Biblio

Found 4176 results

Filters: First Letter Of Last Name is M  [Clear All Filters]
2023-02-02
Mansoor, Niloofar, Muske, Tukaram, Serebrenik, Alexander, Sharif, Bonita.  2022.  An Empirical Assessment on Merging and Repositioning of Static Analysis Alarms. 2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM). :219–229.
Static analysis tools generate a large number of alarms that require manual inspection. In prior work, repositioning of alarms is proposed to (1) merge multiple similar alarms together and replace them by a fewer alarms, and (2) report alarms as close as possible to the causes for their generation. The premise is that the proposed merging and repositioning of alarms will reduce the manual inspection effort. To evaluate the premise, this paper presents an empirical study with 249 developers on the proposed merging and repositioning of static alarms. The study is conducted using static analysis alarms generated on \$C\$ programs, where the alarms are representative of the merging vs. non-merging and repositioning vs. non-repositioning situations in real-life code. Developers were asked to manually inspect and determine whether assertions added corresponding to alarms in \$C\$ code hold. Additionally, two spatial cognitive tests are also done to determine relationship in performance. The empirical evaluation results indicate that, in contrast to expectations, there was no evidence that merging and repositioning of alarms reduces manual inspection effort or improves the inspection accuracy (at times a negative impact was found). Results on cognitive abilities correlated with comprehension and alarm inspection accuracy.
2023-05-11
Teo, Jia Wei, Gunawan, Sean, Biswas, Partha P., Mashima, Daisuke.  2022.  Evaluating Synthetic Datasets for Training Machine Learning Models to Detect Malicious Commands. 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :315–321.
Electrical substations in power grid act as the critical interface points for the transmission and distribution networks. Over the years, digital technology has been integrated into the substations for remote control and automation. As a result, substations are more prone to cyber attacks and exposed to digital vulnerabilities. One of the notable cyber attack vectors is the malicious command injection, which can lead to shutting down of substations and subsequently power outages as demonstrated in Ukraine Power Plant Attack in 2015. Prevailing measures based on cyber rules (e.g., firewalls and intrusion detection systems) are often inadequate to detect advanced and stealthy attacks that use legitimate-looking measurements or control messages to cause physical damage. Additionally, defenses that use physics-based approaches (e.g., power flow simulation, state estimation, etc.) to detect malicious commands suffer from high latency. Machine learning serves as a potential solution in detecting command injection attacks with high accuracy and low latency. However, sufficient datasets are not readily available to train and evaluate the machine learning models. In this paper, focusing on this particular challenge, we discuss various approaches for the generation of synthetic data that can be used to train the machine learning models. Further, we evaluate the models trained with the synthetic data against attack datasets that simulates malicious commands injections with different levels of sophistication. Our findings show that synthetic data generated with some level of power grid domain knowledge helps train robust machine learning models against different types of attacks.
2022-12-01
Ajorpaz, Samira Mirbagher, Moghimi, Daniel, Collins, Jeffrey Neal, Pokam, Gilles, Abu-Ghazaleh, Nael, Tullsen, Dean.  2022.  EVAX: Towards a Practical, Pro-active & Adaptive Architecture for High Performance & Security. 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). :1218—1236.
This paper provides an end-to-end solution to defend against known microarchitectural attacks such as speculative execution attacks, fault-injection attacks, covert and side channel attacks, and unknown or evasive versions of these attacks. Current defenses are attack specific and can have unacceptably high performance overhead. We propose an approach that reduces the overhead of state-of-art defenses by over 95%, by applying defenses only when attacks are detected. Many current proposed mitigations are not practical for deployment; for example, InvisiSpec has 27% overhead and Fencing has 74% overhead while protecting against only Spectre attacks. Other mitigations carry similar performance penalties. We reduce the overhead for InvisiSpec to 1.26% and for Fencing to 3.45% offering performance and security for not only spectre attacks but other known transient attacks as well, including the dangerous class of LVI and Rowhammer attacks, as well as covering a large set of future evasive and zero-day attacks. Critical to our approach is an accurate detector that is not fooled by evasive attacks and that can generalize to novel zero-day attacks. We use a novel Generative framework, Evasion Vaccination (EVAX) for training ML models and engineering new security-centric performance counters. EVAX significantly increases sensitivity to detect and classify attacks in time for mitigation to be deployed with low false positives (4 FPs in every 1M instructions in our experiments). Such performance enables efficient and timely mitigations, enabling the processor to automatically switch between performance and security as needed.
2023-06-29
Jayakody, Nirosh, Mohammad, Azeem, Halgamuge, Malka N..  2022.  Fake News Detection using a Decentralized Deep Learning Model and Federated Learning. IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society. :1–6.

Social media has beneficial and detrimental impacts on social life. The vast distribution of false information on social media has become a worldwide threat. As a result, the Fake News Detection System in Social Networks has risen in popularity and is now considered an emerging research area. A centralized training technique makes it difficult to build a generalized model by adapting numerous data sources. In this study, we develop a decentralized Deep Learning model using Federated Learning (FL) for fake news detection. We utilize an ISOT fake news dataset gathered from "Reuters.com" (N = 44,898) to train the deep learning model. The performance of decentralized and centralized models is then assessed using accuracy, precision, recall, and F1-score measures. In addition, performance was measured by varying the number of FL clients. We identify the high accuracy of our proposed decentralized FL technique (accuracy, 99.6%) utilizing fewer communication rounds than in previous studies, even without employing pre-trained word embedding. The highest effects are obtained when we compare our model to three earlier research. Instead of a centralized method for false news detection, the FL technique may be used more efficiently. The use of Blockchain-like technologies can improve the integrity and validity of news sources.

ISSN: 2577-1647

2023-07-20
Mell, Peter.  2022.  The Generation of Software Security Scoring Systems Leveraging Human Expert Opinion. 2022 IEEE 29th Annual Software Technology Conference (STC). :116—124.

While the existence of many security elements in software can be measured (e.g., vulnerabilities, security controls, or privacy controls), it is challenging to measure their relative security impact. In the physical world we can often measure the impact of individual elements to a system. However, in cyber security we often lack ground truth (i.e., the ability to directly measure significance). In this work we propose to solve this by leveraging human expert opinion to provide ground truth. Experts are iteratively asked to compare pairs of security elements to determine their relative significance. On the back end our knowledge encoding tool performs a form of binary insertion sort on a set of security elements using each expert as an oracle for the element comparisons. The tool not only sorts the elements (note that equality may be permitted), but it also records the strength or degree of each relationship. The output is a directed acyclic ‘constraint’ graph that provides a total ordering among the sets of equivalent elements. Multiple constraint graphs are then unified together to form a single graph that is used to generate a scoring or prioritization system.For our empirical study, we apply this domain-agnostic measurement approach to generate scoring/prioritization systems in the areas of vulnerability scoring, privacy control prioritization, and cyber security control evaluation.

2023-01-20
Sen, Ömer, Eze, Chijioke, Ulbig, Andreas, Monti, Antonello.  2022.  On Holistic Multi-Step Cyberattack Detection via a Graph-based Correlation Approach. 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :380–386.
While digitization of distribution grids through information and communications technology brings numerous benefits, it also increases the grid's vulnerability to serious cyber attacks. Unlike conventional systems, attacks on many industrial control systems such as power grids often occur in multiple stages, with the attacker taking several steps at once to achieve its goal. Detection mechanisms with situational awareness are needed to detect orchestrated attack steps as part of a coherent attack campaign. To provide a foundation for detection and prevention of such attacks, this paper addresses the detection of multi-stage cyber attacks with the aid of a graph-based cyber intelligence database and alert correlation approach. Specifically, we propose an approach to detect multi-stage attacks by lever-aging heterogeneous data to form a knowledge base and employ a model-based correlation approach on the generated alerts to identify multi-stage cyber attack sequences taking place in the network. We investigate the detection quality of the proposed approach by using a case study of a multi-stage cyber attack campaign in a future-orientated power grid pilot.
2023-07-12
Hassan, Shahriar, Muztaba, Md. Asif, Hossain, Md. Shohrab, Narman, Husnu S..  2022.  A Hybrid Encryption Technique based on DNA Cryptography and Steganography. 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0501—0508.
The importance of data and its transmission rate are increasing as the world is moving towards online services every day. Thus, providing data security is becoming of utmost importance. This paper proposes a secure data encryption and hiding method based on DNA cryptography and steganography. Our approach uses DNA for encryption and data hiding processes due to its high capacity and simplicity in securing various kinds of data. Our proposed method has two phases. In the first phase, it encrypts the data using DNA bases along with Huffman coding. In the second phase, it hides the encrypted data into a DNA sequence using a substitution algorithm. Our proposed method is blind and preserves biological functionality. The result shows a decent cracking probability with comparatively better capacity. Our proposed method has eliminated most limitations identified in the related works. Our proposed hybrid technique can provide a double layer of security to sensitive data.
2023-09-08
Chen, Kai, Wu, Hongjun, Xu, Cheng, Ma, Nan, Dai, Songyin, Liu, Hongzhe.  2022.  An Intelligent Vehicle Data Security System based on Blockchain for Smart City. 2022 International Conference on Virtual Reality, Human-Computer Interaction and Artificial Intelligence (VRHCIAI). :227–231.
With the development of urbanization, the number of vehicles is gradually increasing, and vehicles are gradually developing in the direction of intelligence. How to ensure that the data of intelligent vehicles is not tampered in the process of transmission to the cloud is the key problem of current research. Therefore, we have established a data security transmission system based on blockchain. First, we collect and filter vehicle data locally, and then use blockchain technology to transmit key data. Through the smart contract, the key data is automatically and accurately transmitted to the surrounding node vehicles, and the vehicles transmit data to each other to form a transaction and spread to the whole network. The node data is verified through the node data consensus protocol of intelligent vehicle data security transmission system, and written into the block to form a blockchain. Finally, the vehicle user can query the transaction record through the vehicle address. The results show that we can safely and accurately transmit and query vehicle data in the blockchain database.
2023-07-11
Tudose, Andrei, Micu, Robert, Picioroaga, Irina, Sidea, Dorian, Mandis, Alexandru, Bulac, Constantin.  2022.  Power Systems Security Assessment Based on Artificial Neural Networks. 2022 International Conference and Exposition on Electrical And Power Engineering (EPE). :535—539.
Power system security assessment is a major issue among the fundamental functions needed for the proper power systems operation. In order to perform the security evaluation, the contingency analysis is a key component. However, the dynamic evolution of power systems during the past decades led to the necessity of novel techniques to facilitate this task. In this paper, power systems security is defined based on the N-l contingency analysis. An artificial neural network approach is proposed to ensure the fast evaluation of power systems security. In this regard, the IEEE 14 bus transmission system is used to verify the performance of the proposed model, the results showing high efficiency subject to multiple evaluation metrics.
2022-12-06
Mbarek, Bacem, Ge, Mouzhi, Pitner, Tomás.  2022.  Precisional Detection Strategy for 6LoWPAN Networks in IoT. 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1006-1011.

With the rapid development of the Internet of Things (IoT), a large amount of data is exchanged between various communicating devices. Since the data should be communicated securely between the communicating devices, the network security is one of the dominant research areas for the 6LoWPAN IoT applications. Meanwhile, 6LoWPAN devices are vulnerable to attacks inherited from both the wireless sensor networks and the Internet protocols. Thus intrusion detection systems have become more and more critical and play a noteworthy role in improving the 6LoWPAN IoT networks. However, most intrusion detection systems focus on the attacked areas in the IoT networks instead of precisely on certain IoT nodes. This may lead more resources to further detect the compromised nodes or waste resources when detaching the whole attacked area. In this paper, we therefore proposed a new precisional detection strategy for 6LoWPAN Networks, named as PDS-6LoWPAN. In order to validate the strategy, we evaluate the performance and applicability of our solution with a thorough simulation by taking into account the detection accuracy and the detection response time.

2023-02-24
Goto, Ren, Matama, Kazushige, Nishiwaki, Chihiro, Naito, Katsuhiro.  2022.  Proposal of an extended CYPHONIC adapter supporting general nodes using virtual IPv6 addresses. 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE). :257—261.
The spread of the Internet of Things (IoT) and cloud services leads to a request for secure communication between devices, known as zero-trust security. The authors have been developing CYber PHysical Overlay Network over Internet Communication (CYPHONIC) to realize secure end-to-end communication among devices. A device requires installing the client program into the devices to realize secure communication over our overlay network. However, some devices refuse additional installation of external programs due to the limitation of system and hardware resources or the effect on system reliability. We proposed new technology, a CYPHONIC adapter, to support these devices. Currently, the CYPHONIC adapter supports only IPv4 virtual addresses and needs to be compatible with general devices that use IPv6. This paper proposes the dual-stack CYPHONIC adapter supporting IPv4/IPv6 virtual addresses for general devices. The prototype implementation shows that the general device can communicate over our overlay network using both IP versions through the proposed CYPHONIC adapter.
2023-01-20
Abdelrahman, Mahmoud S., Kassem, A., Saad, Ahmed A., Mohammed, Osama A..  2022.  Real-Time Wide Area Event Identification and Analysis in Power Grid Based on EWAMS. 2022 IEEE Industry Applications Society Annual Meeting (IAS). :1–13.
Event detection and classification are crucial to power system stability. The Wide Area Measurement System (WAMS) technology helps in enhancing wide area situational awareness by providing useful synchronized information to the grid control center in order to accurately identify various power system events. This paper demonstrates the viability of using EWAMS (Egyptian Wide Area Measurement System) data as one of the evolving technologies of smart grid to identify extreme events within the Egyptian power grid. The proposed scheme is based on online synchronized measurements of wide-area monitoring devices known as Frequency Disturbance Recorders (FDRs) deployed at selected substations within the grid. The FDR measures the voltage, voltage angle, and frequency at the substation and streams the processed results to the Helwan University Host Server (HUHS). Each FDR is associated with a timestamp reference to the Global Positioning System (GPS) base. An EWAMS-based frequency disturbance detection algorithm based on the rate of frequency deviation is developed to identify varies types of events such as generator trip and load shedding. Based on proper thresholding on the frequency and rate of change of frequency of the Egyptian grid, different types of events have been captured in many locations during the supervision and monitoring the operation of the grid. EWAMS historical data is used to analyze a wide range of data pre-event, during and post-event for future enhancement of situational awareness as well as decision making.
2023-04-28
Dutta, Ashutosh, Hammad, Eman, Enright, Michael, Behmann, Fawzi, Chorti, Arsenia, Cheema, Ahmad, Kadio, Kassi, Urbina-Pineda, Julia, Alam, Khaled, Limam, Ahmed et al..  2022.  Security and Privacy. 2022 IEEE Future Networks World Forum (FNWF). :1–71.
The digital transformation brought on by 5G is redefining current models of end-to-end (E2E) connectivity and service reliability to include security-by-design principles necessary to enable 5G to achieve its promise. 5G trustworthiness highlights the importance of embedding security capabilities from the very beginning while the 5G architecture is being defined and standardized. Security requirements need to overlay and permeate through the different layers of 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture within a risk-management framework that takes into account the evolving security-threats landscape. 5G presents a typical use-case of wireless communication and computer networking convergence, where 5G fundamental building blocks include components such as Software Defined Networks (SDN), Network Functions Virtualization (NFV) and the edge cloud. This convergence extends many of the security challenges and opportunities applicable to SDN/NFV and cloud to 5G networks. Thus, 5G security needs to consider additional security requirements (compared to previous generations) such as SDN controller security, hypervisor security, orchestrator security, cloud security, edge security, etc. At the same time, 5G networks offer security improvement opportunities that should be considered. Here, 5G architectural flexibility, programmability and complexity can be harnessed to improve resilience and reliability. The working group scope fundamentally addresses the following: •5G security considerations need to overlay and permeate through the different layers of the 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture including a risk management framework that takes into account the evolving security threats landscape. •5G exemplifies a use-case of heterogeneous access and computer networking convergence, which extends a unique set of security challenges and opportunities (e.g., related to SDN/NFV and edge cloud, etc.) to 5G networks. Similarly, 5G networks by design offer potential security benefits and opportunities through harnessing the architecture flexibility, programmability and complexity to improve its resilience and reliability. •The IEEE FNI security WG's roadmap framework follows a taxonomic structure, differentiating the 5G functional pillars and corresponding cybersecurity risks. As part of cross collaboration, the security working group will also look into the security issues associated with other roadmap working groups within the IEEE Future Network Initiative.
ISSN: 2770-7679
2023-02-17
Mokhamed, T., Dakalbab, F. M., Abbas, S., Talib, M. A..  2022.  Security in Robot Operating Systems (ROS): analytical review study. The 3rd International Conference on Distributed Sensing and Intelligent Systems (ICDSIS 2022). 2022:79–94.
The Robotic Operating System (ROS) is a popular framework for robotics research and development. It's a system that provides hardware abstraction with low-level device management to handle communications and services. ROS is a distributed system, which allows various nodes in a network to communicate using a method such as message passing. When integrating systems using ROS, it is vital to consider the security and privacy of the data and information shared across ROS nodes, which is considered to be one of the most challenging aspects of ROS systems. The goal of this study is to examine the ROS architecture, primary components, and versions, as well as the types of vulnerabilities that might compromise the system. In order to achieve the CIA's three fundamental security criteria on a ROS-based platform, we categorized these vulnerabilities and looked into various security solutions proposed by researchers. We provide a comparative analysis of the ROS-related security solutions, the security threats and issues they addressed, the targeted architecture of the protection or defense system, the solution's evaluation methodology and the evaluation metric, and the limitations that might be viewed as unresolved issues for the future course of action. Finally, we look into future possibilities and open challenges to assist researchers to develop more secure and efficient ROS systems.
Mayoral-Vilches, Victor, White, Ruffin, Caiazza, Gianluca, Arguedas, Mikael.  2022.  SROS2: Usable Cyber Security Tools for ROS 2. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :11253–11259.
ROS 2 is rapidly becoming a standard in the robotics industry. Built upon DDS as its default communication middleware and used in safety-critical scenarios, adding secu-rity to robots and ROS computational graphs is increasingly becoming a concern. The present work introduces SROS2, a series of developer tools and libraries that facilitate adding security to ROS 2 graphs. Focusing on a usability-centric approach in SROS2, we present a methodology for securing graphs systematically while following the DevSecOps model. We also demonstrate the use of our security tools by presenting an application case study that considers securing a graph using the popular Navigation2 and SLAM Toolbox stacks applied in a TurtieBot3 robot. We analyse the current capabilities of SROS2 and discuss the shortcomings, which provides insights for future contributions and extensions. Ultimately, we present SROS2 as usable security tools for ROS 2 and argue that without usability, security in robotics will be greatly impaired.
ISSN: 2153-0866
2023-06-22
Malla, Sai Anish, Kapoor, Khushee, Kejariwal, Adithya, Rao, Vidya, Kundapur, Poornimaa Panduranga.  2022.  SWARM: Sanitizer With Attendance through Remote Monitoring. 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER). :316–319.
With Covid19 being endemic, it is very essential to continue proper physical hygiene protocols even today to avoid escalation. To ensure hygiene inside educational institutions, many governing bodies-imposed protocols to insist students wear hand gloves and facemasks. Such an implementation, however, has increased surgical waste in and around educational institutions, and also there is a rise in allergies due to the constant use of hand gloves by the students. Hence, a prototype of a hand sanitization-based attendance monitoring system has been proposed in the current research paper. This proposed sanitizer with attendance through remote monitoring (SWARM) uses Raspberry Pi devices to capture the image of a student’s identity card holding the registration number and through a bar code analysis module of computer vision, the ID number is extracted. This ID number is compared with a master attendance file to mark the students’ presence and then the updated file is shared with the concerned teacher via email. Such a setup is installed in the laboratory premise, thereby reducing the unnecessary use and disposal of surgical waste within the educational premise.
2023-03-31
Ming, Lan.  2022.  The Application of Dynamic Random Network Structure in the Modeling of the Combination of Core Values and Network Education in the Propagation Algorithm. 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA). :455–458.
The topological structure of the network relationship is described by the network diagram, and the formation and evolution process of the network is analyzed by using the cost-benefit method. Assuming that the self-interested network member nodes can connect or break the connection, the network topology model is established based on the dynamic random pairing evolution network model. The static structure of the network is studied. Respecting the psychological cognition law of college students and innovating the core value cultivation model can reverse the youth's identification dilemma with the core values, and then create a good political environment for the normal, healthy, civilized and orderly network participation of the youth. In recognition of the atmosphere, an automatic learning algorithm of Bayesian network structure that effectively integrates expert knowledge and data-driven methods is realized.
2023-02-03
Cheng, Jiujun, Hou, Mengnan, Zhou, MengChu, Yuan, Guiyuan, Mao, Qichao.  2022.  An Autonomous Vehicle Group Formation Method based on Risk Assessment Scoring. 2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :1–6.
Forming a secure autonomous vehicle group is extremely challenging since we have to consider threats and vulnerability of autonomous vehicles. Existing studies focus on communications among risk-free autonomous vehicles, which lack metrics to measure passenger security and cargo values. This work proposes a novel autonomous vehicle group formation method. We introduce risk assessment scoring to assess passenger security and cargo values, and propose an autonomous vehicle group formation method based on it. Our vehicle group is composed of a master node, and a number of core and border ones. Finally, the extensive simulation results show that our method is better than a Connectivity Prediction-based Dynamic Clustering model and a Low-InDependently clustering architecture in terms of node survival time, average change count of master nodes, and average risk assessment scoring.
2023-03-17
Mohammadi, Ali, Badewa, Oluwaseun A., Chulaee, Yaser, Ionel, Dan M., Essakiappan, Somasundaram, Manjrekar, Madhav.  2022.  Direct-Drive Wind Generator Concept with Non-Rare-Earth PM Flux Intensifying Stator and Reluctance Outer Rotor. 2022 11th International Conference on Renewable Energy Research and Application (ICRERA). :582–587.
This paper proposes a novel concept for an electric generator in which both ac windings and permanent magnets (PMs) are placed in the stator. Concentrated windings with a special pattern and phase coils placed in separate slots are employed. The PMs are positioned in a spoke-type field concentrating arrangement, which provides high flux intensification and enables the use of lower remanence and energy non-rare earth magnets. The rotor is exterior to the stator and has a simple and robust reluctance-type configuration without any active electromagnetic excitation components. The principle of operation is introduced based on the concept of virtual work with closed-form analytical airgap flux density distributions. Initial and parametric design studies were performed using electromagnetic FEA for a 3MW direct-drive wind turbine generator employing PMs of different magnetic remanence and specific energy. Results include indices for the goodness of excitation and the goodness of the electric machine designs; loss; and efficiency estimations, indicating that performance comparable to PM synchronous designs employing expensive and critical supply rare-earth PMs may be achieved with non-rare earth PMs using the proposed configuration.
ISSN: 2572-6013
2023-01-05
Khodaskar, Manish, Medhane, Darshan, Ingle, Rajesh, Buchade, Amar, Khodaskar, Anuja.  2022.  Feature-based Intrusion Detection System with Support Vector Machine. 2022 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS). :1—7.
Today billions of people are accessing the internet around the world. There is a need for new technology to provide security against malicious activities that can take preventive/ defensive actions against constantly evolving attacks. A new generation of technology that keeps an eye on such activities and responds intelligently to them is the intrusion detection system employing machine learning. It is difficult for traditional techniques to analyze network generated data due to nature, amount, and speed with which the data is generated. The evolution of advanced cyber threats makes it difficult for existing IDS to perform up to the mark. In addition, managing large volumes of data is beyond the capabilities of computer hardware and software. This data is not only vast in scope, but it is also moving quickly. The system architecture suggested in this study uses SVM to train the model and feature selection based on the information gain ratio measure ranking approach to boost the overall system's efficiency and increase the attack detection rate. This work also addresses the issue of false alarms and trying to reduce them. In the proposed framework, the UNSW-NB15 dataset is used. For analysis, the UNSW-NB15 and NSL-KDD datasets are used. Along with SVM, we have also trained various models using Naive Bayes, ANN, RF, etc. We have compared the result of various models. Also, we can extend these trained models to create an ensemble approach to improve the performance of IDS.
2023-08-17
Misbahuddin, Mohammed, Harish, Rashmi, Ananya, K.  2022.  Identity of Things (IDoT): A Preliminary Report on Identity Management Solutions for IoT Devices. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1—9.
The Internet of Things poses some of the biggest security challenges in the present day. Companies, users and infrastructures are constantly under attack by malicious actors. Increasingly, attacks are being launched by hacking into one vulnerable device and hence disabling entire networks resulting in great loss. A strong identity management framework can help better protect these devices by issuing a unique identity and managing the same through its lifecycle. Identity of Things (IDoT) is a term that has been used to describe the importance of device identities in IoT networks. Since the traditional identity and access management (IAM) solutions are inadequate in managing identities for IoT, the Identity of Things (IDoT) is emerging as the solution for issuance of Identities to every type of device within the IoT IAM infrastructure. This paper presents the survey of recent research works proposed in the area of device identities and various commercial solutions offered by organizations specializing in IoT device security.
2023-03-17
Kharitonov, Valerij A., Krivogina, Darya N., Salamatina, Anna S., Guselnikova, Elina D., Spirina, Varvara S., Markvirer, Vladlena D..  2022.  Intelligent Technologies for Projective Thinking and Research Management in the Knowledge Representation System. 2022 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :292–295.
It is proposed to address existing methodological issues in the educational process with the development of intellectual technologies and knowledge representation systems to improve the efficiency of higher education institutions. For this purpose, the structure of relational database is proposed, it will store the information about defended dissertations in the form of a set of attributes (heuristics), representing the mandatory qualification attributes of theses. An inference algorithm is proposed to process the information. This algorithm represents an artificial intelligence, its work is aimed at generating queries based on the applicant preferences. The result of the algorithm's work will be a set of choices, presented in ranked order. Given technologies will allow applicants to quickly become familiar with known scientific results and serve as a starting point for new research. The demand for co-researcher practice in solving the problem of updating the projective thinking methodology and managing the scientific research process has been justified. This article pays attention to the existing parallels between the concepts of technical and human sciences in the framework of their convergence. The concepts of being (economic good and economic utility) and the concepts of consciousness (humanitarian economic good and humanitarian economic utility) are used to form projective thinking. They form direct and inverse correspondences of technology and humanitarian practice in the techno-humanitarian mathematical space. It is proposed to place processed information from the language of context-free formal grammar dissertation abstracts in this space. The principle of data manipulation based on formal languages with context-free grammar allows to create new structures of subject areas in terms of applicants' preferences.It is believed that the success of applicants’ work depends directly on the cognitive training of applicants, which needs to be practiced psychologically. This practice is based on deepening the objectivity and adequacy qualities of obtaining information on the basis of heuristic methods. It requires increased attention and development of intelligence. The paper studies the use of heuristic methods by applicants to find new research directions leads to several promising results. These results can be perceived as potential options in future research. This contributes to an increase in the level of retention of higher education professionals.
2022-12-02
Illi, Elmehdi, Pandey, Anshul, Bariah, Lina, Singh, Govind, Giacalone, Jean-Pierre, Muhaidat, Sami.  2022.  Physical Layer Continuous Authentication for Wireless Mesh Networks: An Experimental Study. 2022 IEEE International Mediterranean Conference on Communications and Networking (MeditCom). :136—141.
This paper investigates the robustness of the received signal strength (RSS)-based physical layer authentication (PLA) for wireless mesh networks, through experimental results. Specifically, we develop a secure wireless mesh networking framework and apply the RSS-based PLA scheme, with the aim to perform continuous authentication. The mesh setup comprises three Raspberry-PI4 computing nodes (acting as Alice, Bob, and Eve) and a server. The server role is to perform the initial authentication when a new node joins the mesh network. After that, the legitimate nodes in the mesh network perform continuous authentication, by leveraging the RSS feature of wireless signals. In particular, Bob tries to authenticate Alice in the presence of Eve. The performance of the presented framework is quantified through extensive experimental results in an outdoor environment, where various nodes' positions, relative distances, and pedestrian speeds scenarios are considered. The obtained results demonstrate the robustness of the underlying model, where an authentication rate of 99% for the static case can be achieved. Meanwhile, at the pedestrian speed, the authentication rate can drop to 85%. On the other hand, the detection rate improves when the distance between the legitimate and wiretap links is large (exceeds 20 meters) or when Alice and Eve are moving in different mobility patterns.
2023-07-13
Zhang, Zhun, Hao, Qiang, Xu, Dongdong, Wang, Jiqing, Ma, Jinhui, Zhang, Jinlei, Liu, Jiakang, Wang, Xiang.  2022.  Real-Time Instruction Execution Monitoring with Hardware-Assisted Security Monitoring Unit in RISC-V Embedded Systems. 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC). :192–196.

Embedded systems involve an integration of a large number of intellectual property (IP) blocks to shorten chip's time to market, in which, many IPs are acquired from the untrusted third-party suppliers. However, existing IP trust verification techniques cannot provide an adequate security assurance that no hardware Trojan was implanted inside the untrusted IPs. Hardware Trojans in untrusted IPs may cause processor program execution failures by tampering instruction code and return address. Therefore, this paper presents a secure RISC-V embedded system by integrating a Security Monitoring Unit (SMU), in which, instruction integrity monitoring by the fine-grained program basic blocks and function return address monitoring by the shadow stack are implemented, respectively. The hardware-assisted SMU is tested and validated that while CPU executes a CoreMark program, the SMU does not incur significant performance overhead on providing instruction security monitoring. And the proposed RISC-V embedded system satisfies good balance between performance overhead and resource consumption.

2023-01-13
Mandrakov, Egor S., Dudina, Diana A., Vasiliev, Vicror A., Aleksandrov, Mark N..  2022.  Risk Management Process in the Digital Environment. 2022 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :108–111.
Currently, many organizations are moving to new digital management systems, which is accompanied not only by the introduction of new approaches based on the use of information technology, but also by a change in the organizational and management environment. Risk management is a process necessary to maintain the competitive advantage of an organization, but it can also become involved in the course of digitalization itself, which means that risk management also needs to change to meet modern conditions and ensure the effectiveness of the organization. This article discusses the risk management process in the digital environment. The main approach to the organization of this process is outlined, taking into account the use of information tools, together with the stages of this process, which directly affect the efficiency of the company. The risks that are specific to a digital organization are taken into account. Modern requirements for risk management for organizations are studied, ways of their implementation are outlined. The result is a risk management process that functions in a digital organization.