Biblio

Found 1137 results

Filters: First Letter Of Last Name is X  [Clear All Filters]
2018-05-15
2017-05-30
Xu, Guanshuo, Wu, Han-Zhou, Shi, Yun Q...  2016.  Ensemble of CNNs for Steganalysis: An Empirical Study. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security. :103–107.

There has been growing interest in using convolutional neural networks (CNNs) in the fields of image forensics and steganalysis, and some promising results have been reported recently. These works mainly focus on the architectural design of CNNs, usually, a single CNN model is trained and then tested in experiments. It is known that, neural networks, including CNNs, are suitable to form ensembles. From this perspective, in this paper, we employ CNNs as base learners and test several different ensemble strategies. In our study, at first, a recently proposed CNN architecture is adopted to build a group of CNNs, each of them is trained on a random subsample of the training dataset. The output probabilities, or some intermediate feature representations, of each CNN, are then extracted from the original data and pooled together to form new features ready for the second level of classification. To make best use of the trained CNN models, we manage to partially recover the lost information due to spatial subsampling in the pooling layers when forming feature vectors. Performance of the ensemble methods are evaluated on BOSSbase by detecting S-UNIWARD at 0.4 bpp embedding rate. Results have indicated that both the recovery of the lost information, and learning from intermediate representation in CNNs instead of output probabilities, have led to performance improvement.

2018-05-15
Pratap B. Solanki, Xiaobo Tan.  2016.  Experimental implementation of extended Kalman filter-based optical beam tracking with a single receiver. Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics. :1103-1108.
2017-11-27
Qin, Y., Wang, H., Jia, Z., Xia, H..  2016.  A flexible and scalable implementation of elliptic curve cryptography over GF(p) based on ASIP. 2016 IEEE 35th International Performance Computing and Communications Conference (IPCCC). :1–8.

Public-key cryptography schemes are widely used due to their high level of security. As a very efficient one among public-key cryptosystems, elliptic curve cryptography (ECC) has been studied for years. Researchers used to improve the efficiency of ECC through point multiplication, which is the most important and complex operation of ECC. In our research, we use special families of curves and prime fields which have special properties. After that, we introduce the instruction set architecture (ISA) extension method to accelerate this algorithm (192-bit private key) and build an ECC\_ASIP model with six new ECC custom instructions. Finally, the ECC\_ASIP model is implemented in a field-programmable gate array (FPGA) platform. The persuasive experiments have been conducted to evaluate the performance of our new model in the aspects of the performance, the code storage space and hardware resources. Experimental results show that our processor improves 69.6% in the execution efficiency and requires only 6.2% more hardware resources.

2017-10-18
Han, Wenlin, Xiao, Yang.  2016.  FNFD: A Fast Scheme to Detect and Verify Non-Technical Loss Fraud in Smart Grid. Proceedings of the 2016 ACM International on Workshop on Traffic Measurements for Cybersecurity. :24–34.

Non-Technical Loss (NTL) fraud is a very common fraud in power systems. In traditional power grid, energy theft, via meter tampering, is the main form of NTL fraud. With the rise of Smart Grid, adversaries can take advantage of two-way communication to commit NTL frauds by meter manipulation or network intrusion. Previous schemes were proposed to detect NTL frauds but are not efficient. In this paper, we propose a Fast NTL Fraud Detection and verification scheme (FNFD). FNFD is based on Recursive Least Square (RLS) to model adversary behavior. Experimental results show that FNFD outperforms existing schemes in terms of efficiency and overhead.

2017-10-27
Xu, Peng, Xu, Jun, Wang, Wei, Jin, Hai, Susilo, Willy, Zou, Deqing.  2016.  Generally Hybrid Proxy Re-Encryption: A Secure Data Sharing Among Cryptographic Clouds. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :913–918.

Proxy Re-Encryption (PRE) is a favorable primitive to realize a cryptographic cloud with secure and flexible data sharing mechanism. A number of PRE schemes with versatile capabilities have been proposed for different applications. The secure data sharing can be internally achieved in each PRE scheme. But no previous work can guarantee the secure data sharing among different PRE schemes in a general manner. Moreover, it is challenging to solve this problem due to huge differences among the existing PRE schemes in their algebraic systems and public-key types. To solve this problem more generally, this paper uniforms the definitions of the existing PRE and Public Key Encryption (PKE) schemes, and further uniforms their security definitions. Then taking any uniformly defined PRE scheme and any uniformly defined PKE scheme as two building blocks, this paper constructs a Generally Hybrid Proxy Re-Encryption (GHPRE) scheme with the idea of temporary public and private keys to achieve secure data sharing between these two underlying schemes. Since PKE is a more general definition than PRE, the proposed GHPRE scheme also is workable between any two PRE schemes. Moreover, the proposed GHPRE scheme can be transparently deployed even if the underlying PRE schemes are implementing.

2017-05-22
Qin, Zhan, Yang, Yin, Yu, Ting, Khalil, Issa, Xiao, Xiaokui, Ren, Kui.  2016.  Heavy Hitter Estimation over Set-Valued Data with Local Differential Privacy. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :192–203.

In local differential privacy (LDP), each user perturbs her data locally before sending the noisy data to a data collector. The latter then analyzes the data to obtain useful statistics. Unlike the setting of centralized differential privacy, in LDP the data collector never gains access to the exact values of sensitive data, which protects not only the privacy of data contributors but also the collector itself against the risk of potential data leakage. Existing LDP solutions in the literature are mostly limited to the case that each user possesses a tuple of numeric or categorical values, and the data collector computes basic statistics such as counts or mean values. To the best of our knowledge, no existing work tackles more complex data mining tasks such as heavy hitter discovery over set-valued data. In this paper, we present a systematic study of heavy hitter mining under LDP. We first review existing solutions, extend them to the heavy hitter estimation, and explain why their effectiveness is limited. We then propose LDPMiner, a two-phase mechanism for obtaining accurate heavy hitters with LDP. The main idea is to first gather a candidate set of heavy hitters using a portion of the privacy budget, and focus the remaining budget on refining the candidate set in a second phase, which is much more efficient budget-wise than obtaining the heavy hitters directly from the whole dataset. We provide both in-depth theoretical analysis and extensive experiments to compare LDPMiner against adaptations of previous solutions. The results show that LDPMiner significantly improves over existing methods. More importantly, LDPMiner successfully identifies the majority true heavy hitters in practical settings.

2017-08-18
Pei, Kexin, Gu, Zhongshu, Saltaformaggio, Brendan, Ma, Shiqing, Wang, Fei, Zhang, Zhiwei, Si, Luo, Zhang, Xiangyu, Xu, Dongyan.  2016.  HERCULE: Attack Story Reconstruction via Community Discovery on Correlated Log Graph. Proceedings of the 32Nd Annual Conference on Computer Security Applications. :583–595.

Advanced cyber attacks consist of multiple stages aimed at being stealthy and elusive. Such attack patterns leave their footprints spatio-temporally dispersed across many different logs in victim machines. However, existing log-mining intrusion analysis systems typically target only a single type of log to discover evidence of an attack and therefore fail to exploit fundamental inter-log connections. The output of such single-log analysis can hardly reveal the complete attack story for complex, multi-stage attacks. Additionally, some existing approaches require heavyweight system instrumentation, which makes them impractical to deploy in real production environments. To address these problems, we present HERCULE, an automated multi-stage log-based intrusion analysis system. Inspired by graph analytics research in social network analysis, we model multi-stage intrusion analysis as a community discovery problem. HERCULE builds multi-dimensional weighted graphs by correlating log entries across multiple lightweight logs that are readily available on commodity systems. From these, HERCULE discovers any "attack communities" embedded within the graphs. Our evaluation with 15 well known APT attack families demonstrates that HERCULE can reconstruct attack behaviors from a spectrum of cyber attacks that involve multiple stages with high accuracy and low false positive rates.

2017-05-30
Xu, Zhang, Wu, Zhenyu, Li, Zhichun, Jee, Kangkook, Rhee, Junghwan, Xiao, Xusheng, Xu, Fengyuan, Wang, Haining, Jiang, Guofei.  2016.  High Fidelity Data Reduction for Big Data Security Dependency Analyses. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :504–516.

Intrusive multi-step attacks, such as Advanced Persistent Threat (APT) attacks, have plagued enterprises with significant financial losses and are the top reason for enterprises to increase their security budgets. Since these attacks are sophisticated and stealthy, they can remain undetected for years if individual steps are buried in background "noise." Thus, enterprises are seeking solutions to "connect the suspicious dots" across multiple activities. This requires ubiquitous system auditing for long periods of time, which in turn causes overwhelmingly large amount of system audit events. Given a limited system budget, how to efficiently handle ever-increasing system audit logs is a great challenge. This paper proposes a new approach that exploits the dependency among system events to reduce the number of log entries while still supporting high-quality forensic analysis. In particular, we first propose an aggregation algorithm that preserves the dependency of events during data reduction to ensure the high quality of forensic analysis. Then we propose an aggressive reduction algorithm and exploit domain knowledge for further data reduction. To validate the efficacy of our proposed approach, we conduct a comprehensive evaluation on real-world auditing systems using log traces of more than one month. Our evaluation results demonstrate that our approach can significantly reduce the size of system logs and improve the efficiency of forensic analysis without losing accuracy.

2017-05-17
Miller, Andrew, Xia, Yu, Croman, Kyle, Shi, Elaine, Song, Dawn.  2016.  The Honey Badger of BFT Protocols. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :31–42.

The surprising success of cryptocurrencies has led to a surge of interest in deploying large scale, highly robust, Byzantine fault tolerant (BFT) protocols for mission-critical applications, such as financial transactions. Although the conventional wisdom is to build atop a (weakly) synchronous protocol such as PBFT (or a variation thereof), such protocols rely critically on network timing assumptions, and only guarantee liveness when the network behaves as expected. We argue these protocols are ill-suited for this deployment scenario. We present an alternative, HoneyBadgerBFT, the first practical asynchronous BFT protocol, which guarantees liveness without making any timing assumptions. We base our solution on a novel atomic broadcast protocol that achieves optimal asymptotic efficiency. We present an implementation and experimental results to show our system can achieve throughput of tens of thousands of transactions per second, and scales to over a hundred nodes on a wide area network. We even conduct BFT experiments over Tor, without needing to tune any parameters. Unlike the alternatives, HoneyBadgerBFT simply does not care about the underlying network.

2016-10-21
2016-11-14
2017-09-05
Tan, Yong Kiam, Xu, Xinxing, Liu, Yong.  2016.  Improved Recurrent Neural Networks for Session-based Recommendations. Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. :17–22.

Recurrent neural networks (RNNs) were recently proposed for the session-based recommendation task. The models showed promising improvements over traditional recommendation approaches. In this work, we further study RNN-based models for session-based recommendations. We propose the application of two techniques to improve model performance, namely, data augmentation, and a method to account for shifts in the input data distribution. We also empirically study the use of generalised distillation, and a novel alternative model that directly predicts item embeddings. Experiments on the RecSys Challenge 2015 dataset demonstrate relative improvements of 12.8% and 14.8% over previously reported results on the Recall@20 and Mean Reciprocal Rank@20 metrics respectively.

2018-05-25
2017-05-17
Kwon, Yonghwi, Kim, Dohyeong, Sumner, William Nick, Kim, Kyungtae, Saltaformaggio, Brendan, Zhang, Xiangyu, Xu, Dongyan.  2016.  LDX: Causality Inference by Lightweight Dual Execution. Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems. :503–515.

Causality inference, such as dynamic taint anslysis, has many applications (e.g., information leak detection). It determines whether an event e is causally dependent on a preceding event c during execution. We develop a new causality inference engine LDX. Given an execution, it spawns a slave execution, in which it mutates c and observes whether any change is induced at e. To preclude non-determinism, LDX couples the executions by sharing syscall outcomes. To handle path differences induced by the perturbation, we develop a novel on-the-fly execution alignment scheme that maintains a counter to reflect the progress of execution. The scheme relies on program analysis and compiler transformation. LDX can effectively detect information leak and security attacks with an average overhead of 6.08% while running the master and the slave concurrently on separate CPUs, much lower than existing systems that require instruction level monitoring. Furthermore, it has much better accuracy in causality inference.

2017-03-07
Baba, Asif Iqbal, Jaeger, Manfred, Lu, Hua, Pedersen, Torben Bach, Ku, Wei-Shinn, Xie, Xike.  2016.  Learning-Based Cleansing for Indoor RFID Data. Proceedings of the 2016 International Conference on Management of Data. :925–936.

RFID is widely used for object tracking in indoor environments, e.g., airport baggage tracking. Analyzing RFID data offers insight into the underlying tracking systems as well as the associated business processes. However, the inherent uncertainty in RFID data, including noise (cross readings) and incompleteness (missing readings), pose challenges to high-level RFID data querying and analysis. In this paper, we address these challenges by proposing a learning-based data cleansing approach that, unlike existing approaches, requires no detailed prior knowledge about the spatio-temporal properties of the indoor space and the RFID reader deployment. Requiring only minimal information about RFID deployment, the approach learns relevant knowledge from raw RFID data and uses it to cleanse the data. In particular, we model raw RFID readings as time series that are sparse because the indoor space is only partly covered by a limited number of RFID readers. We propose the Indoor RFID Multi-variate Hidden Markov Model (IR-MHMM) to capture the uncertainties of indoor RFID data as well as the correlation of moving object locations and object RFID readings. We propose three state space design methods for IR-MHMM that enable the learning of parameters while contending with raw RFID data time series. We solely use raw uncleansed RFID data for the learning of model parameters, requiring no special labeled data or ground truth. The resulting IR-MHMM based RFID data cleansing approach is able to recover missing readings and reduce cross readings with high effectiveness and efficiency, as demonstrated by extensive experimental studies with both synthetic and real data. Given enough indoor RFID data for learning, the proposed approach achieves a data cleansing accuracy comparable to or even better than state-of-the-art techniques requiring very detailed prior knowledge, making our solution superior in terms of both effectiveness and employability.

Wang, Ju, Jiang, Hongbo, Xiong, Jie, Jamieson, Kyle, Chen, Xiaojiang, Fang, Dingyi, Xie, Binbin.  2016.  LiFS: Low Human-effort, Device-free Localization with Fine-grained Subcarrier Information. Proceedings of the 22Nd Annual International Conference on Mobile Computing and Networking. :243–256.

Device-free localization of people and objects indoors not equipped with radios is playing a critical role in many emerging applications. This paper presents an accurate model-based device-free localization system LiFS, implemented on cheap commercial off-the-shelf (COTS) Wi-Fi devices. Unlike previous COTS device-based work, LiFS is able to localize a target accurately without offline training. The basic idea is simple: channel state information (CSI) is sensitive to a target's location and by modelling the CSI measurements of multiple wireless links as a set of power fading based equations, the target location can be determined. However, due to rich multipath propagation indoors, the received signal strength (RSS) or even the fine-grained CSI can not be easily modelled. We observe that even in a rich multipath environment, not all subcarriers are affected equally by multipath reflections. Our pre-processing scheme tries to identify the subcarriers not affected by multipath. Thus, CSIs on the "clean" subcarriers can be utilized for accurate localization. We design, implement and evaluate LiFS with extensive experiments in three different environments. Without knowing the majority transceivers' locations, LiFS achieves a median accuracy of 0.5 m and 1.1 m in line-of-sight (LoS) and non-line-of-sight (NLoS) scenarios respectively, outperforming the state-of-the-art systems. Besides single target localization, LiFS is able to differentiate two sparsely-located targets and localize each of them at a high accuracy.

2017-04-24
Xie, Xiongwei, Wang, Weichao.  2016.  Lightweight Examination of DLL Environments in Virtual Machines to Detect Malware. Proceedings of the 4th ACM International Workshop on Security in Cloud Computing. :10–16.

Since it becomes increasingly difficult to trick end users to install and run executable files from unknown sources, attackers refer to stealthy ways such as manipulation of DLL (Dynamic Link Library) files to compromise user computers. In this paper, we propose to develop mechanisms that allow the hypervisor to conduct lightweight examination of DLL files and their running environment in guest virtual machines. Different from the approaches that focus on static analysis of the DLL API calling graphs, our mechanisms conduct continuous examination of their running states. In this way, malicious manipulations to DLL files that happen after they are loaded into memory can also be detected. In order to maintain non-intrusive monitoring and reduce the impacts on VM performance, we avoid examinations of the complete DLL file contents but focus on the parameters such as the relative virtual addresses (RVA) of the functions. We have implemented our approach in Xen and conducted experiments with more than 100 malware of different types. The experiment results show that our approach can effectively detect the malware with very low increases in overhead at guest VMs.

2017-09-26
Liao, Xiaojing, Alrwais, Sumayah, Yuan, Kan, Xing, Luyi, Wang, XiaoFeng, Hao, Shuang, Beyah, Raheem.  2016.  Lurking Malice in the Cloud: Understanding and Detecting Cloud Repository As a Malicious Service. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1541–1552.

The popularity of cloud hosting services also brings in new security challenges: it has been reported that these services are increasingly utilized by miscreants for their malicious online activities. Mitigating this emerging threat, posed by such "bad repositories" (simply Bar), is challenging due to the different hosting strategy to traditional hosting service, the lack of direct observations of the repositories by those outside the cloud, the reluctance of the cloud provider to scan its customers' repositories without their consent, and the unique evasion strategies employed by the adversary. In this paper, we took the first step toward understanding and detecting this emerging threat. Using a small set of "seeds" (i.e., confirmed Bars), we identified a set of collective features from the websites they serve (e.g., attempts to hide Bars), which uniquely characterize the Bars. These features were utilized to build a scanner that detected over 600 Bars on leading cloud platforms like Amazon, Google, and 150K sites, including popular ones like groupon.com, using them. Highlights of our study include the pivotal roles played by these repositories on malicious infrastructures and other important discoveries include how the adversary exploited legitimate cloud repositories and why the adversary uses Bars in the first place that has never been reported. These findings bring such malicious services to the spotlight and contribute to a better understanding and ultimately eliminating this new threat.

2018-05-27
2017-10-19
Zhang, Peng, Li, Hao, Hu, Chengchen, Hu, Liujia, Xiong, Lei, Wang, Ruilong, Zhang, Yuemei.  2016.  Mind the Gap: Monitoring the Control-Data Plane Consistency in Software Defined Networks. Proceedings of the 12th International on Conference on Emerging Networking EXperiments and Technologies. :19–33.

How to debug large networks is always a challenging task. Software Defined Network (SDN) offers a centralized con- trol platform where operators can statically verify network policies, instead of checking configuration files device-by-device. While such a static verification is useful, it is still not enough: due to data plane faults, packets may not be forwarded according to control plane policies, resulting in network faults at runtime. To address this issue, we present VeriDP, a tool that can continuously monitor what we call control-data plane consistency, defined as the consistency between control plane policies and data plane forwarding behaviors. We prototype VeriDP with small modifications of both hardware and software SDN switches, and show that it can achieve a verification speed of 3 μs per packet, with a false negative rate as low as 0.1%, for the Stanford backbone and Internet2 topologies. In addition, when verification fails, VeriDP can localize faulty switches with a probability as high as 96% for fat tree topologies.

2017-06-05
Jing, Xiao-Yuan, Qi, Fumin, Wu, Fei, Xu, Baowen.  2016.  Missing Data Imputation Based on Low-rank Recovery and Semi-supervised Regression for Software Effort Estimation. Proceedings of the 38th International Conference on Software Engineering. :607–618.

Software effort estimation (SEE) is a crucial step in software development. Effort data missing usually occurs in real-world data collection. Focusing on the missing data problem, existing SEE methods employ the deletion, ignoring, or imputation strategy to address the problem, where the imputation strategy was found to be more helpful for improving the estimation performance. Current imputation methods in SEE use classical imputation techniques for missing data imputation, yet these imputation techniques have their respective disadvantages and might not be appropriate for effort data. In this paper, we aim to provide an effective solution for the effort data missing problem. Incompletion includes the drive factor missing case and effort label missing case. We introduce the low-rank recovery technique for addressing the drive factor missing case. And we employ the semi-supervised regression technique to perform imputation in the case of effort label missing. We then propose a novel effort data imputation approach, named low-rank recovery and semi-supervised regression imputation (LRSRI). Experiments on 7 widely used software effort datasets indicate that: (1) the proposed approach can obtain better effort data imputation effects than other methods; (2) the imputed data using our approach can apply to multiple estimators well.

2018-05-15
2017-09-19
Song, Chen, Lin, Feng, Ba, Zhongjie, Ren, Kui, Zhou, Chi, Xu, Wenyao.  2016.  My Smartphone Knows What You Print: Exploring Smartphone-based Side-channel Attacks Against 3D Printers. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :895–907.

Additive manufacturing, also known as 3D printing, has been increasingly applied to fabricate highly intellectual property (IP) sensitive products. However, the related IP protection issues in 3D printers are still largely underexplored. On the other hand, smartphones are equipped with rich onboard sensors and have been applied to pervasive mobile surveillance in many applications. These facts raise one critical question: is it possible that smartphones access the side-channel signals of 3D printer and then hack the IP information? To answer this, we perform an end-to-end study on exploring smartphone-based side-channel attacks against 3D printers. Specifically, we formulate the problem of the IP side-channel attack in 3D printing. Then, we investigate the possible acoustic and magnetic side-channel attacks using the smartphone built-in sensors. Moreover, we explore a magnetic-enhanced side-channel attack model to accurately deduce the vital directional operations of 3D printer. Experimental results show that by exploiting the side-channel signals collected by smartphones, we can successfully reconstruct the physical prints and their G-code with Mean Tendency Error of 5.87% on regular designs and 9.67% on complex designs, respectively. Our study demonstrates this new and practical smartphone-based side channel attack on compromising IP information during 3D printing.