Biblio
Filters: Keyword is Collaboration [Clear All Filters]
Large scale multi-node simulations of ℤ2 gauge theory quantum circuits using Google Cloud Platform. 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS). :72—79.
.
2021. Simulating quantum field theories on a quantum computer is one of the most exciting fundamental physics applications of quantum information science. Dynamical time evolution of quantum fields is a challenge that is beyond the capabilities of classical computing, but it can teach us important lessons about the fundamental fabric of space and time. Whether we may answer scientific questions of interest using near-term quantum computing hardware is an open question that requires a detailed simulation study of quantum noise. Here we present a large scale simulation study powered by a multi-node implementation of qsim using the Google Cloud Platform. We additionally employ newly-developed GPU capabilities in qsim and show how Tensor Processing Units — Application-specific Integrated Circuits (ASICs) specialized for Machine Learning — may be used to dramatically speed up the simulation of large quantum circuits. We demonstrate the use of high performance cloud computing for simulating ℤ2 quantum field theories on system sizes up to 36 qubits. We find this lattice size is not able to simulate our problem and observable combination with sufficient accuracy, implying more challenging observables of interest for this theory are likely beyond the reach of classical computation using exact circuit simulation.
Measuring Trust and Automatic Verification in Multi-Agent Systems. 2021 8th International Conference on Dependable Systems and Their Applications (DSA). :271—277.
.
2021. Due to the shortage of resources and services, agents are often in competition with each other. Excessive competition will lead to a social dilemma. Under the viewpoint of breaking social dilemma, we present a novel trust-based logic framework called Trust Computation Logic (TCL) for measure method to find the best partners to collaborate and automatically verifying trust in Multi-Agent Systems (MASs). TCL starts from defining trust state in Multi-Agent Systems, which is based on contradistinction between behavior in trust behavior library and in observation. In particular, a set of reasoning postulates along with formal proofs were put forward to support our measure process. Moreover, we introduce symbolic model checking algorithms to formally and automatically verify the system. Finally, the trust measure method and reported experimental results were evaluated by using DeepMind’s Sequential Social Dilemma (SSD) multi-agent game-theoretic environments.
Middleware for Edge Devices in Mobile Edge Computing. 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :1—4.
.
2021. In mobile edge computing, edge devices collect data, and an edge server performs computational or data processing tasks that need real-time processing. Depending upon the requested task's complexity, an edge server executes it locally or remotely in the cloud. When an edge server needs to offload its computational tasks, there could be a sudden failure in the cloud or network. In this scenario, we need to provide a flexible execution model to edge devices and servers for the continuous execution of the task. To that end, in this paper, we induced a middleware system that allows an edge server to execute a task on the edge devices instead of offloading it to a cloud server. Edge devices not only send data to an edge server for further processing but also execute edge services by utilizing nearby edge devices' computing resources. We extend the concept of service-oriented architecture and integrate a decentralized peer-to-peer network architecture to achieve reusability, location-specific security, and reliability. By following our methodology, software developers can enhance their application in a collaborative environment without worrying about low-level implementation.
Mobile APP Personal Information Security Detection and Analysis. 2021 IEEE/ACIS 19th International Conference on Computer and Information Science (ICIS). :82—87.
.
2021. Privacy protection is a vital part of information security. However, the excessive collections and uses of personal information have intensified in the area of mobile apps (applications). To comprehend the current situation of APP personal information security problem of APP, this paper uses a combined approach of static analysis technology, dynamic analysis technology, and manual review to detect and analyze the installed file of mobile apps. 40 mobile apps are detected as experimental samples. The results demonstrate that this combined approach can effectively detect various issues of personal information security problem in mobile apps. Statistics analysis of the experimental results demonstrate that mobile apps have outstanding problems in some aspects of personal information security such as privacy policy, permission application, information collection, data storage, etc.
Neighborhood Component Analysis and Artificial Neural Network for DDoS Attack Detection over IoT Networks. 2021 7th International Engineering Conference ``Research Innovation amid Global Pandemic" (IEC). :1–6.
.
2021. Recently, modern networks have been made up of connections of small devices that have less memory, small CPU capability, and limited resources. Such networks apparently known as Internet of Things networks. Devices in such network promising high standards of live for human, however, they increase the size of threats lead to bring more risks to network security. One of the most popular threats against such networks is known as Distributed Denial of Service (DDoS). Reports from security solution providers show that number of such attacks are in increase considerably. Therefore, more researches on detecting the DDoS attacks are necessary. Such works need monitoring network packets that move over Internet and networks and, through some intelligent techniques, monitored packets could be classified as benign or as DDoS attack. This work focuses on combining Neighborhood Component Analysis and Artificial Neural Network-Backpropagation to classify and identify packets as forward by attackers or as come from authorized and illegible users. This work utilized the activities of four type of the network protocols to distinguish five types of attacks from benign packets. The proposed model shows the ability of classifying packets to normal or to attack classes with an accuracy of 99.4%.
Open Source and Commercial Capture The Flag Cyber Security Learning Platforms - A Case Study. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :198—205.
.
2021. The use of gamified learning platforms as a method of introducing cyber security education, training and awareness has risen greatly. With this rise, the availability of platforms to create, host or otherwise provide the challenges that make up the foundation of this education has also increased. In order to identify the best of these platforms, we need a method to compare their feature sets. In this paper, we compare related work on identifying the best platforms for a gamified cyber security learning platform as well as contemporary literature that describes the most needed feature sets for an ideal platform. We then use this to develop a metric for comparing these platforms, before then applying this metric to popular current platforms.
Performing Security Proofs of Stateful Protocols. 2021 IEEE 34th Computer Security Foundations Symposium (CSF). :1–16.
.
2021. In protocol verification we observe a wide spectrum from fully automated methods to interactive theorem proving with proof assistants like Isabelle/HOL. The latter provide overwhelmingly high assurance of the correctness, which automated methods often cannot: due to their complexity, bugs in such automated verification tools are likely and thus the risk of erroneously verifying a flawed protocol is non-negligible. There are a few works that try to combine advantages from both ends of the spectrum: a high degree of automation and assurance. We present here a first step towards achieving this for a more challenging class of protocols, namely those that work with a mutable long-term state. To our knowledge this is the first approach that achieves fully automated verification of stateful protocols in an LCF-style theorem prover. The approach also includes a simple user-friendly transaction-based protocol specification language embedded into Isabelle, and can also leverage a number of existing results such as soundness of a typed model
Programmable Data Planes as the Next Frontier for Networked Robotics Security: A ROS Use Case. 2021 17th International Conference on Network and Service Management (CNSM). :160—165.
.
2021. In-Network Computing is a promising field that can be explored to leverage programmable network devices to offload computing towards the edge of the network. This has created great interest in supporting a wide range of network functionality in the data plane. Considering a networked robotics domain, this brings new opportunities to tackle the communication latency challenges. However, this approach opens a room for hardware-level exploits, with the possibility to add a malicious code to the network device in a hidden fashion, compromising the entire communication in the robotic facilities. In this work, we expose vulnerabilities that are exploitable in the most widely used flexible framework for writing robot software, Robot Operating System (ROS). We focus on ROS protocol crossing a programmable SmartNIC as a use case for In-Network Hijacking and In-Network Replay attacks, that can be easily implemented using the P4 language, exposing security vulnerabilities for hackers to take control of the robots or simply breaking the entire system.
Proposal of Keyword-Based Information-Centric Delay-Tolerant Network. 2021 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR 2021). :1–7.
.
2021. In this paper, we focus on Information-Centric Delay-Tolerant Network (ICDTN), which incorporates the communication paradigm of Information-Centric Networking (ICN) into Delay-Tolerant Networking (DTN). Conventional ICNs adopt a naming scheme that names the content with the content identifier. However, a past study proposed an alternative naming scheme that describes the name of content with the content descriptor. We believe that, in ICDTN, it is more suitable to utilize the approach using the content descriptor. In this paper, we therefore propose keyword-based ICDTN that resolves content requests and deliveries contents based on keywords, i.e., content descriptor, in the request and response messages.
A Random Selection Based Substitution-box Structure Dataset for Cryptology Applications. IEEE EUROCON 2021 - 19th International Conference on Smart Technologies. :321—325.
.
2021. The cryptology science has gradually gained importance with our digitalized lives. Ensuring the security of data transmitted, processed and stored across digital channels is a major challenge. One of the frequently used components in cryptographic algorithms to ensure security is substitution-box structures. Random selection-based substitution-box structures have become increasingly important lately, especially because of their advantages to prevent side channel attacks. However, the low nonlinearity value of these designs is a problem. In this study, a dataset consisting of twenty different substitution-box structures have been publicly presented to the researchers. The fact that the proposed dataset has high nonlinearity values will allow it to be used in many practical applications in the future studies. The proposed dataset provides a contribution to the literature as it can be used both as an input dataset for the new post-processing algorithm and as a countermeasure to prevent the success of side-channel analyzes.
Ransomware Prevention System Design based on File Symbolic Linking Honeypots. 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:284–287.
.
2021. The data-driven period produces more and more security-related challenges that even experts can hardly deal with. One of the most complex threats is ransomware, which is very taxing and devastating to detect and mainly prevent. Our research methods showed significant results in identifying ransomware processes using the honeypot concept augmented with symbolic linking to reduce damage made to the file system. The CIA (confidentiality, integrity, availability) metrics have been adhered to. We propose to optimize the malware process termination procedure and introduce an artificial intelligence-human collaboration to enhance ransomware classification and detection.
Research on enterprise network security system. 2021 2nd International Conference on Computer Science and Management Technology (ICCSMT). :216—219.
.
2021. With the development of openness, sharing and interconnection of computer network, the architecture of enterprise network becomes more and more complex, and various network security problems appear. Threat Intelligence(TI) Analysis and situation awareness(SA) are the prediction and analysis technology of enterprise security risk, while intrusion detection technology belongs to active defense technology. In order to ensure the safe operation of computer network system, we must establish a multi-level and comprehensive security system. This paper analyzes many security risks faced by enterprise computer network, and integrates threat intelligence analysis, security situation assessment, intrusion detection and other technologies to build a comprehensive enterprise security system to ensure the security of large enterprise network.
Sandbox Detection Using Hardware Side Channels. 2021 22nd International Symposium on Quality Electronic Design (ISQED). :192—197.
.
2021. A common way to detect malware attacks and avoid their destructive impact on a system is the use of virtual machines; A.K.A sandboxing. Attackers, on the other hand, strive to detect sandboxes when their software is running under such a virtual environment. Accordingly, they postpone launching any attack (Malware) as long as operating under such an execution environment. Thus, it is common among malware developers to utilize different sandbox detection techniques (sometimes referred to as Anti-VM or Anti-Virtualization techniques). In this paper, we present novel, side-channel-based techniques to detect sandboxes. We show that it is possible to detect even sandboxes that were properly configured and so far considered to be detection-proof. This paper proposes and implements the first attack which leverage side channels leakage between sibling logical cores to determine the execution environment.
Scalable Learning Environments for Teaching Cybersecurity Hands-on. 2021 IEEE Frontiers in Education Conference (FIE). :1—9.
.
2021. This Innovative Practice full paper describes a technical innovation for scalable teaching of cybersecurity hands-on classes using interactive learning environments. Hands-on experience significantly improves the practical skills of learners. However, the preparation and delivery of hands-on classes usually do not scale. Teaching even small groups of students requires a substantial effort to prepare the class environment and practical assignments. Further issues are associated with teaching large classes, providing feedback, and analyzing learning gains. We present our research effort and practical experience in designing and using learning environments that scale up hands-on cybersecurity classes. The environments support virtual networks with full-fledged operating systems and devices that emulate realworld systems. The classes are organized as simultaneous training sessions with cybersecurity assignments and learners' assessment. For big classes, with the goal of developing learners' skills and providing formative assessment, we run the environment locally, either in a computer lab or at learners' own desktops or laptops. For classes that exercise the developed skills and feature summative assessment, we use an on-premises cloud environment. Our approach is unique in supporting both types of deployment. The environment is described as code using open and standard formats, defining individual hosts and their networking, configuration of the hosts, and tasks that the students have to solve. The environment can be repeatedly created for different classes on a massive scale or for each student on-demand. Moreover, the approach enables learning analytics and educational data mining of learners' interactions with the environment. These analyses inform the instructor about the student's progress during the class and enable the learner to reflect on a finished training. Thanks to this, we can improve the student class experience and motivation for further learning. Using the presented environments KYPO Cyber Range Platform and Cyber Sandbox Creator, we delivered the classes on-site or remotely for various target groups of learners (K-12, university students, and professional learners). The learners value the realistic nature of the environments that enable exercising theoretical concepts and tools. The instructors value time-efficiency when preparing and deploying the hands-on activities. Engineering and computing educators can freely use our software, which we have released under an open-source license. We also provide detailed documentation and exemplary hands-on training to help other educators adopt our teaching innovations and enable sharing of reusable components within the community.
Securing Robots: An Integrated Approach for Security Challenges and Monitoring for the Robotic Operating System (ROS). 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :754—759.
.
2021. Robotic systems are becoming an ever-increasing part of everyday life due to their capacity to carry out physical tasks on behalf of human beings. Found in nearly every facet of our lives, robotic systems are used domestically, in small and large-scale factories, for the production and processing of agriculture, for military operations, to name a few. The Robotic Operating System (ROS) is the standard operating system used today for the development of modular robotic systems. However, in its development, ROS has been notorious for the absence of security mechanisms, placing people in danger both physically and digitally. This dissertation summary presents the development of a suite of ROS tools, leading up to the development of a modular, secure framework for ROS. An integrated approach for the security of ROS-enabled robotic systems is described, to set a baseline for the continual development to increase ROS security. The work culminates in the ROS security tool ROS-Immunity, combining internal system defense, external system verification, and automated vulnerability detection in an integrated tool that, in conjunction with Secure-ROS, provides a suite of defenses for ROS systems against malicious attackers.
Security Assessment for Zenbo Robot Using Drozer and mobSF Frameworks. 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1—7.
.
2021. These days, almost everyone has been entirely relying on mobile devices and mobile related applications running on Android Operating Systems, the most used Mobile Operating System in the world with the largest market share. These Mobile devices and applications can become an information goldmine for hackers and are considered one of the significant concerns mobile users face who stand a chance of being victimized during data breach from hackers due to lapse in information security and controls. Such challenge can be put to bare through systematic digital forensic analysis through penetration testing for a humanoid robot like Zenbo, which run Android OS and related application, to help identify associated security vulnerabilities and develop controls required to improve security using popular penetration testing tools such as Drozer, Mobile Application Security framework (mobSF), and AndroBugs with the help of Santoku Linux distribution.
Security Robot for Real-time Monitoring and Capturing. 2021 10th International Conference on Information and Automation for Sustainability (ICIAfS). :434—439.
.
2021. Autonomous navigation of a robot is more challenging in an uncontrolled environment owing to the necessity of coordination among several activities. This includes, creating a map of the surrounding, localizing the robot inside the map, generating a motion plan consistent with the map, executing the plan with control and all other tasks involved concurrently. Moreover, autonomous navigation problems are significant for future robotics applications such as package delivery, security, cleaning, agriculture, surveillance, search and rescue, construction, and transportation which take place in uncontrolled environments. Therefore, an attempt has been made in this research to develop a robot which could function as a security agent for a house to address the aforesaid particulars. This robot has the capability to navigate autonomously in the prescribed map of the operating zone by the user. The desired map can be generated using a Light Detection and Ranging (LiDAR) sensor. For robot navigation, it requires to pick out the robot location accurately itself, otherwise robot will not move autonomously to a particular target. Therefore, Adaptive Monte Carlo Localization (AMCL) method was used to validate the accuracy of robot localization process. Moreover, additional sensors were placed around the building to sense the prevailing security threats from intruders with the aid of the robot.
SEFlowViz: A Visualization Tool for SELinux Policy Analysis. 2021 12th International Conference on Information and Communication Systems (ICICS). :439—444.
.
2021. SELinux policies used in practice are generally large and complex. As a result, it is difficult for the policy writers to completely understand the policy and ensure that the policy meets the intended security goals. To remedy this, we have developed a tool called SEFlowViz that helps in visualizing the information flows of a policy and thereby helps in creating flow-secure policies. The tool uses the graph database Neo4j to visualize the policy. Along with visualization, the tool also supports extracting various information regarding the policy and its components through queries. Furthermore, the tool also supports the addition and deletion of rules which is useful in converting inconsistent policies into consistent policies.
Side-Channel Analysis-Based Model Extraction on Intelligent CPS: An Information Theory Perspective. 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :254–261.
.
2021. The intelligent cyber-physical system (CPS) has been applied in various fields, covering multiple critical infras-tructures and human daily life support areas. CPS Security is a major concern and of critical importance, especially the security of the intelligent control component. Side-channel analysis (SCA) is the common threat exploiting the weaknesses in system operation to extract information of the intelligent CPS. However, existing literature lacks the systematic theo-retical analysis of the side-channel attacks on the intelligent CPS, without the ability to quantify and measure the leaked information. To address these issues, we propose the SCA-based model extraction attack on intelligent CPS. First, we design an efficient and novel SCA-based model extraction framework, including the threat model, hierarchical attack process, and the multiple micro-space parallel search enabled weight extraction algorithm. Secondly, an information theory-empowered analy-sis model for side-channel attacks on intelligent CPS is built. We propose a mutual information-based quantification method and derive the capacity of side-channel attacks on intelligent CPS, formulating the amount of information leakage through side channels. Thirdly, we develop the theoretical bounds of the leaked information over multiple attack queries based on the data processing inequality and properties of entropy. These convergence bounds provide theoretical means to estimate the amount of information leaked. Finally, experimental evaluation, including real-world experiments, demonstrates the effective-ness of the proposed SCA-based model extraction algorithm and the information theory-based analysis method in intelligent CPS.
Software Defined Networking based Information Centric Networking: An Overview of Approaches and Challenges. 2021 International Congress of Advanced Technology and Engineering (ICOTEN). :1–8.
.
2021. ICN (Information-Centric Networking) is a traditional networking approach which focuses on Internet design, while SDN (Software Defined Networking) is known as a speedy and flexible networking approach. Integrating these two approaches can solve different kinds of traditional networking problems. On the other hand, it may expose new challenges. In this paper, we study how these two networking approaches are been combined to form SDN-based ICN architecture to improve network administration. Recent research is explored to identify the SDN-based ICN challenges, provide a critical analysis of the current integration approaches, and determine open issues for further research.
A Software Diversity-Based Lab in Operating System for Cyber Security Students. 2021 IEEE 3rd International Conference on Computer Science and Educational Informatization (CSEI). :296—299.
.
2021. The course of operating system's labs usually fall behind the state of art technology. In this paper, we propose a Software Diversity-Assisted Defense (SDAD) lab based on software diversity, mainly targeting for students majoring in cyber security and computer science. This lab is consisted of multiple modules and covers most of the important concepts and principles in operating systems. Thus, the knowledge learned from the theoretical course will be deepened with the lab. For students majoring in cyber security, they can learn this new software diversity-based defense technology and understand how an exploit works from the attacker's side. The experiment is also quite stretchable, which can fit all level students.
A Study on Shilling Attack Identification in SAN using Collaborative Filtering Method based Recommender Systems. 2021 International Conference on Computer Communication and Informatics (ICCCI). :1—5.
.
2021. In Social Aware Network (SAN) model, the elementary actions focus on investigating the attributes and behaviors of the customer. This analysis of customer attributes facilitate in the design of highly active and improved protocols. In specific, the recommender systems are highly vulnerable to the shilling attack. The recommender system provides the solution to solve the issues like information overload. Collaborative filtering based recommender systems are susceptible to shilling attack known as profile injection attacks. In the shilling attack, the malicious users bias the output of the system's recommendations by adding the fake profiles. The attacker exploits the customer reviews, customer ratings and fake data for the processing of recommendation level. It is essential to detect the shilling attack in the network for sustaining the reliability and fairness of the recommender systems. This article reviews the most prominent issues and challenges of shilling attack. This paper presents the literature survey which is contributed in focusing of shilling attack and also describes the merits and demerits with its evaluation metrics like attack detection accuracy, precision and recall along with different datasets used for identifying the shilling attack in SAN network.
Suitability of Graph Representation for BGP Anomaly Detection. 2021 IEEE 46th Conference on Local Computer Networks (LCN). :305–310.
.
2021. The Border Gateway Protocol (BGP) is in charge of the route exchange at the Internet scale. Anomalies in BGP can have several causes (mis-configuration, outage and attacks). These anomalies are classified into large or small scale anomalies. Machine learning models are used to analyze and detect anomalies from the complex data extracted from BGP behavior. Two types of data representation can be used inside the machine learning models: a graph representation of the network (graph features) or a statistical computation on the data (statistical features). In this paper, we evaluate and compare the accuracy of machine learning models using graph features and statistical features on both large and small scale BGP anomalies. We show that statistical features have better accuracy for large scale anomalies, and graph features increase the detection accuracy by 15% for small scale anomalies and are well suited for BGP small scale anomaly detection.
Supporting the Engineering of Multi-Fidelity Simulation Units With Simulation Goals. 2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). :317–321.
.
2021. To conceive a CPS is a complex and multidisciplinary endeavour involving different stakeholders, potentially using a plethora of different languages to describe their views of the system at different levels of abstraction. Model-Driven Engineering comes, precisely, as a methodological approach to tackle the complexity of systems development with models as first-class citizens in the development process. The measure of realism of these models with respect to the real (sub)system is called fidelity. Usually, different models with different fidelity are then developed during the development process. Additionally, it is very common that the development process of CPS includes an incremental (and collaborative) use of simulations to study the behaviour emerging from the heterogeneous models of the system. Currently, the different models, with different fidelity, are managed in an ad hoc manner. Consequently, when a (Co)simulation is used to study a specific property of the system, the choice of the different models and their setup is made manually in a non-tractable way. In this paper we propose a structured new vision to CPS development, where the notion of simulation goal and multi-fidelity simulation unit are first-class citizens. The goal is to make a clear link between the system requirements, the system properties, the simulation goal and the multi-fidelity simulation unit. The outcome of this framework is a way to automatically determine the model at an adequate fidelity level suitable for answering a specific simulation goal.
Towards a Translation-Based Method for Dynamic Heterogeneous Network Embedding. ICC 2021 - IEEE International Conference on Communications. :1–6.
.
2021. Network embedding, which aims to map the discrete network topology to a continuous low-dimensional representation space with the major topological properties preserved, has emerged as an essential technique to support various network inference tasks. However, incorporating both the evolutionary nature and the network's heterogeneity remains a challenge for existing network embedding methods. In this study, we propose a novel Translation-Based Dynamic Heterogeneous Network Embedding (TransDHE) approach to consider both the aspects simultaneously. For a dynamic heterogeneous network with a sequence of snapshots and multiple types of nodes and edges, we introduce a translation-based embedding module to capture the heterogeneous characteristics (e.g., type information) of each single snapshot. An orthogonal alignment module and RNN-based aggregation module are then applied to explore the evolutionary patterns among multiple successive snapshots for the final representation learning. Extensive experiments on a set of real-world networks demonstrate that TransDHE can derive the more informative embedding result for the network dynamic and heterogeneity over state-of-the-art network embedding baselines.