Biblio
Filters: Keyword is Collaboration [Clear All Filters]
Container-based Service State Management in Cloud Computing. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :487—493.
.
2021. In a cloud data center, the client requests are catered by placing the services in its servers. Such services are deployed through a sandboxing platform to ensure proper isolation among services from different users. Due to the lightweight nature, containers have become increasingly popular to support such sandboxing. However, for supporting effective and efficient data center resource usage with minimum resource footprints, improving the containers' consolidation ratio is significant for the cloud service providers. Towards this end, in this paper, we propose an exciting direction to significantly boost up the consolidation ratio of a data-center environment by effectively managing the containers' states. We observe that many cloud-based application services are event-triggered, so they remain inactive unless some external service request comes. We exploit the fact that the containers remain in an idle state when the underlying service is not active, and thus such idle containers can be checkpointed unless an external service request comes. However, the challenge here is to design an efficient mechanism such that an idle container can be resumed quickly to prevent the loss of the application's quality of service (QoS). We have implemented the system, and the evaluation is performed in Amazon Elastic Compute Cloud. The experimental results have shown that the proposed algorithm can manage the containers' states, ensuring the increase of consolidation ratio.
A Creation Cryptographic Protocol for the Division of Mutual Authentication and Session Key. 2021 International Conference on Information Science and Communications Technologies (ICISCT). :1—6.
.
2021. In this paper is devoted a creation cryptographic protocol for the division of mutual authentication and session key. For secure protocols, suitable cryptographic algorithms were monitored.
A dense state search method in edge computing environment. 2021 6th International Conference on Communication, Image and Signal Processing (CCISP). :16—22.
.
2021. In view of the common edge computing-based cloud-side collaborative environment summary existing search key and authentication key sharing caused by data information leakage, this paper proposes a cryptographic search based on public key searchable encryption in an edge computing environment method, this article uses the public key to search for the characteristics of the encryption algorithm, and allows users to manage the corresponding private key. In the process of retrieval and execution, the security of the system can be effectively ensured through the secret trapdoor. Through the comparison of theoretical algorithms, the searchable encryption scheme in the edge computing environment proposed in this paper can effectively reduce the computing overhead on the user side, and complete the over-complex computing process on the edge server or the central server, which can improve the overall efficiency of encrypted search.
A Differential-Privacy-based hybrid collaborative recommendation method with factorization and regression. 2021 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :389—396.
.
2021. Recommender systems have been proved to be effective techniques to provide users with better experiences. However, when a recommender knows the user's preference characteristics or gets their sensitive information, then a series of privacy concerns are raised. A amount of solutions in the literature have been proposed to enhance privacy protection degree of recommender systems. Although the existing solutions have enhanced the protection, they led to a decrease in recommendation accuracy simultaneously. In this paper, we propose a security-aware hybrid recommendation method by combining the factorization and regression techniques. Specifically, the differential privacy mechanism is integrated into data pre-processing for data encryption. Firstly data are perturbed to satisfy differential privacy and transported to the recommender. Then the recommender calculates the aggregated data. However, applying differential privacy raises utility issues of low recommendation accuracy, meanwhile the use of a single model may cause overfitting. In order to tackle this challenge, we adopt a fusion prediction model by combining linear regression (LR) and matrix factorization (MF) for collaborative recommendation. With the MovieLens dataset, we evaluate the recommendation accuracy and regression of our recommender system and demonstrate that our system performs better than the existing recommender system under privacy requirement.
Digital Evidence Case Management Tool for Collaborative Digital Forensics Investigation. 2021 3rd International Cyber Resilience Conference (CRC). :1–4.
.
2021. Digital forensics investigation process begins with the acquisition, investigation until the presentation of investigation findings. Investigators are required to manage bits and pieces of digital evidence in the cloud and to correlate with evidence found in physical machines and network. The process could be made easy with a proper case management tool that is hosted in the web. The challenge of maintaining chain of custody, determining access to evidence, assignment of forensics investigator could be overcome when digital evidence is fully integrated in a single platform. Our proposed case management tool streamlines information gathering and integrates information on different platforms, shares information, tracks cases, and uploads data directly into a database. In addition, the case management tool facilitates the collaboration of investigators through sharing of forensics findings. These features allow case owner or administrator to track and monitor investigation progress in a forensically sound manner.
Do You Still Trust Me? Human-Robot Trust Repair Strategies 2021 30th IEEE International Conference on Robot Human Interactive Communication (RO-MAN). :183—188.
.
2021. Trust is vital to promoting human and robot collaboration, but like human teammates, robots make mistakes that undermine trust. As a result, a human’s perception of his or her robot teammate’s trustworthiness can dramatically decrease [1], [2], [3], [4]. Trustworthiness consists of three distinct dimensions: ability (i.e. competency), benevolence (i.e. concern for the trustor) and integrity (i.e. honesty) [5], [6]. Taken together, decreases in trustworthiness decreases trust in the robot [7]. To address this, we conducted a 2 (high vs. low anthropomorphism) x 4 (trust repair strategies) between-subjects experiment. Preliminary results of the first 164 participants (between 19 and 24 per cell) highlight which repair strategies are effective relative to ability, integrity and benevolence and the robot’s anthropomorphism. Overall, this paper contributes to the HRI trust repair literature.
An Efficient Congestion Control Model utilizing IoT wireless sensors in Information-Centric Networks. 2021 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunication Engineering. :210–213.
.
2021. Congestion control is one of the essential keys to enhance network efficiency so that the network can perform well even in the case of packet drop. This problem is even more challenging in Information-Centric Networking (ICN), a typical Future Internet design, which employs the packet flooding policy for forwarding the information. To diminish the high traffic load due to the huge number of packets in the era of the Internet of Things (IoT), this paper proposes an effective caching and forwarding algorithm to diminish the congestion rate of the IoT wireless sensor in ICN. The proposed network system utilizes accumulative popularity-based delay transmission time for forwarding strategy and includes the consecutive chunks-based segment caching scheme. The evaluation results using ndnSIM, a widely-used ns-3 based ICN simulator, demonstrated that the proposed system can achieve less interest packet drop rate, more cache hit rate, and higher network throughput, compared to the relevant ICN-based benchmarks. These results prove that the proposed ICN design can achieve higher network efficiency with a lower congestion rate than that of the other related ICN systems using IoT sensors.
Eligibility Analysis of Different Chaotic Systems Derived from Logistic Map for Design of Cryptographic Components. 2021 International Conference Engineering Technologies and Computer Science (EnT). :27—31.
.
2021. One of the topics that have successful applications in engineering technologies and computer science is chaos theory. The remarkable area among these successful applications has been especially the subject of chaos-based cryptology. Many practical applications have been proposed in a wide spectrum from image encryption algorithms to random number generators, from block encryption algorithms to hash functions based on chaotic systems. Logistics map is one of the chaotic systems that has been the focus of attention of researchers in these applications. Since, Logistic map can be shown as the most widely used chaotic system in chaos-based cryptology studies due to its simple mathematical structure and its characterization as a strong entropy source. However, in some studies, researchers stated that the behavior displayed in relation to the dynamics of the Logistic map may pose a problem for cryptology applications. For this reason, alternative studies have been carried out using different chaotic systems. In this study, it has been investigated which one is more suitable for cryptographic applications for five different derivatives of the Logistic map. In the study, a substitution box generator program has been implemented using the Logistic map and its five different derivatives. The generated outputs have been tested for five basic substitution box design criteria. Analysis results showed that the proposals for maps derived from Logistic map have a more robust structure than many studies in the literature.
Evaluation of Performance for Big Data Security Using Advanced Cryptography Policy. 2021 International Conference on Forensics, Analytics, Big Data, Security (FABS). 1:1—5.
.
2021. The revolution caused by the advanced analysis features of Internet of Things and big data have made a big turnaround in the digital world. Data analysis is not only limited to collect useful data but also useful in analyzing information quickly. Therefore, most of the variants of the shared system based on the parallel structural model are explored simultaneously as the appropriate big data storage library stimulates researchers’ interest in the distributed system. Due to the emerging digital technologies, different groups such as healthcare facilities, financial institutions, e-commerce, food service and supply chain management generate a surprising amount of information. Although the process of statistical analysis is essential, it can cause significant security and privacy issues. Therefore, the analysis of data privacy protection is very important. Using the platform, technology should focus on providing Advanced Cryptography Policy (ACP). This research explores different security risks, evolutionary mechanisms and risks of privacy protection. It further recommends the post-statistical modern privacy protection act to manage data privacy protection in binary format, because it is kept confidential by the user. The user authentication program has already filed access restrictions. To maintain this purpose, everyone’s attitude is to achieve a changing identity. This article is designed to protect the privacy of users and propose a new system of restoration of controls.
Examining Autonomous Vehicle Operating Systems Vulnerabilities using a Cyber-Physical Approach. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC). :976—981.
.
2021. Increasingly, the transportation industry has moved towards automation to improve safety, fuel efficiency, and system productivity. However, the increased scrutiny that automated vehicles (AV) face over functional safety has hindered the industry's unbridled confidence in self-driving technologies. As AVs are cyber-physical systems, they utilize distributed control to accomplish a range of safety-critical driving tasks. The Operation Systems (OS) serve as the core of these control systems. Therefore, their designs and implementation must incorporate ways to protect AVs against what must be assumed to be inevitable cyberattacks to meet the overall AV functional safety requirements. This paper investigates the connection between functional safety and cybersecurity in the context of OS. This study finds that risks due to delays can worsen by potential cybersecurity vulnerabilities through a case example of an automated vehicle following. Furthermore, attack surfaces and cybersecurity countermeasures for protecting OSs from security breaches are addressed.
Federated Machine Learning Architecture for Searching Malware. 2021 IEEE East-West Design Test Symposium (EWDTS). :1—4.
.
2021. Modern technologies for searching viruses, cloud-edge computing, and also federated algorithms and machine learning architectures are shown. The architectures for searching malware based on the xor metric applied in the design and test of computing systems are proposed. A Federated ML method is proposed for searching for malware, which significantly speeds up learning without the private big data of users. A federated infrastructure of cloud-edge computing is described. The use of signature analysis and the assertion engine for searching malware is shown. The paradigm of LTF-computing for searching destructive components in software applications is proposed.
Fleet Management System for Autonomous Mobile Robots in Secure Shop-floor Environments. 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE). :1—6.
.
2021. This paper presents a management system for a fleet of autonomous mobile robots performing logistics in security-heterogeneous factories. Loading and unloading goods and parts between workstations in these dynamic environments often demands from the mobile robots to share space and resources such as corridors, interlocked security doors and elevators among themselves. This model explores a dynamic task scheduling and assignment to the robots taking into account their location, tasks previously assigned and battery levels, all the while being aware of the physical constraints of the installation. The benefits of the proposed architecture were validated through a set of experiments in a mockup of INCM's shop-floor environment. During these tests 3 robots operated continuously for several hours, self-charging without any human intervention.
Formal Verification of 5G EAP-AKA Protocol. 2021 31st International Telecommunication Networks and Applications Conference (ITNAC). :140–146.
.
2021. The advent of 5G, one of the most recent and promising technologies currently under deployment, fulfills the emerging needs of mobile subscribers by introducing several new technological advancements. However, this may lead to numerous attacks in the emerging 5G networks. Thus, to guarantee the secure transmission of user data, 5G Authentication protocols such as Extensible Authentication Protocol - Authenticated Key Agreement Protocol (EAP-AKA) were developed. These protocols play an important role in ensuring security to the users as well as their data. However, there exists no guarantees about the security of the protocols. Thus formal verification is necessary to ensure that the authentication protocols are devoid of vulnerabilities or security loopholes. Towards this goal, we formally verify the security of the 5G EAP-AKA protocol using an automated verification tool called ProVerif. ProVerif identifies traces of attacks and checks for security loopholes that can be accessed by the attackers. In addition, we model the complete architecture of the 5G EAP-AKA protocol using the language called typed pi-calculus and analyze the protocol architecture through symbolic model checking. Our analysis shows that some cryptographic parameters in the architecture can be accessed by the attackers which cause the corresponding security properties to be violated.
Generating Residue Number System Bases. 2021 IEEE 28th Symposium on Computer Arithmetic (ARITH). :86—93.
.
2021. Residue number systems provide efficient techniques for speeding up calculations and/or protecting against side channel attacks when used in the context of cryptographic engineering. One of the interests of such systems is their scalability, as the existence of large bases for some specialized systems is often an open question. In this paper, we present highly optimized methods for generating large bases for residue number systems and, in some cases, the largest possible bases. We show their efficiency by demonstrating their improvement over the state-of-the-art bases reported in the literature. This work make it possible to address the problem of the scalability issue of finding new bases for a specific system that arises whenever a parameter changes, and possibly open new application avenues.
Hierarchical Cooperative Intrusion Detection Method for MANETs (HCIDM). 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1–7.
.
2021. In the recent years, mobile ad hoc wireless networks (MANETs) have experienced a tremendous rise in popularity and usage due to their flexibility and ability to provide connectivity from anywhere at any time. In general, MANETs provide mobile communication to participating nodes in situation where nodes do not need access to an existing network infrastructure. MANETs have a network topology that changes over time due to lack of infrastructure and mobility of nodes. Detection of a malicious node in MANETs is hard to achieve due to the dynamic nature of the relationships between moving node and the nature of the wireless channel. Most traditional Intrusion Detection System (IDS) are designed to operate in a centralized manner; and do not operate properly in MANET because data in MANETs is distributed in different network devices. In this paper, we present an Hierarchical Cooperative Intrusion Detection Method (HCIDM) to secure packets routing in MANETs. HCIDM is a distributed intrusion detection mechanism that uses collaboration between nodes to detect active attacks against the routing table of a mobile ad hoc network. HCIDM reduces the effectiveness of the attack by informing other nodes about the existence of a malicious node to keep the performance of the network within an acceptable level. The novelty of the mechanism lies in the way the responsibility to protect the networks is distributed among nodes, the trust level is computed and the information about the presence of a malicious is communicated to potential victim. HCIDM is coded using the Network Simulator (NS-2) in an ad hoc on demand distance vector enable MANET during a black hole attack. It is found that the HCIDM works efficiently in comparison with an existing Collaborative Clustering Intrusion Detection Mechanism (CCIDM), in terms of delivery ratio, delay and throughput.
Human-based Consensus for Trust Installation in Ontologies. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–3.
.
2021. In this paper, we propose a novel protocol to represent the human factor on a blockchain environment. Our approach allows single or groups of humans to propose data in blocks which cannot be validated automatically but need human knowledge and collaboration to be validated. Only if human-based consensus on the correctness and trustworthiness of the data is reached, the new block is appended to the blockchain. This human approach significantly extends the possibilities of blockchain applications on data types apart from financial transaction data.
Implementation of Cyber-Physical Systems with Modbus Communication for Security Studies. 2021 International Conference on Cyber Warfare and Security (ICCWS). :45—50.
.
2021. Modbus is a popular industrial communication protocol supported by most automation devices. Despite its popularity, it is not a secure protocol because when it was developed, security was not a concern due to closed environments of industrial control systems. With the convergence of information technology and operational technology in recent years, the security of industrial control systems has become a serious concern. Due to the high availability requirements, it is not practical or feasible to do security experimentation of production systems. We present an implementation of cyber-physical systems with Modbus/TCP communication for real-time security testing. The proposed architecture consists of a process simulator, an IEC 61131-3 compliant programmable logic controller, and a human-machine interface, all communicating via Modbus/TCP protocol. We use Simulink as the process simulator. It does not have built-in support for the Modbus protocol. A contribution of the proposed work is to extend the functionality of Simulink with a custom block to enable Modbus communication. We use two case studies to demonstrate the utility of the cyber-physical system architecture. We can model complex industrial processes with this architecture, can launch cyber-attacks, and develop protection mechanisms.
Implementation of Network Attack Detection Using Convolutional Neural Network. 2021 International Conference on Electronic Engineering (ICEEM). :1–6.
.
2021. The Internet obviously has a major impact on the global economy and human life every day. This boundless use pushes the attack programmers to attack the data frameworks on the Internet. Web attacks influence the reliability of the Internet and its administrations. These attacks are classified as User-to-Root (U2R), Remote-to-Local (R2L), Denial-of-Service (DoS) and Probing (Probe). Subsequently, making sure about web framework security and protecting data are pivotal. The conventional layers of safeguards like antivirus scanners, firewalls and proxies, which are applied to treat the security weaknesses are insufficient. So, Intrusion Detection Systems (IDSs) are utilized to screen PC and data frameworks for security shortcomings. IDS adds more effectiveness in securing networks against attacks. This paper presents an IDS model based on Deep Learning (DL) with Convolutional Neural Network (CNN) hypothesis. The model has been evaluated on the NSLKDD dataset. It has been trained by Kddtrain+ and tested twice, once using kddtrain+ and the other using kddtest+. The achieved test accuracies are 99.7% and 98.43% with 0.002 and 0.02 wrong alert rates for the two test scenarios, respectively.
Improving ML Detection of IoT Botnets using Comprehensive Data and Feature Sets. 2021 International Conference on COMmunication Systems NETworkS (COMSNETS). :438—446.
.
2021. In recent times, the world has seen a tremendous increase in the number of attacks on IoT devices. A majority of these attacks have been botnet attacks, where an army of compromised IoT devices is used to launch DDoS attacks on targeted systems. In this paper, we study how the choice of a dataset and the extracted features determine the performance of a Machine Learning model, given the task of classifying Linux Binaries (ELFs) as being benign or malicious. Our work focuses on Linux systems since embedded Linux is the more popular choice for building today’s IoT devices and systems. We propose using 4 different types of files as the dataset for any ML model. These include system files, IoT application files, IoT botnet files and general malware files. Further, we propose using static, dynamic as well as network features to do the classification task. We show that existing methods leave out one or the other features, or file types and hence, our model outperforms them in terms of accuracy in detecting these files. While enhancing the dataset adds to the robustness of a model, utilizing all 3 types of features decreases the false positive and false negative rates non-trivially. We employ an exhaustive scenario based method for evaluating a ML model and show the importance of including each of the proposed files in a dataset. We also analyze the features and try to explain their importance for a model, using observed trends in different benign and malicious files. We perform feature extraction using the open source Limon sandbox, which prior to this work has been tested only on Ubuntu 14. We installed and configured it for Ubuntu 18, the documentation of which has been shared on Github.
Information Protection of International Students Based on Network Security. 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA). :172—176.
.
2021. With China's overall national strength, the education of studying in China has entered a period of rapid development, and China has become one of the important destination countries for international student mobility. With political stability, rapid economic development, and continuous improvement in the quality of higher education, the educational value of studying in China is increasingly recognized by international students. International students study and live in the same way as domestic students. While the development of the Internet has brought convenience to people, it has also created many security risks. How to protect the information security of international students is the focus of this paper. This paper introduces the classification, characteristics and security risks of international students' personal information. In order to protect the private data of international students from being leaked, filtering rules are set in the campus network through WinRoute firewall to effectively prevent information from being leaked, tampered or deleted, which can be used for reference by other universities.
In-Network Data Aggregation for Information-Centric WSNs using Unsupervised Machine Learning Techniques. 2021 IEEE Symposium on Computers and Communications (ISCC). :1–7.
.
2021. IoT applications are changing our daily lives. These innovative applications are supported by new communication technologies and protocols. Particularly, the information-centric network (ICN) paradigm is well suited for many IoT application scenarios that involve large-scale wireless sensor networks (WSNs). Even though the ICN approach can significantly reduce the network traffic by optimizing the process of information recovery from network nodes, it is also possible to apply data aggregation strategies. This paper proposes an unsupervised machine learning-based data aggregation strategy for multi-hop information-centric WSNs. The results show that the proposed algorithm can significantly reduce the ICN data traffic while having reduced information degradation.
Intelligent Notification System for Large User Groups. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1213—1216.
.
2021. With the development of communication technology, the disadvantages of traditional notification methods such as low efficiency gradually appear. With the introduction of WAP with WTLS security and its development and maintenance, more and more notification systems are using this technology. Through the analysis, design and implementation of notification system for large user groups, this paper studies how to collect and notify data without affecting the business system, and proposes a scheme of real-time data acquisition and filtering based on trigger. The middleware and application server implementation transaction management and database operation to separate CICS middleware technology based on research using UNIXC, Socket programming, SQL statements, SYBASE database technology, from the system requirements, business process, function structure, database and data structure, the input and output of the system, system testing the aspects such as design of practical significance to intelligent notification system for large user groups. Finally, the paper describes the test effect of the system in detail. 10 users send 1, 5, 10 and 20 strokes at the same time, and the completion time is 0.28, 1.09, 1.58 and 2.20 seconds, which proves that the system has practical significance.
An Interactive Prover for Protocol Verification in the Computational Model. 2021 IEEE Symposium on Security and Privacy (SP). :537–554.
.
2021. Given the central importance of designing secure protocols, providing solid mathematical foundations and computer-assisted methods to attest for their correctness is becoming crucial. Here, we elaborate on the formal approach introduced by Bana and Comon in [10], [11], which was originally designed to analyze protocols for a fixed number of sessions, and lacks support for proof mechanization.In this paper, we present a framework and an interactive prover allowing to mechanize proofs of security protocols for an arbitrary number of sessions in the computational model. More specifically, we develop a meta-logic as well as a proof system for deriving security properties. Proofs in our system only deal with high-level, symbolic representations of protocol executions, similar to proofs in the symbolic model, but providing security guarantees at the computational level. We have implemented our approach within a new interactive prover, the Squirrel prover, taking as input protocols specified in the applied pi-calculus, and we have performed a number of case studies covering a variety of primitives (hashes, encryption, signatures, Diffie-Hellman exponentiation) and security properties (authentication, strong secrecy, unlinkability).
Investigation of Computer Incidents as an Important Component in the Security of Maritime Transportation. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :657—660.
.
2021. The risk of detecting incidents in the field of computer technology in Maritime transport is considered. The structure of the computer incident investigation system and its functions are given. The system of conducting investigations of computer incidents on sea transport is considered. A possible algorithm for investigating the incident using the tools of forensic science and an algorithm for transmitting the received data for further processing are presented.
Large Scale Multimodal Data Processing Middleware for Intelligent Transport Systems. 2021 30th Conference of Open Innovations Association FRUCT. :190—199.
.
2021. Modern Intelligent Transport Systems (ITSs) are comprehensive applications that have to cope with a multitude of challenges while meeting strict service and security standards. A novel data-centric middleware that provides the foundation of such systems is presented in this paper. This middleware is designed for high scalability, fast data processing and multimodality. To achieve these goals, an innovative spatial annotation (SpatiaIJSON) is utilised. SpatialJSON allows the representation of geometry, topology and traffic information in one dataset. Data processing is designed in such a manner that any schema or ontology can be used to express information. Further, common concerns of ITSs are addressed, such as authenticity of messages. The core task, however, is to ensure a quick exchange of evaluated information between the individual traffic participants.