Biblio
According to the characteristics of security threats and massive users in power mobile applications, a mobile application security situational awareness method based on big data architecture is proposed. The method uses open-source big data technology frameworks such as Kafka, Flink, Elasticsearch, etc. to complete the collection, analysis, storage and visual display of massive power mobile application data, and improve the throughput of data processing. The security situation awareness method of power mobile application takes the mobile terminal threat index as the core, divides the risk level for the mobile terminal, and predicts the terminal threat index through support vector machine regression algorithm (SVR), so as to construct the security profile of the mobile application operation terminal. Finally, through visualization services, various data such as power mobile applications and terminal assets, security operation statistics, security strategies, and alarm analysis are displayed to guide security operation and maintenance personnel to carry out power mobile application security monitoring and early warning, banning disposal and traceability analysis and other decision-making work. The experimental analysis results show that the method can meet the requirements of security situation awareness for threat assessment accuracy and response speed, and the related results have been well applied in a power company.
Over the past decade, smart grids have been widely implemented. Real-time pricing can better address demand-side management in smart grids. Real-time pricing requires managers to interact more with consumers at the data level, which raises many privacy threats. Thus, we introduce differential privacy into the Real-time pricing for privacy protection. However, differential privacy leaves more space for an adversary to compromise the robustness of the system, which has not been well addressed in the literature. In this paper, we propose a novel active attack detection scheme against stealthy attacks, and then give the proof of correctness and effectiveness of the proposed scheme. Further, we conduct extensive experiments with real datasets from CER to verify the detection performance of the proposed scheme.
With the development of the information age, the process of global networking continues to deepen, and the cyberspace security has become an important support for today’s social functions and social activities. Web applications which have many security risks are the most direct interactive way in the process of the Internet activities. That is why the web applications face a large number of network attacks. Interpretive dynamic programming languages are easy to lean and convenient to use, they are widely used in the development of cross-platform web systems. As well as benefit from these advantages, the web system based on those languages is hard to detect errors and maintain the complex system logic, increasing the risk of system vulnerability and cyber threats. The attack defense of systems based on interpretive dynamic programming languages is widely concerned by researchers. Since the advance of endogenous security technologies, there are breakthroughs on the research of web system security. Compared with traditional security defense technologies, these technologies protect the system with their uncertainty, randomness and dynamism. Based on several common network attacks, the traditional system security defense technology and endogenous security technology of web application based on interpretive dynamic languages are surveyed and compared in this paper. Furthermore, the possible research directions of those technologies are discussed.
Cloud data integrity verification was an important means to ensure data security. We used public key infrastructure (PKI) to manage user keys in Traditional way, but there were problems of certificate verification and high cost of key management. In this paper, RSA signature was used to construct a new identity-based cloud audit protocol, which solved the previous problems caused by PKI and supported forward security, and reduced the loss caused by key exposure. Through security analysis, the design scheme could effectively resist forgery attack and support forward security.
Code-graph based software defect prediction methods have become a research focus in SDP field. Among them, Code Property Graph is used as a form of data representation for code defects due to its ability to characterize the structural features and dependencies of defect codes. However, since the coarse granularity of Code Property Graph, redundant information which is not related to defects often attached to the characterization of software defects. Thus, it is a problem to be solved in how to locate software defects at a finer granularity in Code Property Graph. Static analysis is a technique for identifying software defects using set defect rules, and there are many proven static analysis tools in the industry. In this paper, we propose a method for locating specific types of defects in the Code Property Graph based on the result of static analysis tool. Experiments show that the location method based on static analysis results can effectively predict the location of specific defect types in real software program.
New malware increasingly adopts novel fileless techniques to evade detection from antivirus programs. Process injection is one of the most popular fileless attack techniques. This technique makes malware more stealthy by writing malicious code into memory space and reusing the name and port of the host process. It is difficult for traditional security software to detect and intercept process injections due to the stealthiness of its behavior. We propose a novel framework called ProcGuard for detecting process injection behaviors. This framework collects sensitive function call information of typical process injection. Then we perform a fine-grained analysis of process injection behavior based on the function call chain characteristics of the program, and we also use the improved RCNN network to enhance API analysis on the tampered memory segments. We combine API analysis with deep learning to determine whether a process injection attack has been executed. We collect a large number of malicious samples with process injection behavior and construct a dataset for evaluating the effectiveness of ProcGuard. The experimental results demonstrate that it achieves an accuracy of 81.58% with a lower false-positive rate compared to other systems. In addition, we also evaluate the detection time and runtime performance loss metrics of ProcGuard, both of which are improved compared to previous detection tools.