Biblio
Trust is a necessary component in cybersecurity. It is a common task for a system to make a decision about whether or not to trust the credential of an entity from another domain, issued by a third party. Generally, in the cyberspace, connected and interacting systems largely rely on each other with respect to security, privacy, and performance. In their interactions, one entity or system needs to trust others, and this "trust" frequently becomes a vulnerability of that system. Aiming at mitigating the vulnerability, we are developing a computational theory of trust, as a part of our efforts towards Science of Security. Previously, we developed a formal-semantics-based calculus of trust [3, 2], in which trust can be calculated based on a trustor's direct observation on the performance of the trustee, or based on a trust network. In this paper, we construct a framework for making trust reasoning based on the observed evidence. We take privacy in cloud computing as a driving application case [5].
The success of machine learning, particularly in supervised settings, has led to numerous attempts to apply it in adversarial settings such as spam and malware detection. The core challenge in this class of applications is that adversaries are not static data generators, but make a deliberate effort to evade the classifiers deployed to detect them. We investigate both the problem of modeling the objectives of such adversaries, as well as the algorithmic problem of accounting for rational, objective-driven adversaries. In particular, we demonstrate severe shortcomings of feature reduction in adversarial settings using several natural adversarial objective functions, an observation that is particularly pronounced when the adversary is able to substitute across similar features (for example, replace words with synonyms or replace letters in words). We offer a simple heuristic method for making learning more robust to feature cross-substitution attacks. We then present a more general approach based on mixed-integer linear programming with constraint generation, which implicitly trades off overfitting and feature selection in an adversarial setting using a sparse regularizer along with an evasion model. Our approach is the first method for combining an adversarial classification algorithm with a very general class of models of adversarial classifier evasion. We show that our algorithmic approach significantly outperforms state-of-the-art alternatives.
The Symposium and Bootcamp on the Science of Security (HotSoS), is a research event centered on the Science of Security (SoS). Following a successful invitational SoS Community Meeting in December 2012, HotSoS 2014 was the first open research event in what we expect will be a continuing series of such events. The key motivation behind developing a Science of Security is to address the fundamental problems of cybersecurity in a principled manner. Security has been intensively studied, but a lot of previous research emphasizes the engineering of specific solutions without first developing the scientific understanding of the problem domain. All too often, security research conveys the flavor of identifying specific threats and removing them in an apparently ad hoc manner. The motivation behind the nascent Science of Security is to understand how computing systems are architected, built, used, and maintained with a view to understanding and addressing security challenges systematically across their life cycle. In particular, two features distinguish the Science of Security from previous research programs on cybersecurity. Scope. The Science of Security considers not just computational artifacts but also incorporates the human, social, and organizational aspects of computing within its purview. Approach. The Science of Security takes a decidedly scientific approach, based on the understanding of empirical evaluation and theoretical foundations as developed in the natural and social sciences, but adapted as appropriate for the "artificial science" (paraphrasing Herb Simon's term) that is computing.
Support Vector Machine (SVM) as an innovative machine learning tool, based on statistical learning theory, is recently used in process fault diagnosis tasks. In the application of SVM to a fault diagnosis problem, typically a discrete decision function with discrete output values is utilized in order to solely define the label of the fault. However, for incipient faults in which fault steadily progresses over time and there is a changeover from normal operation to faulty operation, using discrete decision function does not reveal any evidence about the progress and depth of the fault. Numerous process faults, such as the reactor fouling and degradation of catalyst, progress slowly and can be categorized as incipient faults. In this work a continuous decision function is anticipated. The decision function values not only define the fault label, but also give qualitative evidence about the depth of the fault. The suggested method is applied to incipient fault diagnosis of a continuous binary mixture distillation column and the result proves the practicability of the proposed approach. In incipient fault diagnosis tasks, the proposed approach outperformed some of the conventional techniques. Moreover, the performance of the proposed approach is better than typical discrete based classification techniques employing some monitoring indexes such as the false alarm rate, detection time and diagnosis time.
Information system developers and administrators often overlook critical security requirements and best practices. This may be due to lack of tools and techniques that allow practitioners to tailor security knowledge to their particular context. In order to explore the impact of new security methods, we must improve our ability to study the impact of security tools and methods on software and system development. In this paper, we present early findings of an experiment to assess the extent to which the number and type of examples used in security training stimuli can impact security problem solving. To motivate this research, we formulate hypotheses from analogical transfer theory in psychology. The independent variables include number of problem surfaces and schemas, and the dependent variable is the answer accuracy. Our study results do not show a statistically significant difference in performance when the number and types of examples are varied. We discuss the limitations, threats to validity and opportunities for future studies in this area.
Security requirements patterns represent reusable security practices that software engineers can apply to improve security in their system. Reusing best practices that others have employed could have a number of benefits, such as decreasing the time spent in the requirements elicitation process or improving the quality of the product by reducing product failure risk. Pattern selection can be difficult due to the diversity of applicable patterns from which an analyst has to choose. The challenge is that identifying the most appropriate pattern for a situation can be cumbersome and time-consuming. We propose a new method that combines an inquiry-cycle based approach with the feature diagram notation to review only relevant patterns and quickly select the most appropriate patterns for the situation. Similar to patterns themselves, our approach captures expert knowledge to relate patterns based on decisions made by the pattern user. The resulting pattern hierarchies allow users to be guided through these decisions by questions, which introduce related patterns in order to help the pattern user select the most appropriate patterns for their situation, thus resulting in better requirement generation. We evaluate our approach using access control patterns in a pattern user study.
This paper proposes a novel architecture for module partitioning problems in the process of dynamic and partial reconfigurable computing in VLSI design automation. This partitioning issue is deemed as Hypergraph replica. This can be treated by a probabilistic algorithm like the Markov chain through the transition probability matrices due to non-deterministic polynomial complete problems. This proposed technique has two levels of implementation methodology. In the first level, the combination of parallel processing of design elements and efficient pipelining techniques are used. The second level is based on the genetic algorithm optimization system architecture. This proposed methodology uses the hardware/software co-design and co-verification techniques. This architecture was verified by implementation within the MOLEN reconfigurable processor and tested on a Xilinx Virtex-5 based development board. This proposed multi-objective module partitioning design was experimentally evaluated using an ISPD’98 circuit partitioning benchmark suite. The efficiency and throughput were compared with that of the hMETIS recursive bisection partitioning approach. The results indicate that the proposed method can improve throughput and efficiency up to 39 times with only a small amount of increased design space. The proposed architecture style is sketched out and concisely discussed in this manuscript, and the existing results are compared and analyzed.
This paper presents a model for generating personalized passwords (i.e., passwords based on user and service profile). A user's password is generated from a list of personalized words, each word is drawn from a topic relating to a user and the service in use. The proposed model can be applied to: (i) assess the strength of a password (i.e., determine how many guesses are used to crack the password), and (ii) generate secure (i.e., contains digits, special characters, or capitalized characters) yet easy to memorize passwords.
Wireless Sensor networks (WSN) is an promising technology and have enormous prospective to be working in critical situations like battlefields and commercial applications such as traffic surveillance, building, habitat monitoring and smart homes and many more scenarios. One of the major challenges in wireless sensor networks face today is security. In this paper we proposed a profile based protection scheme (PPS security scheme against DDoS (Distributed Denial of Service) attack. This king of attacks are flooding access amount of unnecessary packets in network by that the network bandwidth are consumed by that data delivery in network are affected. Our main aim is visualized the effect of DDoS attack in network and identify the node or nodes that are affected the network performance. The profile based security scheme are check the profile of each node in network and only the attacker is one of the node that flooded the unnecessary packets in network then PPS has block the performance of attacker. The performance of network is measured on the basis of performance metrics like routing load, throughput etc. The simulation results are represents the same performance in case of normal routing and in case of PPS scheme, it means that the PPS scheme is effective and showing 0% infection in presence of attacker.
As information security became an increasing concern for software developers and users, requirements engineering (RE) researchers brought new insight to security requirements. Security requirements aim to address security at the early stages of system design while accommodating the complex needs of different stakeholders. Meanwhile, other research communities, such as usable privacy and security, have also examined these requirements with specialized goal to make security more usable for stakeholders from product owners, to system users and administrators. In this paper we report results from conducting a literature survey to compare security requirements research from RE Conferences with the Symposium on Usable Privacy and Security (SOUPS). We report similarities between the two research areas, such as common goals, technical definitions, research problems, and directions. Further, we clarify the differences between these two communities to understand how they can leverage each other’s insights. From our analysis, we recommend new directions in security requirements research mainly to expand the meaning of security requirements in RE to reflect the technological advancements that the broader field of security is experiencing. These recommendations to encourage cross- collaboration with other communities are not limited to the security requirements area; in fact, we believe they can be generalized to other areas of RE.
As information security became an increasing
concern for software developers and users, requirements
engineering (RE) researchers brought new insight to security
requirements. Security requirements aim to address security at
the early stages of system design while accommodating the
complex needs of different stakeholders. Meanwhile, other
research communities, such as usable privacy and security,
have also examined these requirements with specialized goal to
make security more usable for stakeholders from product
owners, to system users and administrators. In this paper we
report results from conducting a literature survey to compare
security requirements research from RE Conferences with the
Symposium on Usable Privacy and Security (SOUPS). We
report similarities between the two research areas, such as
common goals, technical definitions, research problems, and
directions. Further, we clarify the differences between these
two communities to understand how they can leverage each
other’s insights. From our analysis, we recommend new
directions in security requirements research mainly to expand
the meaning of security requirements in RE to reflect the
technological advancements that the broader field of security is
experiencing. These recommendations to encourage crosscollaboration
with other communities are not limited to the
security requirements area; in fact, we believe they can be
generalized to other areas of RE.
Programming languages often include specialized syntax for common
datatypes (e.g. lists) and some also build in support for specific specialized
datatypes (e.g. regular expressions), but user-defined types must use generalpurpose
syntax. Frustration with this causes developers to use strings, rather than
structured data, with alarming frequency, leading to correctness, performance,
security, and usability issues. Allowing library providers to modularly extend a
language with new syntax could help address these issues. Unfortunately, prior
mechanisms either limit expressiveness or are not safely composable: individually
unambiguous extensions can still cause ambiguities when used together.
We introduce type-specific languages (TSLs): logic associated with a type that
determines how the bodies of generic literals, able to contain arbitrary syntax,
are parsed and elaborated, hygienically. The TSL for a type is invoked only
when a literal appears where a term of that type is expected, guaranteeing noninterference.
We give evidence supporting the applicability of this approach and
formally specify it with a bidirectionally typed elaboration semantics for the
Wyvern programming language.
Hadoop is a map-reduce implementation that rapidly processes data in parallel. Cloud provides reliability, flexibility, scalability, elasticity and cost saving to customers. Moving Hadoop into Cloud can be beneficial to Hadoop users. However, Hadoop has two vulnerabilities that can dramatically impact its security in a Cloud. The vulnerabilities are its overloaded authentication key, and the lack of fine-grained access control at the data access level. We propose and develop a security enhancement for Cloud-based Hadoop.
Injection vulnerabilities have topped rankings of the most critical web application vulnerabilities for several years [1, 2]. They can occur anywhere where user input may be erroneously executed as code. The injected input is typically aimed at gaining unauthorized access to the system or to private information within it, corrupting the system's data, or disturbing system availability. Injection vulnerabilities are tedious and difficult to prevent.
Self-protecting software systems are a class of autonomic systems capable of detecting and mitigating security threats at runtime. They are growing in importance, as the stovepipe static methods of securing software systems have been shown to be inadequate for the challenges posed by modern software systems. Self-protection, like other self-* properties, allows the system to adapt to the changing environment through autonomic means without much human intervention, and can thereby be responsive, agile, and cost effective. While existing research has made significant progress towards autonomic and adaptive security, gaps and challenges remain. This article presents a significant extension of our preliminary study in this area. In particular, unlike our preliminary study, here we have followed a systematic literature review process, which has broadened the scope of our study and strengthened the validity of our conclusions. By proposing and applying a comprehensive taxonomy to classify and characterize the state-of-the-art research in this area, we have identified key patterns, trends and challenges in the existing approaches, which reveals a number of opportunities that will shape the focus of future research efforts.
We present an architecture for the Security Behavior Observatory (SBO), a client-server infrastructure designed to collect a wide array of data on user and computer behavior from hundreds of participants over several years. The SBO infrastructure had to be carefully designed to fulfill several requirements. First, the SBO must scale with the desired length, breadth, and depth of data collection. Second, we must take extraordinary care to ensure the security of the collected data, which will inevitably include intimate participant behavioral data. Third, the SBO must serve our research interests, which will inevitably change as collected data is analyzed and interpreted. This short paper summarizes some of our design and implementation benefits and discusses a few hurdles and trade-offs to consider when designing such a data collection system.
Security has become the Achilles’ heel of most modern software systems. Techniques ranging from the manual inspection to automated static and dynamic analyses are commonly employed to identify security vulnerabilities prior to the release of the software. However, these techniques are time consuming and cannot keep up with the complexity of ever-growing software repositories (e.g., Google Play and Apple App Store). In this paper, we aim to improve the status quo and increase the efficiency of static analysis by mining relevant information from vulnerabilities found in the categorized software repositories. The approach relies on the fact that many modern software systems are developed using rich application development frameworks (ADF), allowing us to raise the level of abstraction for detecting vulnerabilities and thereby making it possible to classify the types of vulnerabilities that are encountered in a given category of application. We used open-source software repositories comprising more than 7 million lines of code to demonstrate how our approach can improve the efficiency of static analysis, and in turn, vulnerability detection.
A self-adaptive software system should be able to monitor and analyze its runtime behavior and make adaptation decisions accordingly to meet certain desirable objectives. Traditional software adaptation techniques and recent “models@runtime” approaches usually require an a priori model for a system’s dynamic behavior. Oftentimes the model is difficult to define and labor-intensive to maintain, and tends to get out of date due to adaptation and architecture decay. We propose an alternative approach that does not require defining the system’s behavior model beforehand, but instead involves mining software component interactions from system execution traces to build a probabilistic usage model, which is in turn used to analyze, plan, and execute adaptations. Our preliminary evaluation of the approach against an Emergency Deployment System shows that the associations mining model can be used to effectively address a variety of adaptation needs, including (1) safely applying dynamic changes to a running software system without creating inconsistencies, (2) identifying potentially malicious (abnormal) behavior for self-protection, and (3) our ongoing research on improving deployment of software components in a distributed setting for performance self-optimization.
Much of the data researchers usually collect about users’ privacy and security behavior comes from short-term studies and focuses on specific, narrow activities. We present a design architecture for the Security Behavior Observatory (SBO), a client-server infrastructure designed to collect a wide array of data on user and computer behavior from a panel of hundreds of participants over several years. The SBO infrastructure had to be carefully designed to fulfill several requirements. First, the SBO must scale with the desired length, breadth, and depth of data collection. Second, we must take extraordinary care to ensure the security and privacy of the collected data, which will inevitably include intimate details about our participants’ behavior. Third, the SBO must serve our research interests, which will inevitably change over the course of the study, as collected data is analyzed, interpreted, and suggest further lines of inquiry. We describe in detail the SBO infrastructure, its secure data collection methods, the benefits of our design and implementation, as well as the hurdles and tradeoffs to consider when designing such a data collection system.
Web applications must ultimately command systems like web browsers and database engines using strings. Strings derived from improperly sanitized user input can as a result be a vector for command injection attacks. In this paper, we introduce regular string types, which classify strings constrained statically to be in a regular language specified by a regular expression. Regular strings support standard string operations like concatenation and substitution, as well as safe coercions, so they can be used to implement, in an essentially conventional manner, the pieces of a web application or framework that handle strings arising from user input. Simple type annotations at function interfaces can be used to statically verify that sanitization has been performed correctly without introducing redundant run-time checks. We specify this type system first as a minimal typed lambda calculus, lambdaRS. To be practical, adopting a specialized type system like this should not require the adoption of a new programming language. Instead, we advocate for extensible type systems: new type system fragments like this should be implemented as libraries atop a mechanism that guarantees that they can be safely composed. We support this with two contributions. First, we specify a translation from lambdaRS to a calculus with only standard strings and regular expressions. Then, taking Python as a language with these constructs, we implement the type system together with the translation as a library using typy, an extensible static type system for Python.
Software as a Service (SaaS) is the most prevalent service delivery mode for cloud systems. This paper surveys common security vulnerabilities and corresponding countermeasures for SaaS. It is primarily focused on the work published in the last five years. We observe current SaaS security trends and a lack of sufficiently broad and robust countermeasures in some of the SaaS security area such as Identity and Access management due to the growth of SaaS applications.
Information system developers and administrators often overlook critical security requirements and best practices. This may be due to lack of tools and techniques that allow practitioners to tailor security knowledge to their particular context. In order to explore the impact of new security methods, we must improve our ability to study the impact of security tools and methods on software and system development. In this paper, we present early findings of an experiment to assess the extent to which the number and type of examples used in security training stimuli can impact security problem solving. To motivate this research, we formulate hypotheses from analogical transfer theory in psychology. The independent variables include number of problem surfaces and schemas, and the dependent variable is the answer accuracy. Our study results do not show a statistically significant difference in performance when the number and types of examples are varied. We discuss the limitations, threats to validity and opportunities for future studies in this area.
Feedback loss can severely degrade the overall system performance, in addition, it can affect the control and computation of the Cyber-physical Systems (CPS). CPS hold enormous potential for a wide range of emerging applications including stochastic and time-critical traffic patterns. Stochastic data has a randomness in its nature which make a great challenge to maintain the real-time control whenever the data is lost. In this paper, we propose a data recovery scheme, called the Efficient Temporal and Spatial Data Recovery (ETSDR) scheme for stochastic incomplete feedback of CPS. In this scheme, we identify the temporal model based on the traffic patterns and consider the spatial effect of the nearest neighbor. Numerical results reveal that the proposed ETSDR outperforms both the weighted prediction (WP) and the exponentially weighted moving average (EWMA) algorithm regardless of the increment percentage of missing data in terms of the root mean square error, the mean absolute error, and the integral of absolute error.