.  STADS: Security Threats Assessment and Diagnostic System in Software Defined Networking (SDN). 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:744–751.
Since the advent of the Software Defined Networking (SDN) in 2011 and formation of Open Networking Foundation (ONF), SDN inspired projects have emerged in various fields of computer networks. Almost all the networking organizations are working on their products to be supported by SDN concept e.g. openflow. SDN has provided a great flexibility and agility in the networks by application specific control functions with centralized controller, but it does not provide security guarantees for security vulnerabilities inside applications, data plane and controller platform. As SDN can also use third party applications, an infected application can be distributed in the network and SDN based systems may be easily collapsed. In this paper, a security threats assessment model has been presented which highlights the critical areas with security requirements in SDN. Based on threat assessment model a proposed Security Threats Assessment and Diagnostic System (STADS) is presented for establishing a reliable SDN framework. The proposed STADS detects and diagnose various threats based on specified policy mechanism when different components of SDN communicate with controller to fulfil network requirements. Mininet network emulator with Ryu controller has been used for implementation and analysis.
Mohammadi, Ali Akbar, Hussain, Rasheed, Oracevic, Alma, Kazmi, Syed Muhammad Ahsan Raza, Hussain, Fatima, Aloqaily, Moayad, Son, Junggab.  2022.  A Novel TCP/IP Header Hijacking Attack on SDN. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–2.
Middlebox is primarily used in Software-Defined Network (SDN) to enhance operational performance, policy compliance, and security operations. Therefore, security of the middlebox itself is essential because incorrect use of the middlebox can cause severe cybersecurity problems for SDN. Existing attacks against middleboxes in SDN (for instance, middleboxbypass attack) use methods such as cloned tags from the previous packets to justify that the middlebox has processed the injected packet. Flowcloak as the latest solution to defeat such an attack creates a defence using a tag by computing the hash of certain parts of the packet header. However, the security mechanisms proposed to mitigate these attacks are compromise-able since all parts of the packet header can be imitated, leaving the middleboxes insecure. To demonstrate our claim, we introduce a novel attack against SDN middleboxes by hijacking TCP/IP headers. The attack uses crafted TCP/IP headers to receive the tags and signatures and successfully bypasses the middleboxes.
Rahman, Anichur, Hasan, Kamrul, Jeong, Seong–Ho.  2022.  An Enhanced Security Architecture for Industry 4.0 Applications based on Software-Defined Networking. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :2127–2130.
Software-Defined Networking (SDN) can be a good option to support Industry 4.0 (4IR) and 5G wireless networks. SDN can also be a secure networking solution that improves the security, capability, and programmability in the networks. In this paper, we present and analyze an SDN-based security architecture for 4IR with 5G. SDN is used for increasing the level of security and reliability of the network by suitably dividing the whole network into data, control, and applications planes. The SDN control layer plays a beneficial role in 4IR with 5G scenarios by managing the data flow properly. We also evaluate the performance of the proposed architecture in terms of key parameters such as data transmission rate and response time.
ISSN: 2162-1241
Jo, Hyeonjun, Kim, Kyungbaek.  2022.  Security Service-aware Reinforcement Learning for Efficient Network Service Provisioning. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1–4.
In case of deploying additional network security equipment in a new location, network service providers face difficulties such as precise management of large number of network security equipment and expensive network operation costs. Accordingly, there is a need for a method for security-aware network service provisioning using the existing network security equipment. In order to solve this problem, there is an existing reinforcement learning-based routing decision method fixed for each node. This method performs repeatedly until a routing decision satisfying end-to-end security constraints is achieved. This generates a disadvantage of longer network service provisioning time. In this paper, we propose security constraints reinforcement learning based routing (SCRR) algorithm that generates routing decisions, which satisfies end-to-end security constraints by giving conditional reward values according to the agent state-action pairs when performing reinforcement learning.
ISSN: 2576-8565
Jimenez, Maria B., Fernandez, David.  2022.  A Framework for SDN Forensic Readiness and Cybersecurity Incident Response. 2022 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :112–116.
SDN represents a significant advance for the telecom world, since the decoupling of the control and data planes offers numerous advantages in terms of management dynamism and programmability, mainly due to its software-based centralized control. Unfortunately, these features can be exploited by malicious entities, who take advantage of the centralized control to extend the scope and consequences of their attacks. When this happens, both the legal and network technical fields are concerned with gathering information that will lead them to the root cause of the problem. Although forensics and incident response processes share their interest in the event information, both operate in isolation due to the conceptual and pragmatic challenges of integrating them into SDN environments, which impacts on the resources and time required for information analysis. Given these limitations, the current work focuses on proposing a framework for SDNs that combines the above approaches to optimize the resources to deliver evidence, incorporate incident response activation mechanisms, and generate assumptions about the possible origin of the security problem.
Tupakula, Uday, Karmakar, Kallol Krishna, Varadharajan, Vijay, Collins, Ben.  2022.  Implementation of Techniques for Enhancing Security of Southbound Infrastructure in SDN. 2022 13th International Conference on Network of the Future (NoF). :1–5.
In this paper we present techniques for enhancing the security of south bound infrastructure in SDN which includes OpenFlow switches and end hosts. In particular, the proposed security techniques have three main goals: (i) validation and secure configuration of flow rules in the OpenFlow switches by trusted SDN controller in the domain; (ii) securing the flows from the end hosts; and (iii) detecting attacks on the switches by malicious entities in the SDN domain. We have implemented the proposed security techniques as an application for ONOS SDN controller. We have also validated our application by detecting various OpenFlow switch specific attacks such as malicious flow rule insertions and modifications in the switches over a mininet emulated network.
ISSN: 2833-0072
Sun, Zuntao.  2022.  Hierarchical and Complex Parallel Network Security Threat Situation Quantitative Assessment Method. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :276–279.
Network security is a problem that is of great concern to all countries at this stage. How to ensure that the network provides effective services to people without being exposed to potential security threats has become a major concern for network security researchers. In order to better understand the network security situation, researchers have studied a variety of quantitative assessment methods, and the most scientific and effective one is the hierarchical quantitative assessment method of the network security threat situation. This method allows the staff to have a very clear understanding of the security of the network system and make correct judgments. This article mainly analyzes the quantitative assessment of the hierarchical network security threat situation from the current situation and methods, which is only for reference.
Alam, Mahfooz, Shahid, Mohammad, Mustajab, Suhel.  2022.  Security Oriented Deadline Aware Workflow Allocation Strategy for Infrastructure as a Service Clouds. 2022 3rd International Conference on Computation, Automation and Knowledge Management (ICCAKM). :1–6.
Cloud computing is a model of service provisioning in heterogeneous distributed systems that encourages many researchers to explore its benefits and drawbacks in executing workflow applications. Recently, high-quality security protection has been a new challenge in workflow allocation. Different tasks may and may not have varied security demands, security overhead may vary for different virtual machines (VMs) at which the task is assigned. This paper proposes a Security Oriented Deadline-Aware workflow allocation (SODA) strategy in an IaaS cloud environment to minimize the risk probability of the workflow tasks while considering the deadline met in a deterministic environment. SODA picks out the task based on the highest security upward rank and assigns the selected task to the trustworthy VMs. SODA tries to simultaneously satisfy each task’s security demand and deadline at the maximum possible level. The simulation studies show that SODA outperforms the HEFT strategy on account of the risk probability of the cloud system on scientific workflow, namely CyberShake.
Kumar, U Vinod, Pachauri, Sanjay.  2022.  The Computational and Symbolic Security Analysis Connections. 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA). :617–620.
A considerable portion of computing power is always required to perform symbolic calculations. The reliability and effectiveness of algorithms are two of the most significant challenges observed in the field of scientific computing. The terms “feasible calculations” and “feasible computations” refer to the same idea: the algorithms that are reliable and effective despite practical constraints. This research study intends to investigate different types of computing and modelling challenges, as well as the development of efficient integration methods by considering the challenges before generating the accurate results. Further, this study investigates various forms of errors that occur in the process of data integration. The proposed framework is based on automata, which provides the ability to investigate a wide-variety of distinct distance-bounding protocols. The proposed framework is not only possible to produce computational (in)security proofs, but also includes an extensive investigation on different issues such as optimal space complexity trade-offs. The proposed framework in embedded with the already established symbolic framework in order to get a deeper understanding of distance-bound security. It is now possible to guarantee a certain level of physical proximity without having to continually mimic either time or distance.
Lu, Shaofeng, Lv, Chengzhe, Wang, Wei, Xu, Changqing, Fan, Huadan, Lu, Yuefeng, Hu, Yulong, Li, Wenxi.  2022.  Secret Numerical Interval Decision Protocol for Protecting Private Information and Its Application. 2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML). :726–731.
Cooperative secure computing based on the relationship between numerical value and numerical interval is not only the basic problems of secure multiparty computing but also the core problems of cooperative secure computing. It is of substantial theoretical and practical significance for information security in relation to scientific computing to continuously investigate and construct solutions to such problems. Based on the Goldwasser-Micali homomorphic encryption scheme, this paper propose the Morton rule, according to the characteristics of the interval, a double-length vector is constructed to participate in the exclusive-or operation, and an efficient cooperative decision-making solution for integer and integer interval security is designed. This solution can solve more basic problems in cooperative security computation after suitable transformations. A theoretical analysis shows that this solution is safe and efficient. Finally, applications that are based on these protocols are presented.
Liu, Xuanyu, Cheng, Guozhen, Wang, Yawen, Zhang, Shuai.  2022.  Overview of Scientific Workflow Security Scheduling in Clouds. 2021 International Conference on Advanced Computing and Endogenous Security. :1–6.
With the development of cloud computing technology, more and more scientific researchers choose to deliver scientific workflow tasks to public cloud platforms for execution. This mode effectively reduces scientific research costs while also bringing serious security risks. In response to this problem, this article summarizes the current security issues facing cloud scientific workflows, and analyzes the importance of studying cloud scientific workflow security issues. Then this article analyzes, summarizes and compares the current cloud scientific workflow security methods from three perspectives: system architecture, security model, and security strategy. Finally made a prospect for the future development direction.
Chen, Di.  2022.  Practice on the Data Service of University Scientific Research Management Based on Cloud Computing. 2022 World Automation Congress (WAC). :424–428.
With the continuous development of computer technology, the coverage of informatization solutions covers all walks of life and all fields of society. For colleges and universities, teaching and scientific research are the basic tasks of the school. The scientific research ability of the school will affect the level of teachers and the training of students. The establishment of a good scientific research environment has become a more important link in the development of universities. SR(Scientific research) data is a prerequisite for SR activities. High-quality SR management data services are conducive to ensuring the quality and safety of SRdata, and further assisting the smooth development of SR projects. Therefore, this article mainly conducts research and practice on cloud computing-based scientific research management data services in colleges and universities. First, analyze the current situation of SR data management in colleges and universities, and the results show that the popularity of SR data management in domestic universities is much lower than that of universities in Europe and the United States, and the data storage awareness of domestic researchers is relatively weak. Only 46% of schools have developed SR data management services, which is much lower than that of European and American schools. Second, analyze the effect of CC(cloud computing )on the management of SR data in colleges and universities. The results show that 47% of SR believe that CC is beneficial to the management of SR data in colleges and universities to reduce scientific research costs and improve efficiency, the rest believe that CC can speed up data storage and improve security by acting on SR data management in colleges and universities.
ISSN: 2154-4824
Alyas, Tahir, Ateeq, Karamath, Alqahtani, Mohammed, Kukunuru, Saigeeta, Tabassum, Nadia, Kamran, Rukshanda.  2022.  Security Analysis for Virtual Machine Allocation in Cloud Computing. 2022 International Conference on Cyber Resilience (ICCR). :1–9.
A huge number of cloud users and cloud providers are threatened of security issues by cloud computing adoption. Cloud computing is a hub of virtualization that provides virtualization-based infrastructure over physically connected systems. With the rapid advancement of cloud computing technology, data protection is becoming increasingly necessary. It's important to weigh the advantages and disadvantages of moving to cloud computing when deciding whether to do so. As a result of security and other problems in the cloud, cloud clients need more time to consider transitioning to cloud environments. Cloud computing, like any other technology, faces numerous challenges, especially in terms of cloud security. Many future customers are wary of cloud adoption because of this. Virtualization Technologies facilitates the sharing of recourses among multiple users. Cloud services are protected using various models such as type-I and type-II hypervisors, OS-level, and unikernel virtualization but also offer a variety of security issues. Unfortunately, several attacks have been built in recent years to compromise the hypervisor and take control of all virtual machines running above it. It is extremely difficult to reduce the size of a hypervisor due to the functions it offers. It is not acceptable for a safe device design to include a large hypervisor in the Trusted Computing Base (TCB). Virtualization is used by cloud computing service providers to provide services. However, using these methods entails handing over complete ownership of data to a third party. This paper covers a variety of topics related to virtualization protection, including a summary of various solutions and risk mitigation in VMM (virtual machine monitor). In this paper, we will discuss issues possible with a malicious virtual machine. We will also discuss security precautions that are required to handle malicious behaviors. We notice the issues of investigating malicious behaviors in cloud computing, give the scientific categorization and demonstrate the future headings. We've identified: i) security specifications for virtualization in Cloud computing, which can be used as a starting point for securing Cloud virtual infrastructure, ii) attacks that can be conducted against Cloud virtual infrastructure, and iii) security solutions to protect the virtualization environment from DDOS attacks.
Ying, Ma, Tingting, Zhou.  2022.  Data Interface Matching and Information Security Measurement of Scientific and Technological Innovation Measurement Analysis and Multi-Agent Economic MIS. 2022 International Conference on Edge Computing and Applications (ICECAA). :510–513.
This paper establishes a vector autoregressive model based on the current development status of the digital economy and studies the correlation between the digital economy and economic growth MIS from a dynamic perspective, and found that the digital economy has a strong supporting role in the growth of the total economic volume. The coordination degree model calculates the scientific and technological innovation capabilities of China's 30 provinces (except Tibet) from 2018 to 2022, and the coordination, green, open, and shared level of high-quality economic development. The basic principles of the composition of the security measurement are expounded, and the measurement information model can be used as a logic model. The analysis of security measure composition summarizes the selection principle and selection process of security measurement, and analyzes and compares the measure composition methods in several typical security measurement methods.
Mahmood, Riyadh, Pennington, Jay, Tsang, Danny, Tran, Tan, Bogle, Andrea.  2022.  A Framework for Automated API Fuzzing at Enterprise Scale. 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). :377–388.
Web-based Application Programming Interfaces (APIs) are often described using SOAP, OpenAPI, and GraphQL specifications. These specifications provide a consistent way to define web services and enable automated fuzz testing. As such, many fuzzers take advantage of these specifications. However, in an enterprise setting, the tools are usually installed and scaled by individual teams, leading to duplication of efforts. There is a need for an enterprise-wide fuzz testing solution to provide shared, cost efficient, off-nominal testing at scale where fuzzers can be plugged-in as needed. Internet cloud-based fuzz testing-as-a-service solutions mitigate scalability concerns but are not always feasible as they require artifacts to be uploaded to external infrastructure. Typically, corporate policies prevent sharing artifacts with third parties due to cost, intellectual property, and security concerns. We utilize API specifications and combine them with cluster computing elasticity to build an automated, scalable framework that can fuzz multiple apps at once and retain the trust boundary of the enterprise.
ISSN: 2159-4848
Dreyer, Julian, Tönjes, Ralf, Aschenbruck, Nils.  2022.  Decentralizing loT Public- Key Storage using Distributed Ledger Technology. 2022 International Wireless Communications and Mobile Computing (IWCMC). :172–177.
The secure Internet of Things (loT) increasingly relies on digital cryptographic signatures which require a private signature and public verification key. By their intrinsic nature, public keys are meant to be accessible to any interested party willing to verify a given signature. Thus, the storing of such keys is of great concern, since an adversary shall not be able to tamper with the public keys, e.g., on a local filesystem. Commonly used public-key infrastructures (PKIs), which handle the key distribution and storage, are not feasible in most use-cases, due to their resource intensity and high complexity. Thus, the general storing of the public verification keys is of notable interest for low-resource loT networks. By using the Distributed Ledger Technology (DLT), this paper proposes a decentralized concept for storing public signature verification keys in a tamper-resistant, secure, and resilient manner. By combining lightweight public-key exchange protocols with the proposed approach, the storing of verification keys becomes scalable and especially suitable for low-resource loT devices. This paper provides a Proof-of-Concept implementation of the DLT public-key store by extending our previously proposed NFC-Key Exchange (NFC-KE) protocol with a decentralized Hyperledger Fabric public-key store. The provided performance analysis shows that by using the decentralized keystore, the NFC- KE protocol gains an increased tamper resistance and overall system resilience while also showing expected performance degradations with a low real-world impact.
ISSN: 2376-6506
Vélez, Tatiana Castro, Khatchadourian, Raffi, Bagherzadeh, Mehdi, Raja, Anita.  2022.  Challenges in Migrating Imperative Deep Learning Programs to Graph Execution: An Empirical Study. 2022 IEEE/ACM 19th International Conference on Mining Software Repositories (MSR). :469–481.
Efficiency is essential to support responsiveness w.r.t. ever-growing datasets, especially for Deep Learning (DL) systems. DL frameworks have traditionally embraced deferred execution-style DL code that supports symbolic, graph-based Deep Neural Network (DNN) computation. While scalable, such development tends to produce DL code that is error-prone, non-intuitive, and difficult to debug. Consequently, more natural, less error-prone imperative DL frameworks encouraging eager execution have emerged at the expense of run-time performance. While hybrid approaches aim for the “best of both worlds,” the challenges in applying them in the real world are largely unknown. We conduct a data-driven analysis of challenges-and resultant bugs-involved in writing reliable yet performant imperative DL code by studying 250 open-source projects, consisting of 19.7 MLOC, along with 470 and 446 manually examined code patches and bug reports, respectively. The results indicate that hybridization: (i) is prone to API misuse, (ii) can result in performance degradation-the opposite of its intention, and (iii) has limited application due to execution mode incompatibility. We put forth several recommendations, best practices, and anti-patterns for effectively hybridizing imperative DL code, potentially benefiting DL practitioners, API designers, tool developers, and educators.
ISSN: 2574-3864
Li, Ying, Chen, Lan, Wang, Jian, Gong, Guanfei.  2022.  Partial Reconfiguration for Run-time Memory Faults and Hardware Trojan Attacks Detection. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :173–176.
Embedded memory are important components in system-on-chip, which may be crippled by aging and wear faults or Hardware Trojan attacks to compromise run-time security. The current built-in self-test and pre-silicon verification lack efficiency and flexibility to solve this problem. To this end, we address such vulnerabilities by proposing a run-time memory security detecting framework in this paper. The solution builds mainly upon a centralized security detection controller for partially reconfigurable inspection content, and a static memory wrapper to handle access conflicts and buffering testing cells. We show that a field programmable gate array prototype of the proposed framework can pursue 16 memory faults and 3 types Hardware Trojans detection with one reconfigurable partition, whereas saves 12.7% area and 2.9% power overhead compared to a static implementation. This architecture has more scalable capability with little impact on the memory accessing throughput of the original chip system in run-time detection.