Biblio

Found 1137 results

Filters: First Letter Of Last Name is X  [Clear All Filters]
2017-05-22
Xu, Haifeng.  2016.  The Mysteries of Security Games: Equilibrium Computation Becomes Combinatorial Algorithm Design. Proceedings of the 2016 ACM Conference on Economics and Computation. :497–514.

The security game is a basic model for resource allocation in adversarial environments. Here there are two players, a defender and an attacker. The defender wants to allocate her limited resources to defend critical targets and the attacker seeks his most favorable target to attack. In the past decade, there has been a surge of research interest in analyzing and solving security games that are motivated by applications from various domains. Remarkably, these models and their game-theoretic solutions have led to real-world deployments in use by major security agencies like the LAX airport, the US Coast Guard and Federal Air Marshal Service, as well as non-governmental organizations. Among all these research and applications, equilibrium computation serves as a foundation. This paper examines security games from a theoretical perspective and provides a unified view of various security game models. In particular, each security game can be characterized by a set system E which consists of the defender's pure strategies; The defender's best response problem can be viewed as a combinatorial optimization problem over E. Our framework captures most of the basic security game models in the literature, including all the deployed systems; The set system E arising from various domains encodes standard combinatorial problems like bipartite matching, maximum coverage, min-cost flow, packing problems, etc. Our main result shows that equilibrium computation in security games is essentially a combinatorial problem. In particular, we prove that, for any set system \$E\$, the following problems can be reduced to each other in polynomial time: (0) combinatorial optimization over E; (1) computing the minimax equilibrium for zero-sum security games over E; (2) computing the strong Stackelberg equilibrium for security games over E; (3) computing the best or worst (for the defender) Nash equilibrium for security games over E. Therefore, the hardness [polynomial solvability] of any of these problems implies the hardness [polynomial solvability] of all the others. Here, by "games over E" we mean the class of security games with arbitrary payoff structures, but a fixed set E of defender pure strategies. This shows that the complexity of a security game is essentially determined by the set system E. We view drawing these connections as an important conceptual contribution of this paper.

2017-11-20
Wei, Li, Hongyu, Liu, Xiaoliang, Zhang.  2016.  A network data security analysis method based on DPI technology. 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS). :973–976.

In view of the high demand for the security of visiting data in power system, a network data security analysis method based on DPI technology was put forward in this paper, to solve the problem of security gateway judge the legality of the network data. Considering the legitimacy of the data involves data protocol and data contents, this article will filters the data from protocol matching and content detection. Using deep packet inspection (DPI) technology to screen the protocol. Using protocol analysis to detect the contents of data. This paper implements the function that allowing secure data through the gateway and blocking threat data. The example proves that the method is more effective guarantee the safety of visiting data.

2017-03-20
Wang, Yinan, Zeng, Sicheng, Yang, Qiang, Lin, Zhiyun, Xu, Wenyuan, Yan, Gangfeng.  2016.  A new framework of electrical cyber physical systems. :1334–1339.

This paper establishes a new framework for electrical cyber-physical systems (ECPSs). The communication network is designed by the characteristics of a power grid. The interdependent relationship of communication networks and power grids is described by data-uploading channels and commands-downloading channels. Control strategies (such as load shedding and relay protection) are extended to this new framework for analyzing the performance of ECPSs under several attack scenarios. The fragility of ECPSs under cyber attacks (DoS attack and false data injection attack) and the effectiveness of relay protection policies are verified by experimental results.

2018-05-15
Maria Castano, Xiaobo Tan.  2016.  Nonlinear model predictive control of a tail-actuated robotic fish. Proceedings of the ASME 2016 Dynamic Systems and Control Conference. :DSCC2016-9918.
2017-11-20
Xu, Hui, Zhou, Yangfan, Lyu, Michael.  2016.  N-version Obfuscation. Proceedings of the 2Nd ACM International Workshop on Cyber-Physical System Security. :22–33.

Although existing for decades, software tampering attack is still a main threat to systems, such as Android, and cyber physical systems. Many approaches have been proposed to thwart specific procedures of tampering, e.g., obfuscation and self-checksumming. However, none of them can achieve theoretically tamper-proof without the protection of hardware circuit. Rather than proposing new tricks against tampering attacks, we focus on impeding the replication of software tampering via program diversification, and thus pose a scalability barrier against the attacks. Our idea, namely N-version obfuscation (NVO), is to automatically generate and deliver same featured, but functionally nonequivalent software copies to different machines or users. In this paper, we investigate such an idea on Android platform. We carefully design a candidate NVO solution for networked apps, which leverages a Message Authentication Code (MAC) mechanism to generate the functionally nonequivalent diversities. Our evaluation result shows that the time required for breaking such a software system increases linearly with respect to the number of software versions. In this way, attackers would suffer great scalability issues, considering that an app can have millions of users. With minimal NVO costs, effective tamper-resistant security can therefore be established.

2017-05-22
Xia, Haijun.  2016.  Object-Oriented Interaction: Enabling Direct Physical Manipulation of Abstract Content via Objectification. Proceedings of the 29th Annual Symposium on User Interface Software and Technology. :13–16.

Touch input promises intuitive interactions with digital content as it employs our experience of manipulating physical objects: digital content can be rotated, scaled, and translated using direct manipulation gestures. However, the reliance on analog also confines the scope of direct physical manipulation: the physical world provides no mechanism to interact with digital abstract content. As such, applications on touchscreen devices either only include limited functionalities or fallback on the traditional form-filling paradigm, which is tedious, slow, and error prone for touch input. My research focuses on designing a new UI framework to enable complex functionalities on touch screen devices by expanding direct physical manipulation to abstract content via objectification. I present two research projects, objectification of attributes and selection, which demonstrate considerable promises.

2018-05-16
Xiang Huang, Donald M. Stull.  2016.  Polynomial Space Randomness in Analysis. 41st International Symposium on Mathematical Foundations of Computer Science, {MFCS} 2016, August 22-26, 2016 - Kraków, Poland. :86:1–86:13.
2017-05-17
Albazrqaoe, Wahhab, Huang, Jun, Xing, Guoliang.  2016.  Practical Bluetooth Traffic Sniffing: Systems and Privacy Implications. Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services. :333–345.

With the prevalence of personal Bluetooth devices, potential breach of user privacy has been an increasing concern. To date, sniffing Bluetooth traffic has been widely considered an extremely intricate task due to Bluetooth's indiscoverable mode, vendor-dependent adaptive hopping behavior, and the interference in the open 2.4 GHz band. In this paper, we present BlueEar -a practical Bluetooth traffic sniffer. BlueEar features a novel dual-radio architecture where two Bluetooth-compliant radios coordinate with each other on learning the hopping sequence of indiscoverable Bluetooth networks, predicting adaptive hopping behavior, and mitigating the impacts of RF interference. Experiment results show that BlueEar can maintain a packet capture rate higher than 90% consistently in real-world environments, where the target Bluetooth network exhibits diverse hopping behaviors in the presence of dynamic interference from coexisting Wi-Fi devices. In addition, we discuss the privacy implications of the BlueEar system, and present a practical countermeasure that effectively reduces the packet capture rate of the sniffer to 20%. The proposed countermeasure can be easily implemented on the Bluetooth master device while requiring no modification to slave devices like keyboards and headsets.

2017-03-29
Zhang, Jun, Xiao, Xiaokui, Xie, Xing.  2016.  PrivTree: A Differentially Private Algorithm for Hierarchical Decompositions. Proceedings of the 2016 International Conference on Management of Data. :155–170.

Given a set D of tuples defined on a domain Omega, we study differentially private algorithms for constructing a histogram over Omega to approximate the tuple distribution in D. Existing solutions for the problem mostly adopt a hierarchical decomposition approach, which recursively splits Omega into sub-domains and computes a noisy tuple count for each sub-domain, until all noisy counts are below a certain threshold. This approach, however, requires that we (i) impose a limit h on the recursion depth in the splitting of Omega and (ii) set the noise in each count to be proportional to h. The choice of h is a serious dilemma: a small h makes the resulting histogram too coarse-grained, while a large h leads to excessive noise in the tuple counts used in deciding whether sub-domains should be split. Furthermore, h cannot be directly tuned based on D; otherwise, the choice of h itself reveals private information and violates differential privacy. To remedy the deficiency of existing solutions, we present PrivTree, a histogram construction algorithm that adopts hierarchical decomposition but completely eliminates the dependency on a pre-defined h. The core of PrivTree is a novel mechanism that (i) exploits a new analysis on the Laplace distribution and (ii) enables us to use only a constant amount of noise in deciding whether a sub-domain should be split, without worrying about the recursion depth of splitting. We demonstrate the application of PrivTree in modelling spatial data, and show that it can be extended to handle sequence data (where the decision in sub-domain splitting is not based on tuple counts but a more sophisticated measure). Our experiments on a variety of real datasets show that PrivTree considerably outperforms the states of the art in terms of data utility.

2017-05-17
Xu, Zheng, Raschid, Louiqa.  2016.  Probabilistic Financial Community Models with Latent Dirichlet Allocation for Financial Supply Chains. Proceedings of the Second International Workshop on Data Science for Macro-Modeling. :8:1–8:6.

There is a growing interest in modeling and predicting the behavior of financial systems and supply chains. In this paper, we focus on the the analysis of the resMBS supply chain; it is associated with the US residential mortgage backed securities and subprime mortgages that were critical in the 2008 US financial crisis. We develop models based on financial institutions (FI), and their participation described by their roles (Role) on financial contracts (FC). Our models are based on an intuitive assumption that FIs will form communities within an FC, and FIs within a community are more likely to collaborate with other FIs in that community, and play the same role, in another FC. Inspired by the Latent Dirichlet Allocation (LDA) and topic models, we develop two probabilistic financial community models. In FI-Comm, each FC (document) is a mix of topics where a topic is a distribution over FIs (words). In Role-FI-Comm, each topic is a distribution over Role-FI pairs (words). Experimental results over 5000+ financial prospecti demonstrate the effectiveness of our models.

2017-09-15
Wang, Aosen, Jin, Zhanpeng, Xu, Wenyao.  2016.  A Programmable Analog-to-Information Converter for Agile Biosensing. Proceedings of the 2016 International Symposium on Low Power Electronics and Design. :206–211.

In recent years, the analog-to-information converter (AIC), based on compressed sensing (CS) paradigm, is a promising solution to overcome the performance and energy-efficiency limitations of traditional analog-to-digital converters (ADC). Especially, AIC can enable sub-Nyquist signal sampling proportional to the intrinsic information in biomedical applications. However, the legacy AIC structure is tailored toward specific applications, which lacks of flexibility and prevents its universality. In this paper, we introduce a novel programmable AIC architecture, Pro-AIC, to enable effective configurability and reduce its energy overhead by integrating efficient multiplexing hardware design. To improve the quality and time-efficiency of Pro-AIC configuration, we also develop a rapid configuration algorithm, called RapSpiral, to quickly find the near-optimal parameter configuration in Pro-AIC architecture. Specifically, we present a design metric, trade-off penalty, to quantitatively evaluate the performance-energy trade-off. The RapSpiral controls a penalty-driven shrinking triangle to progressively approximate to the optimal trade-off. Our proposed RapSpiral is with log(n) complexity yet high accuracy, without pretraining and complex parameter tuning procedure. RapSpiral is also probable to avoid the local minimum pitfalls. Experimental results indicate that our RapSpiral algorithm can achieve more than 30x speedup compared with the brute force algorithm, with only about 3% trade-off compromise to the optimum in Pro-AIC. Furthermore, the scalability is also verified on larger size benchmarks.

2017-05-17
Burdick, Doug, De, Soham, Raschid, Louiqa, Shao, Mingchao, Xu, Zheng, Zotkina, Elena.  2016.  resMBS: Constructing a Financial Supply Chain from Prospectus. Proceedings of the Second International Workshop on Data Science for Macro-Modeling. :7:1–7:6.

Understanding the behavior of complex financial supply chains is usually difficult due to a lack of data capturing the interactions between financial institutions (FIs) and the roles that they play in financial contracts (FCs). resMBS is an example supply chain corresponding to the US residential mortgage backed securities that were critical in the 2008 US financial crisis. In this paper, we describe the process of creating the resMBS graph dataset from financial prospectus. We use the SystemT rule-based text extraction platform to develop two tools, ORG NER and Dict NER, for named entity recognition of financial institution (FI) names. The resMBS graph comprises a set of FC nodes (each prospectus) and the corresponding FI nodes that are extracted from the prospectus. A Role-FI extractor matches a role keyword such as originator, sponsor or servicer, with FI names. We study the performance of the Role-FI extractor, and ORG NER and Dict NER, in constructing the resMBS dataset. We also present preliminary results of a clustering based analysis to identify financial communities and their evolution in the resMBS financial supply chain.

2017-11-13
Hunt, Tyler, Zhu, Zhiting, Xu, Yuanzhong, Peter, Simon, Witchel, Emmett.  2016.  Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data. Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. :533–549.

Users of modern data-processing services such as tax preparation or genomic screening are forced to trust them with data that the users wish to keep secret. Ryoan protects secret data while it is processed by services that the data owner does not trust. Accomplishing this goal in a distributed setting is difficult because the user has no control over the service providers or the computational platform. Confining code to prevent it from leaking secrets is notoriously difficult, but Ryoan benefits from new hardware and a request-oriented data model. Ryoan provides a distributed sandbox, leveraging hardware enclaves (e.g., Intel's software guard extensions (SGX) [15]) to protect sandbox instances from potentially malicious computing platforms. The protected sandbox instances confine untrusted data-processing modules to prevent leakage of the user's input data. Ryoan is designed for a request-oriented data model, where confined modules only process input once and do not persist state about the input. We present the design and prototype implementation of Ryoan and evaluate it on a series of challenging problems including email filtering, heath analysis, image processing and machine translation.

2017-06-05
Chen, Bo, Jia, Shijie, Xia, Luning, Liu, Peng.  2016.  Sanitizing Data is Not Enough!: Towards Sanitizing Structural Artifacts in Flash Media. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :496–507.

Conventional overwriting-based and encryption-based secure deletion schemes can only sanitize data. However, the past existence of the deleted data may leave artifacts in the layout at all layers of a computing system. These structural artifacts may be utilized by the adversary to infer sensitive information about the deleted data or even to fully recover them. The conventional secure deletion solutions unfortunately cannot sanitize them. In this work, we introduce truly secure deletion, a novel security notion that is much stronger than the conventional secure deletion. Truly secure deletion requires sanitizing both the obsolete data as well as the corresponding structural artifacts, so that the resulting storage layout after a delete operation is indistinguishable from that the deleted data never appeared. We propose TedFlash, a Truly secure deletion scheme for Flash-based block devices. TedFlash can successfully sanitize both the data and the structural artifacts, while satisfying the design constraints imposed for flash memory. Security analysis and experimental evaluation show that TedFlash can achieve the truly secure deletion guarantee with a small additional overhead compared to conventional secure deletion solutions.

2017-03-07
Lin, Xiaofeng, Chen, Yu, Li, Xiaodong, Mao, Junjie, He, Jiaquan, Xu, Wei, Shi, Yuanchun.  2016.  Scalable Kernel TCP Design and Implementation for Short-Lived Connections. Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. :339–352.

With the rapid growth of network bandwidth, increases in CPU cores on a single machine, and application API models demanding more short-lived connections, a scalable TCP stack is performance-critical. Although many clean-state designs have been proposed, production environments still call for a bottom-up parallel TCP stack design that is backward-compatible with existing applications. We present Fastsocket, a BSD Socket-compatible and scalable kernel socket design, which achieves table-level connection partition in TCP stack and guarantees connection locality for both passive and active connections. Fastsocket architecture is a ground up partition design, from NIC interrupts all the way up to applications, which naturally eliminates various lock contentions in the entire stack. Moreover, Fastsocket maintains the full functionality of the kernel TCP stack and BSD-socket-compatible API, and thus applications need no modifications. Our evaluations show that Fastsocket achieves a speedup of 20.4x on a 24-core machine under a workload of short-lived connections, outperforming the state-of-the-art Linux kernel TCP implementations. When scaling up to 24 CPU cores, Fastsocket increases the throughput of Nginx and HAProxy by 267% and 621% respectively compared with the base Linux kernel. We also demonstrate that Fastsocket can achieve scalability and preserve BSD socket API at the same time. Fastsocket is already deployed in the production environment of Sina WeiBo, serving 50 million daily active users and billions of requests per day.

2017-08-22
Kwon, Youngjin, Dunn, Alan M., Lee, Michael Z., Hofmann, Owen S., Xu, Yuanzhong, Witchel, Emmett.  2016.  Sego: Pervasive Trusted Metadata for Efficiently Verified Untrusted System Services. Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. :277–290.

Sego is a hypervisor-based system that gives strong privacy and integrity guarantees to trusted applications, even when the guest operating system is compromised or hostile. Sego verifies operating system services, like the file system, instead of replacing them. By associating trusted metadata with user data across all system devices, Sego verifies system services more efficiently than previous systems, especially services that depend on data contents. We extensively evaluate Sego's performance on real workloads and implement a kernel fault injector to validate Sego's file system-agnostic crash consistency and recovery protocol.

2017-09-26
Kwon, Youngjin, Dunn, Alan M., Lee, Michael Z., Hofmann, Owen S., Xu, Yuanzhong, Witchel, Emmett.  2016.  Sego: Pervasive Trusted Metadata for Efficiently Verified Untrusted System Services. Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. :277–290.

Sego is a hypervisor-based system that gives strong privacy and integrity guarantees to trusted applications, even when the guest operating system is compromised or hostile. Sego verifies operating system services, like the file system, instead of replacing them. By associating trusted metadata with user data across all system devices, Sego verifies system services more efficiently than previous systems, especially services that depend on data contents. We extensively evaluate Sego's performance on real workloads and implement a kernel fault injector to validate Sego's file system-agnostic crash consistency and recovery protocol.

2017-09-27
Li, Guannan, Liu, Jun, Wang, Xue, Xu, Hongli, Cui, Jun-Hong.  2016.  A Simulator for Swarm AUVs Acoustic Communication Networking. Proceedings of the 11th ACM International Conference on Underwater Networks & Systems. :42:1–42:2.

This paper presents a simulator for swarm operations designed to verify algorithms for a swarm of autonomous underwater robots (AUVs), specifically for constructing an underwater communication network with AUVs carrying acoustic communication devices. This simulator consists of three nodes: a virtual vehicle node (VV), a virtual environment node (VE), and a visual showing node (VS). The modular design treats AUV models as a combination of virtual equipment. An expert acoustic communication simulator is embedded in this simulator, to simulate scenarios with dynamic acoustic communication nodes. The several simulations we have performed demonstrate that this simulator is easy to use and can be further improved.

2017-05-30
Ming, Jiang, Wu, Dinghao, Wang, Jun, Xiao, Gaoyao, Liu, Peng.  2016.  StraightTaint: Decoupled Offline Symbolic Taint Analysis. Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. :308–319.

Taint analysis has been widely applied in ex post facto security applications, such as attack provenance investigation, computer forensic analysis, and reverse engineering. Unfortunately, the high runtime overhead imposed by dynamic taint analysis makes it impractical in many scenarios. The key obstacle is the strict coupling of program execution and taint tracking logic code. To alleviate this performance bottleneck, recent work seeks to offload taint analysis from program execution and run it on a spare core or a different CPU. However, since the taint analysis has heavy data and control dependencies on the program execution, the massive data in recording and transformation overshadow the benefit of decoupling. In this paper, we propose a novel technique to allow very lightweight logging, resulting in much lower execution slowdown, while still permitting us to perform full-featured offline taint analysis. We develop StraightTaint, a hybrid taint analysis tool that completely decouples the program execution and taint analysis. StraightTaint relies on very lightweight logging of the execution information to reconstruct a straight-line code, enabling an offline symbolic taint analysis without frequent data communication with the application. While StraightTaint does not log complete runtime or input values, it is able to precisely identify the causal relationships between sources and sinks, for example. Compared with traditional dynamic taint analysis tools, StraightTaint has much lower application runtime overhead.

2017-05-16
Yan, Ting-Kun, Xu, Xin-Shun, Guo, Shanqing, Huang, Zi, Wang, Xiao-Lin.  2016.  Supervised Robust Discrete Multimodal Hashing for Cross-Media Retrieval. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. :1271–1280.

Recently, multimodal hashing techniques have received considerable attention due to their low storage cost and fast query speed for multimodal data retrieval. Many methods have been proposed; however, there are still some problems that need to be further considered. For example, some of these methods just use a similarity matrix for learning hash functions which will discard some useful information contained in original data; some of them relax binary constraints or separate the process of learning hash functions and binary codes into two independent stages to bypass the obstacle of handling the discrete constraints on binary codes for optimization, which may generate large quantization error; some of them are not robust to noise. All these problems may degrade the performance of a model. To consider these problems, in this paper, we propose a novel supervised hashing framework for cross-modal retrieval, i.e., Supervised Robust Discrete Multimodal Hashing (SRDMH). Specifically, SRDMH tries to make final binary codes preserve label information as same as that in original data so that it can leverage more label information to supervise the binary codes learning. In addition, it learns hashing functions and binary codes directly instead of relaxing the binary constraints so as to avoid large quantization error problem. Moreover, to make it robust and easy to solve, we further integrate a flexible l2,p loss with nonlinear kernel embedding and an intermediate presentation of each instance. Finally, an alternating algorithm is proposed to solve the optimization problem in SRDMH. Extensive experiments are conducted on three benchmark data sets. The results demonstrate that the proposed method (SRDMH) outperforms or is comparable to several state-of-the-art methods for cross-modal retrieval task.

2017-06-05
Xu, Guangwu, Yan, Zheng.  2016.  A Survey on Trust Evaluation in Mobile Ad Hoc Networks. Proceedings of the 9th EAI International Conference on Mobile Multimedia Communications. :140–148.

Mobile Ad Hoc Network (MANET) is a multi-hop temporary and autonomic network comprised of a set of mobile nodes. MANETs have the features of non-center, dynamically changing topology, multi-hop routing, mobile nodes, limited resources and so on, which make it face more threats. Trust evaluation is used to support nodes to cooperate in a secure and trustworthy way through evaluating the trust of participating nodes in MANETs. However, many trust evaluation models proposed for MANETs still have many problems and shortcomings. In this paper, we review the existing researches, then analyze and compare the proposed trust evaluation models by presenting and applying uniform criteria in order to point out a number of open issues and challenges and suggest future research trends.

2017-05-19
Xia, Lixue, Tang, Tianqi, Huangfu, Wenqin, Cheng, Ming, Yin, Xiling, Li, Boxun, Wang, Yu, Yang, Huazhong.  2016.  Switched by Input: Power Efficient Structure for RRAM-based Convolutional Neural Network. Proceedings of the 53rd Annual Design Automation Conference. :125:1–125:6.

Convolutional Neural Network (CNN) is a powerful technique widely used in computer vision area, which also demands much more computations and memory resources than traditional solutions. The emerging metal-oxide resistive random-access memory (RRAM) and RRAM crossbar have shown great potential on neuromorphic applications with high energy efficiency. However, the interfaces between analog RRAM crossbars and digital peripheral functions, namely Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs), consume most of the area and energy of RRAM-based CNN design due to the large amount of intermediate data in CNN. In this paper, we propose an energy efficient structure for RRAM-based CNN. Based on the analysis of data distribution, a quantization method is proposed to transfer the intermediate data into 1 bit and eliminate DACs. An energy efficient structure using input data as selection signals is proposed to reduce the ADC cost for merging results of multiple crossbars. The experimental results show that the proposed method and structure can save 80% area and more than 95% energy while maintaining the same or comparable classification accuracy of CNN on MNIST.

2017-09-19
Xie, Tao, Enck, William.  2016.  Text Analytics for Security: Tutorial. Proceedings of the Symposium and Bootcamp on the Science of Security. :124–125.

Computing systems that make security decisions often fail to take into account human expectations. This failure occurs because human expectations are typically drawn from in textual sources (e.g., mobile application description and requirements documents) and are hard to extract and codify. Recently, researchers in security and software engineering have begun using text analytics to create initial models of human expectation. In this tutorial, we provide an introduction to popular techniques and tools of natural language processing (NLP) and text mining, and share our experiences in applying text analytics to security problems. We also highlight the current challenges of applying these techniques and tools for addressing security problems. We conclude the tutorial with discussion of future research directions.

2018-05-10
Xie, Junfei, Al-Emrani, Firas, Gu, Yixin, Wan, Yan, Fu, Shengli.  2016.  UAV-Carried Long Distance Wi-Fi Communication Infrastructure. Proc. of AIAA Science and Technology Forum and Exposition, San Diego, CA. :747–759.
2018-05-11