Visible to the public Particle Filtering Based on Biome Intelligence Algorithm

TitleParticle Filtering Based on Biome Intelligence Algorithm
Publication TypeConference Paper
Year of Publication2021
AuthorsWang, Yinuo, Liu, Shujuan, Zhou, Jingyuan, Sun, Tengxuan
Conference Name2021 International Conference on Security, Pattern Analysis, and Cybernetics(SPAC)
Date PublishedJune 2021
PublisherIEEE
ISBN Number978-1-6654-4322-7
Keywordsadaptive filtering, Biota intelligence, Cuckoo algorithm, Filtering, firefly algorithm, Initialize, Metrics, particle filter, Particle filters, Prediction algorithms, pubcrawl, resilience, Resiliency, Scalability, security, Sociology, Statistics, swarm intelligence, Technological innovation
AbstractParticle filtering is an indispensable method for non-Gaussian state estimation, but it has some problems, such as particle degradation and requiring a large number of particles to ensure accuracy. Biota intelligence algorithms led by Cuckoo (CS) and Firefly (FA) have achieved certain results after introducing particle filtering, respectively. This paper respectively in the two kinds of bionic algorithm convergence factor and adaptive step length and random mobile innovation, seized the cuckoo algorithm (CS) in the construction of the initial value and the firefly algorithm (FA) in the iteration convergence advantages, using the improved after the update mechanism of cuckoo algorithm optimizing the initial population, and will be updated after optimization way of firefly algorithm combined with particle filter. Experimental results show that this method can ensure the diversity of particles and greatly reduce the number of particles needed for prediction while improving the filtering accuracy.
URLhttps://ieeexplore.ieee.org/document/9539970
DOI10.1109/SPAC53836.2021.9539970
Citation Keywang_particle_2021