Biblio

Found 1602 results

Filters: First Letter Of Last Name is N  [Clear All Filters]
2020-12-11
Nguyen, A., Choi, S., Kim, W., Lee, S..  2019.  A Simple Way of Multimodal and Arbitrary Style Transfer. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1752—1756.

We re-define multimodality and introduce a simple approach to multimodal and arbitrary style transfer. Conventionally, style transfer methods are limited to synthesizing a deterministic output based on a single style, and there has been no work that can generate multiple images of various details, or multimodality, given a single style. In this work, we explore a way to achieve multimodal and arbitrary style transfer by injecting noise to a unimodal method. This novel approach does not require any trainable parameters, and can be readily applied to any unimodal style transfer methods with separate style encoding sub-network in literature. Experimental results show that while being able to transfer an image to multiple domains in various ways, the image quality is highly competitive with contemporary models in style transfer.

2020-08-24
Noor, Joseph, Ali-Eldin, Ahmed, Garcia, Luis, Rao, Chirag, Dasari, Venkat R., Ganesan, Deepak, Jalaian, Brian, Shenoy, Prashant, Srivastava, Mani.  2019.  The Case for Robust Adaptation: Autonomic Resource Management is a Vulnerability. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :821–826.
Autonomic resource management for distributed edge computing systems provides an effective means of enabling dynamic placement and adaptation in the face of network changes, load dynamics, and failures. However, adaptation in-and-of-itself offers a side channel by which malicious entities can extract valuable information. An attacker can take advantage of autonomic resource management techniques to fool a system into misallocating resources and crippling applications. Using a few scenarios, we outline how attacks can be launched using partial knowledge of the resource management substrate - with as little as a single compromised node. We argue that any system that provides adaptation must consider resource management as an attack surface. As such, we propose ADAPT2, a framework that incorporates concepts taken from Moving-Target Defense and state estimation techniques to ensure correctness and obfuscate resource management, thereby protecting valuable system and application information from leaking.
Starke, Allen, Nie, Zixiang, Hodges, Morgan, Baker, Corey, McNair, Janise.  2019.  Denial of Service Detection Mitigation Scheme using Responsive Autonomic Virtual Networks (RAvN). MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1–6.
In this paper we propose a responsive autonomic and data-driven adaptive virtual networking framework (RAvN) that integrates the adaptive reconfigurable features of a popular SDN platform called open networking operating system (ONOS), the network performance statistics provided by traffic monitoring tools such as T-shark or sflow-RT and analytics and decision making skills provided from new and current machine learning techniques to detect and mitigate anomalous behavior. For this paper we focus on the development of novel detection schemes using a developed Centroid-based clustering technique and the Intragroup variance of data features within network traffic (C. Intra), with a multivariate gaussian distribution model fitted to the constant changes in the IP addresses of the network to accurately assist in the detection of low rate and high rate denial of service (DoS) attacks. We briefly discuss our ideas on the development of the decision-making and execution component using the concept of generating adaptive policy updates (i.e. anomalous mitigation solutions) on-the-fly to the ONOS SDN controller for updating network configurations and flows. In addition we provide the analysis on anomaly detection schemes used for detecting low rate and high rate DoS attacks versus a commonly used unsupervised machine learning technique Kmeans. The proposed schemes outperformed Kmeans significantly. The multivariate clustering method and the intragroup variance recorded 80.54% and 96.13% accuracy respectively while Kmeans recorded 72.38% accuracy.
2020-09-11
Ashiq, Md. Ishtiaq, Bhowmick, Protick, Hossain, Md. Shohrab, Narman, Husnu S..  2019.  Domain Flux-based DGA Botnet Detection Using Feedforward Neural Network. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1—6.
Botnets have been a major area of concern in the field of cybersecurity. There have been a lot of research works for detection of botnets. However, everyday cybercriminals are coming up with new ideas to counter the well-known detection methods. One such popular method is domain flux-based botnets in which a large number of domain names are produced using domain generation algorithm. In this paper, we have proposed a robust way of detecting DGA-based botnets using few novel features covering both syntactic and semantic viewpoints. We have used Area under ROC curve as our performance metric since it provides comprehensive information about the performance of binary classifiers at various thresholds. Results show that our approach performs significantly better than the baseline approach. Our proposed method can help in detecting established DGA bots (equipped with extensive features) as well as prospective advanced DGA bots imitating real-world domain names.
2020-10-05
Zhou, Xingyu, Li, Yi, Barreto, Carlos A., Li, Jiani, Volgyesi, Peter, Neema, Himanshu, Koutsoukos, Xenofon.  2019.  Evaluating Resilience of Grid Load Predictions under Stealthy Adversarial Attacks. 2019 Resilience Week (RWS). 1:206–212.
Recent advances in machine learning enable wider applications of prediction models in cyber-physical systems. Smart grids are increasingly using distributed sensor settings for distributed sensor fusion and information processing. Load forecasting systems use these sensors to predict future loads to incorporate into dynamic pricing of power and grid maintenance. However, these inference predictors are highly complex and thus vulnerable to adversarial attacks. Moreover, the adversarial attacks are synthetic norm-bounded modifications to a limited number of sensors that can greatly affect the accuracy of the overall predictor. It can be much cheaper and effective to incorporate elements of security and resilience at the earliest stages of design. In this paper, we demonstrate how to analyze the security and resilience of learning-based prediction models in power distribution networks by utilizing a domain-specific deep-learning and testing framework. This framework is developed using DeepForge and enables rapid design and analysis of attack scenarios against distributed smart meters in a power distribution network. It runs the attack simulations in the cloud backend. In addition to the predictor model, we have integrated an anomaly detector to detect adversarial attacks targeting the predictor. We formulate the stealthy adversarial attacks as an optimization problem to maximize prediction loss while minimizing the required perturbations. Under the worst-case setting, where the attacker has full knowledge of both the predictor and the detector, an iterative attack method has been developed to solve for the adversarial perturbation. We demonstrate the framework capabilities using a GridLAB-D based power distribution network model and show how stealthy adversarial attacks can affect smart grid prediction systems even with a partial control of network.
2020-08-07
Ramezanian, Sara, Niemi, Valtteri.  2019.  Privacy Preserving Cyberbullying Prevention with AI Methods in 5G Networks. 2019 25th Conference of Open Innovations Association (FRUCT). :265—271.
Children and teenagers that have been a victim of bullying can possibly suffer its psychological effects for a lifetime. With the increase of online social media, cyberbullying incidents have been increased as well. In this paper we discuss how we can detect cyberbullying with AI techniques, using term frequency-inverse document frequency. We label messages as benign or bully. We want our method of cyberbullying detection to be privacy-preserving, such that the subscribers' benign messages should not be revealed to the operator. Moreover, the operator labels subscribers as normal, bully and victim. The operator utilizes policy control in 5G networks, to protect victims of cyberbullying from harmful traffic.
2020-03-30
Souza, Renan, Azevedo, Leonardo, Lourenço, Vítor, Soares, Elton, Thiago, Raphael, Brandão, Rafael, Civitarese, Daniel, Brazil, Emilio, Moreno, Marcio, Valduriez, Patrick et al..  2019.  Provenance Data in the Machine Learning Lifecycle in Computational Science and Engineering. 2019 IEEE/ACM Workflows in Support of Large-Scale Science (WORKS). :1–10.
Machine Learning (ML) has become essential in several industries. In Computational Science and Engineering (CSE), the complexity of the ML lifecycle comes from the large variety of data, scientists' expertise, tools, and workflows. If data are not tracked properly during the lifecycle, it becomes unfeasible to recreate a ML model from scratch or to explain to stackholders how it was created. The main limitation of provenance tracking solutions is that they cannot cope with provenance capture and integration of domain and ML data processed in the multiple workflows in the lifecycle, while keeping the provenance capture overhead low. To handle this problem, in this paper we contribute with a detailed characterization of provenance data in the ML lifecycle in CSE; a new provenance data representation, called PROV-ML, built on top of W3C PROV and ML Schema; and extensions to a system that tracks provenance from multiple workflows to address the characteristics of ML and CSE, and to allow for provenance queries with a standard vocabulary. We show a practical use in a real case in the O&G industry, along with its evaluation using 239,616 CUDA cores in parallel.
2020-07-03
Yamauchi, Hiroaki, Nakao, Akihiro, Oguchi, Masato, Yamamoto, Shu, Yamaguchi, Saneyasu.  2019.  A Study on Service Identification Based on Server Name Indication Analysis. 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). :470—474.

Identifying services constituting traffic from given IP network flows is essential to various applications, such as the management of quality of service (QoS) and the prevention of security issues. Typical methods for achieving this objective include identifications based on IP addresses and port numbers. However, such methods are not sufficiently accurate and require improvement. Deep Packet Inspection (DPI) is one of the most promising methods for improving the accuracy of identification. In addition, many current IP flows are encrypted using Transport Layer Security (TLS). Hence, it is necessary for identification methods to analyze flows encrypted by TLS. For that reason, a service identification method based on DPI and n-gram that focuses only on the non-encrypted parts in the TLS session establishment was proposed. However, there is room for improvement in identification accuracy because this method analyzes all the non-encrypted parts including Random Values without protocol analyses. In this paper, we propose a method for identifying the service from given IP flows based on analysis of Server Name Indication (SNI). The proposed method clusters flow according to the value of SNI and identify services from the occurrences of all clusters. Our evaluations, which involve identifications of services on Google and Yahoo sites, demonstrate that the proposed method can identify services more accurately than the existing method.

2020-09-28
Fischinger, Michael, Egger, Norbert, Binder, Christoph, Neureiter, Christian.  2019.  Towards a Model-centric Approach for Developing Dependable Smart Grid Applications. 2019 4th International Conference on System Reliability and Safety (ICSRS). :1–9.
The Smart Grid is the leading example when talking about complex and critical System-of-Systems (SoS). Specifically regarding the Smart Grids criticality, dependability is a central quality attribute to strive for. Combined with the desire of agility in modern development, conventional systems engineering methods reach their limits in coping with these requirements. However, approaches from model-based or model-driven engineering can reduce complexity and encourage development with rapidly changing requirements. Model-Driven Engineering (MDE) is known to be more successful in a domain specific manner. For that reason, an approach for Domain Specific Systems Engineering (DSSE) in the Smart Grid has already been specially investigated. This Model-Driven Architecture (MDA) approach especially aims the comprehensibility of complex systems. In this context, the traceability of requirements is a centrally pursued attribute. However, achieving continuing traceability between the model of a system and the concrete implementation is still an open issue. To close this gap, the present research paper introduces a Model-Centric Software Development (MCSD) solution for Smart Grid applications. Based on two exploratory case studies, the focus finally lies on the automated generation of partial implementation artifacts and the evaluation of traceability, based on dedicated functional aspects.
2020-11-17
Khakurel, U., Rawat, D., Njilla, L..  2019.  2019 IEEE International Conference on Industrial Internet (ICII). 2019 IEEE International Conference on Industrial Internet (ICII). :241—247.

FastChain is a simulator built in NS-3 which simulates the networked battlefield scenario with military applications, connecting tankers, soldiers and drones to form Internet-of-Battlefield-Things (IoBT). Computing, storage and communication resources in IoBT are limited during certain situations in IoBT. Under these circumstances, these resources should be carefully combined to handle the task to accomplish the mission. FastChain simulator uses Sharding approach to provide an efficient solution to combine resources of IoBT devices by identifying the correct and the best set of IoBT devices for a given scenario. Then, the set of IoBT devices for a given scenario collaborate together for sharding enabled Blockchain technology. Interested researchers, policy makers and developers can download and use the FastChain simulator to design, develop and evaluate blockchain enabled IoBT scenarios that helps make robust and trustworthy informed decisions in mission-critical IoBT environment.

2020-12-02
Sun, Z., Du, P., Nakao, A., Zhong, L., Onishi, R..  2019.  Building Dynamic Mapping with CUPS for Next Generation Automotive Edge Computing. 2019 IEEE 8th International Conference on Cloud Networking (CloudNet). :1—6.

With the development of IoT and 5G networks, the demand for the next-generation intelligent transportation system has been growing at a rapid pace. Dynamic mapping has been considered one of the key technologies to reduce traffic accidents and congestion in the intelligent transportation system. However, as the number of vehicles keeps growing, a huge volume of mapping traffic may overload the central cloud, leading to serious performance degradation. In this paper, we propose and prototype a CUPS (control and user plane separation)-based edge computing architecture for the dynamic mapping and quantify its benefits by prototyping. There are a couple of merits of our proposal: (i) we can mitigate the overhead of the networks and central cloud because we only need to abstract and send global dynamic mapping information from the edge servers to the central cloud; (ii) we can reduce the response latency since the dynamic mapping traffic can be isolated from other data traffic by being generated and distributed from a local edge server that is deployed closer to the vehicles than the central server in cloud. The capabilities of our system have been quantified. The experimental results have shown our system achieves throughput improvement by more than four times, and response latency reduction by 67.8% compared to the conventional central cloud-based approach. Although these results are still obtained from the preliminary evaluations using our prototype system, we believe that our proposed architecture gives insight into how we utilize CUPS and edge computing to enable efficient dynamic mapping applications.

2020-11-17
Buenrostro, E. D., Rivera, A. O. G., Tosh, D., Acosta, J. C., Njilla, L..  2019.  Evaluating Usability of Permissioned Blockchain for Internet-of-Battlefield Things Security. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :841—846.

Military technology is ever-evolving to increase the safety and security of soldiers on the field while integrating Internet-of-Things solutions to improve operational efficiency in mission oriented tasks in the battlefield. Centralized communication technology is the traditional network model used for battlefields and is vulnerable to denial of service attacks, therefore suffers performance hazards. They also lead to a central point of failure, due to which, a flexible model that is mobile, resilient, and effective for different scenarios must be proposed. Blockchain offers a distributed platform that allows multiple nodes to update a distributed ledger in a tamper-resistant manner. The decentralized nature of this system suggests that it can be an effective tool for battlefields in securing data communication among Internet-of-Battlefield Things (IoBT). In this paper, we integrate a permissioned blockchain, namely Hyperledger Sawtooth, in IoBT context and evaluate its performance with the goal of determining whether it has the potential to serve the performance needs of IoBT environment. Using different testing parameters, the metric data would help in suggesting the best parameter set, network configuration and blockchain usability views in IoBT context. We show that a blockchain-integrated IoBT platform has heavy dependency on the characteristics of the underlying network such as topology, link bandwidth, jitter, and other communication configurations, that can be tuned up to achieve optimal performance.

2020-06-19
Saboor khan, Abdul, Shafi, Imran, Anas, Muhammad, Yousuf, Bilal M, Abbas, Muhammad Jamshed, Noor, Aqib.  2019.  Facial Expression Recognition using Discrete Cosine Transform Artificial Neural Network. 2019 22nd International Multitopic Conference (INMIC). :1—5.

Every so often Humans utilize non-verbal gestures (e.g. facial expressions) to express certain information or emotions. Moreover, countless face gestures are expressed throughout the day because of the capabilities possessed by humans. However, the channels of these expression/emotions can be through activities, postures, behaviors & facial expressions. Extensive research unveiled that there exists a strong relationship between the channels and emotions which has to be further investigated. An Automatic Facial Expression Recognition (AFER) framework has been proposed in this work that can predict or anticipate seven universal expressions. In order to evaluate the proposed approach, Frontal face Image Database also named as Japanese Female Facial Expression (JAFFE) is opted as input. This database is further processed with a frequency domain technique known as Discrete Cosine transform (DCT) and then classified using Artificial Neural Networks (ANN). So as to check the robustness of this novel strategy, the random trial of K-fold cross validation, leave one out and person independent methods is repeated many times to provide an overview of recognition rates. The experimental results demonstrate a promising performance of this application.

2020-11-17
Nasim, I., Kim, S..  2019.  Human EMF Exposure in Wearable Networks for Internet of Battlefield Things. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1—6.

Numerous antenna design approaches for wearable applications have been investigated in the literature. As on-body wearable communications become more ingrained in our daily activities, the necessity to investigate the impacts of these networks burgeons as a major requirement. In this study, we investigate the human electromagnetic field (EMF) exposure effect from on-body wearable devices at 2.4 GHz and 60 GHz, and compare the results to illustrate how the technology evolution to higher frequencies from wearable communications can impact our health. Our results suggest the average specific absorption rate (SAR) at 60 GHz can exceed the regulatory guidelines within a certain separation distance between a wearable device and the human skin surface. To the best of authors' knowledge, this is the first work that explicitly compares the human EMF exposure at different operating frequencies for on-body wearable communications, which provides a direct roadmap in design of wearable devices to be deployed in the Internet of Battlefield Things (IoBT).

2020-10-05
Joseph, Matthew, Mao, Jieming, Neel, Seth, Roth, Aaron.  2019.  The Role of Interactivity in Local Differential Privacy. 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS). :94—105.

We study the power of interactivity in local differential privacy. First, we focus on the difference between fully interactive and sequentially interactive protocols. Sequentially interactive protocols may query users adaptively in sequence, but they cannot return to previously queried users. The vast majority of existing lower bounds for local differential privacy apply only to sequentially interactive protocols, and before this paper it was not known whether fully interactive protocols were more powerful. We resolve this question. First, we classify locally private protocols by their compositionality, the multiplicative factor by which the sum of a protocol's single-round privacy parameters exceeds its overall privacy guarantee. We then show how to efficiently transform any fully interactive compositional protocol into an equivalent sequentially interactive protocol with a blowup in sample complexity linear in this compositionality. Next, we show that our reduction is tight by exhibiting a family of problems such that any sequentially interactive protocol requires this blowup in sample complexity over a fully interactive compositional protocol. We then turn our attention to hypothesis testing problems. We show that for a large class of compound hypothesis testing problems - which include all simple hypothesis testing problems as a special case - a simple noninteractive test is optimal among the class of all (possibly fully interactive) tests.

2020-01-21
Nejati, Saeed, Ganesh, Vijay.  2019.  CDCL(Crypto) SAT Solvers for Cryptanalysis. Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering. :311–316.
Over the last two decades we have seen a dramatic improvement in the efficiency of conflict-driven clause-learning Boolean satisfiability (CDCL SAT) solvers on industrial problems from a variety of domains. The availability of such a powerful general-purpose search tools as SAT solvers has led many researchers to propose SAT-based methods for cryptanalysis, including techniques for finding collisions in hash functions and breaking symmetric encryption schemes. Most of the previously proposed SAT-based cryptanalysis approaches are blackbox techniques, in the sense that the cryptanalysis problem is encoded as a SAT instance and then a CDCL SAT solver is invoked to solve the said instance. A weakness of this approach is that the encoding thus generated may be too large for any modern solver to solve efficiently. Perhaps a more important weakness of this approach is that the solver is in no way specialized or tuned to solve the given instance. To address these issues, we propose an approach called CDCL(Crypto) (inspired by the CDCL(T) paradigm in Satisfiability Modulo Theory solvers) to tailor the internal subroutines of the CDCL SAT solver with domain-specific knowledge about cryptographic primitives. Specifically, we extend the propagation and conflict analysis subroutines of CDCL solvers with specialized codes that have knowledge about the cryptographic primitive being analyzed by the solver. We demonstrate the power of this approach in differential path a nd a lgebraic fault analysis of hash functions. Our initial results encourages the fact that this approach can significantly improve the blackbox SAT-based cryptanalysis.
2020-09-14
Quang-Huy, Tran, Nguyen, Van Dien, Nguyen, Van Dung, Duc-Tan, Tran.  2019.  Density Imaging Using a Compressive Sampling DBIM approach. 2019 International Conference on Advanced Technologies for Communications (ATC). :160–163.
Density information has been used as a property of sound to restore objects in a quantitative manner in ultrasound tomography based on backscatter theory. In the traditional method, the authors only study the distorted Born iterative method (DBIM) to create density images using Tikhonov regularization. The downside is that the image quality is still low, the resolution is low, the convergence rate is not high. In this paper, we study the DBIM method to create density images using compressive sampling technique. With compressive sampling technique, the probes will be randomly distributed on the measurement system (unlike the traditional method, the probes are evenly distributed on the measurement system). This approach uses the l1 regularization to restore images. The proposed method will give superior results in image recovery quality, spatial resolution. The limitation of this method is that the imaging time is longer than the one in the traditional method, but the less number of iterations is used in this method.
2020-04-24
Gao, Boyo, Shi, Libao, Ni, Yixin.  2019.  A dynamic defense-attack game scheme with incomplete information for vulnerability analysis in a cyber-physical power infrastructure. 8th Renewable Power Generation Conference (RPG 2019). :1—8.
The modern power system is experiencing rapid development towards a smarter cyber-physical power grid. How to comprehensively and effectively identify the vulnerable components under various cyber attacks has attracted widespread interest and attention around the world. In this paper, a game-theoretical scheme is developed to analyze the vulnerabilities of transmission lines and cyber elements under locally coordinated cyber-physical attacks in a cyber-physical power infrastructure. A two-step scenario including resources allocation made by system defender in advance and subsequent coordinated cyber-physical attacks are designed elaborately. The designed scenario is modeled as a game of incomplete information, which is then converted into a bi-level mathematical programming problem. In the lower level model, the attacker aims at maximizing system losses by attacking some transmission lines. While in the higher level model, the defender allocates defensive resources, trying to maximally reduce the losses considering the possible attacks. The payoffs of the game are calculated by leveraging a strategy of searching accident chains caused by cascading failure analyzed in this paper. A particle swarm optimization algorithm is applied to solve the proposed nonlinear bi-level programming model, and the case studies on a 34-bus system are conducted to verify the effectiveness of the proposed scheme.
2020-06-01
Park, Byungju, Dang, Sa Pham, Noh, Sichul, Yi, Junmin, Park, Minho.  2019.  Dynamic Virtual Network Honeypot. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :375–377.
A honeypot system is used to trapping hackers, track and analyze new hacking methods. However, it does not only take time for construction and deployment but also costs for maintenance because these systems are always online even when there is no attack. Since the main purpose of honeypot systems is to collect more and more attack trafc if possible, the limitation of system capacity is also a major problem. In this paper, we propose Dynamic Virtual Network Honeypot (DVNH) which leverages emerging technologies, Network Function Virtualization and Software-Defined Networking. DVNH redirects the attack to the honeypot system thereby protects the targeted system. Our experiments show that DVNH enables efficient resource usage and dynamic provision of the Honeypot system.
2020-04-10
Newaz, AKM Iqtidar, Sikder, Amit Kumar, Rahman, Mohammad Ashiqur, Uluagac, A. Selcuk.  2019.  HealthGuard: A Machine Learning-Based Security Framework for Smart Healthcare Systems. 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS). :389—396.
The integration of Internet-of-Things and pervasive computing in medical devices have made the modern healthcare system “smart.” Today, the function of the healthcare system is not limited to treat the patients only. With the help of implantable medical devices and wearables, Smart Healthcare System (SHS) can continuously monitor different vital signs of a patient and automatically detect and prevent critical medical conditions. However, these increasing functionalities of SHS raise several security concerns and attackers can exploit the SHS in numerous ways: they can impede normal function of the SHS, inject false data to change vital signs, and tamper a medical device to change the outcome of a medical emergency. In this paper, we propose HealthGuard, a novel machine learning-based security framework to detect malicious activities in a SHS. HealthGuard observes the vital signs of different connected devices of a SHS and correlates the vitals to understand the changes in body functions of the patient to distinguish benign and malicious activities. HealthGuard utilizes four different machine learning-based detection techniques (Artificial Neural Network, Decision Tree, Random Forest, k-Nearest Neighbor) to detect malicious activities in a SHS. We trained HealthGuard with data collected for eight different smart medical devices for twelve benign events including seven normal user activities and five disease-affected events. Furthermore, we evaluated the performance of HealthGuard against three different malicious threats. Our extensive evaluation shows that HealthGuard is an effective security framework for SHS with an accuracy of 91 % and an F1 score of 90 %.
2020-10-12
Granatyr, Jones, Gomes, Heitor Murilo, Dias, João Miguel, Paiva, Ana Maria, Nunes, Maria Augusta Silveira Netto, Scalabrin, Edson Emílio, Spak, Fábio.  2019.  Inferring Trust Using Personality Aspects Extracted from Texts. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). :3840–3846.
Trust mechanisms are considered the logical protection of software systems, preventing malicious people from taking advantage or cheating others. Although these concepts are widely used, most applications in this field do not consider affective aspects to aid in trust computation. Researchers of Psychology, Neurology, Anthropology, and Computer Science argue that affective aspects are essential to human's decision-making processes. So far, there is a lack of understanding about how these aspects impact user's trust, particularly when they are inserted in an evaluation system. In this paper, we propose a trust model that accounts for personality using three personality models: Big Five, Needs, and Values. We tested our approach by extracting personality aspects from texts provided by two online human-fed evaluation systems and correlating them to reputation values. The empirical experiments show statistically significant better results in comparison to non-personality-wise approaches.
2020-03-23
Alaoui, Sadek Belamfedel, El Houssaine, Tissir, Noreddine, Chaibi.  2019.  Modelling, analysis and design of active queue management to mitigate the effect of denial of service attack in wired/wireless network. 2019 International Conference on Wireless Networks and Mobile Communications (WINCOM). :1–7.
Mitigating the effect of Distributed Denial of Service (DDoS) attacks in wired/wireless networks is a problem of extreme importance. The present paper investigates this problem and proposes a secure AQM to encounter the effects of DDoS attacks on queue's router. The employed method relies on modelling the TCP/AQM system subjected to different DoS attack rate where the resulting closed-loop system is expressed as new Markovian Jump Linear System (MJLS). Sufficient delay-dependent conditions which guarantee the syntheses of a stabilizing control for the closed-loop system with a guaranteed cost J* are derived. Finally, a numerical example is displayed.
Naik, Nitin, Jenkins, Paul, Savage, Nick.  2019.  A Ransomware Detection Method Using Fuzzy Hashing for Mitigating the Risk of Occlusion of Information Systems. 2019 International Symposium on Systems Engineering (ISSE). :1–6.
Today, a significant threat to organisational information systems is ransomware that can completely occlude the information system by denying access to its data. To reduce this exposure and damage from ransomware attacks, organisations are obliged to concentrate explicitly on the threat of ransomware, alongside their malware prevention strategy. In attempting to prevent the escalation of ransomware attacks, it is important to account for their polymorphic behaviour and dispersion of inexhaustible versions. However, a number of ransomware samples possess similarity as they are created by similar groups of threat actors. A particular threat actor or group often adopts similar practices or codebase to create unlimited versions of their ransomware. As a result of these common traits and codebase, it is probable that new or unknown ransomware variants can be detected based on a comparison with their originating or existing samples. Therefore, this paper presents a detection method for ransomware by employing a similarity preserving hashing method called fuzzy hashing. This detection method is applied on the collected WannaCry or WannaCryptor ransomware corpus utilising three fuzzy hashing methods SSDEEP, SDHASH and mvHASH-B to evaluate the similarity detection success rate by each method. Moreover, their fuzzy similarity scores are utilised to cluster the collected ransomware corpus and its results are compared to determine the relative accuracy of the selected fuzzy hashing methods.
2020-02-10
Saito, Takumi, Zhao, Qiangfu, Naito, Hiroshi.  2019.  Second Level Steganalysis - Embeding Location Detection Using Machine Learning. 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST). :1–6.

In recent years, various cloud-based services have been introduced in our daily lives, and information security is now an important topic for protecting the users. In the literature, many technologies have been proposed and incorporated into different services. Data hiding or steganography is a data protection technology, and images are often used as the cover data. On the other hand, steganalysis is an important tool to test the security strength of a steganography technique. So far, steganalysis has been used mainly for detecting the existence of secret data given an image, i.e., to classify if the given image is a normal or a stego image. In this paper, we investigate the possibility of identifying the locations of the embedded data if the a given image is suspected to be a stego image. The purpose is of two folds. First, we would like to confirm the decision made by the first level steganalysis; and the second is to provide a way to guess the size of the embedded data. Our experimental results show that in most cases the embedding positions can be detected. This result can be useful for developing more secure steganography technologies.

Niddodi, Chaitra, Lin, Shanny, Mohan, Sibin, Zhu, Hao.  2019.  Secure Integration of Electric Vehicles with the Power Grid. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1–7.
This paper focuses on the secure integration of distributed energy resources (DERs), especially pluggable electric vehicles (EVs), with the power grid. We consider the vehicle-to-grid (V2G) system where EVs are connected to the power grid through an `aggregator' In this paper, we propose a novel Cyber-Physical Anomaly Detection Engine that monitors system behavior and detects anomalies almost instantaneously (worst case inspection time for a packet is 0.165 seconds1). This detection engine ensures that the critical power grid component (viz., aggregator) remains secure by monitoring (a) cyber messages for various state changes and data constraints along with (b) power data on the V2G cyber network using power measurements from sensors on the physical/power distribution network. Since the V2G system is time-sensitive, the anomaly detection engine also monitors the timing requirements of the protocol messages to enhance the safety of the aggregator. To the best of our knowledge, this is the first piece of work that combines (a) the EV charging/discharging protocols, the (b) cyber network and (c) power measurements from physical network to detect intrusions in the EV to power grid system.1Minimum latency on V2G network is 2 seconds.