Biblio
Filters: Keyword is Internet of Things [Clear All Filters]
Intelligent Border Security Intrusion Detection using IoT and Embedded systems. 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC). :1–3.
.
2019. Border areas are generally considered as places where great deal of violence, intrusion and cohesion between several parties happens. This often led to danger for the life of employees, soldiers and common man working or living in border areas. Further geographical conditions like mountains, snow, forest, deserts, harsh weather and water bodies often lead to difficult access and monitoring of border areas. Proposed system uses thermal imaging camera (FLIR) for detection of various objects and infiltrators. FLIR is assigned an IP address and connected through local network to the control center. Software code captures video and subsequently the intrusion detection. A motor controlled spotlight with infrared and laser gun is used to illuminate under various conditions at the site. System also integrates sound sensor to detect specific sounds and motion sensors to sense suspicious movements. Based on the decision, a buzzer and electric current through fence for further protection can be initiated. Sensors are be integrated through IoT for an efficient control of large border area and connectivity between sites.
Intelligent Consumers Device and Cybersecurity of Load Management in Microgrids. 2019 2nd International Youth Scientific and Technical Conference on Relay Protection and Automation (RPA). :1–10.
.
2019. The digitalization of the electric power industry and the development of territories isolated from the unified energy system are priorities in the development of the energy sector. Thanks to innovative solutions and digital technologies, it becomes possible to make more effective managing and monitoring. Such solution is IoT platform with intelligent control system implemented by software.
Intrusion Detection For Controller Area Network Using Support Vector Machines. 2019 IEEE 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops (MASSW). :121–126.
.
2019. Controller Area Network is the most widely adopted communication standard in automobiles. The CAN protocol is robust and is designed to minimize overhead. The light-weight nature of this protocol implies that it can't efficiently process secure communication. With the exponential increase in automobile communications, there is an urgent need for efficient and effective security countermeasures. We propose a support vector machine based intrusion detection system that is able to detect anomalous behavior with high accuracy. We outline a process for parameter selection and feature vector selection. We identify strengths and weaknesses of our system and propose to extend our work for time-series based data.
Intrusion detection for Internet of Things applying metagenome fast analysis. 2019 Third World Conference on Smart Trends in Systems Security and Sustainablity (WorldS4). :129—135.
.
2019. Today, intrusion detection and prevention systems (IDS / IPS) are a necessary element of protection against network attacks. The main goal of such systems is to identify an unauthorized access to the network and take appropriate countermeasures: alarming security officers about intrusion, reconfiguration of firewall to block further acts of the attacker, protection against cyberattacks and malware. For traditional computer networks there are a large number of sufficiently effective approaches for protection against malicious activity, however, for the rapidly developing dynamic adhoc networks (Internet of Things - IoT, MANET, WSN, etc.) the task of creating a universal protection means is quite acute. In this paper, we review various methods for detecting polymorphic intrusion activity (polymorphic viral code and sequences of operations), present a comparative analysis, and implement the suggested technology for detecting polymorphic chains of operations using bioinformatics for IoT. The proposed approach has been tested with different lengths of operation sequences and different k-measures, as a result of which the optimal parameters of the proposed method have been determined.
Intrusion Detection Using Swarm Intelligence. 2019 UK/ China Emerging Technologies (UCET). :1–5.
.
2019. Recent advances in networking and communication technologies have enabled Internet-of-Things (IoT) devices to communicate more frequently and faster. An IoT device typically transmits data over the Internet which is an insecure channel. Cyber attacks such as denial-of-service (DoS), man-in-middle, and SQL injection are considered as big threats to IoT devices. In this paper, an anomaly-based intrusion detection scheme is proposed that can protect sensitive information and detect novel cyber-attacks. The Artificial Bee Colony (ABC) algorithm is used to train the Random Neural Network (RNN) based system (RNN-ABC). The proposed scheme is trained on NSL-KDD Train+ and tested for unseen data. The experimental results suggest that swarm intelligence and RNN successfully classify novel attacks with an accuracy of 91.65%. Additionally, the performance of the proposed scheme is also compared with a hybrid multilayer perceptron (MLP) based intrusion detection system using sensitivity, mean of mean squared error (MMSE), the standard deviation of MSE (SDMSE), best mean squared error (BMSE) and worst mean squared error (WMSE) parameters. All experimental tests confirm the robustness and high accuracy of the proposed scheme.
IoT Architecture for Smart Grids. 2019 International Conference on Protection and Automation of Power System (IPAPS). :22–30.
.
2019. The tremendous advances in information and communications technology (ICT), as well as the embedded systems, have been led to the emergence of the novel concept of the internet of things (IoT). Enjoying IoT-based technologies, many objects and components can be connected to each other through the internet or other modern communicational platforms. Embedded systems which are computing machines for special purposes like those utilized in high-tech devices, smart buildings, aircraft, and vehicles including advanced controllers, sensors, and meters with the ability of information exchange using IT infrastructures. The phrase "internet", in this context, does not exclusively refer to the World Wide Web rather than any type of server-based or peer-to-peer networks. In this study, the application of IoT in smart grids is addressed. Hence, at first, an introduction to the necessity of deployment of IoT in smart grids is presented. Afterwards, the applications of IoT in three levels of generation, transmission, and distribution is proposed. The generation level is composed of applications of IoT in renewable energy resources, wind and solar in particular, thermal generation, and energy storage facilities. The deployment of IoT in transmission level deals with congestion management in power system and guarantees the security of the system. In the distribution level, the implications of IoT in active distribution networks, smart cities, microgrids, smart buildings, and industrial sector are evaluated.
Iot Based Bluetooth Smart Radar Door System Via Mobile Apps. 2019 1st International Conference on Artificial Intelligence and Data Sciences (AiDAS). :142—145.
.
2019. {In the last few decades, Internet of things (IOT) is one of the key elements in industrial revolution 4.0 that used mart phones as one of the best technological advances' intelligent device. It allows us to have power over devices without people intervention, either remote or voice control. Therefore, the “Smart Radar Door “system uses a microcontroller and mobile Bluetooth module as an automation of smart door lock system. It is describing the improvement of a security system integrated with an Android mobile phone that uses Bluetooth as a wireless connection protocol and processing software as a tool in order to detect any object near to the door. The mob ile device is required a password as authentication method by using microcontroller to control lock and unlock door remotely. The Bluetooth protocol was chosen as a method of communication between microcontroller and mobile devices which integrated with many Android devices in secured protocol}.
IoT Devices Security Using RF Fingerprinting. 2019 Advances in Science and Engineering Technology International Conferences (ASET). :1–7.
.
2019. Internet of Things (IoT) devices industry is rapidly growing, with an accelerated increase in the list of manufacturers offering a wide range of smart devices selected to enhance end-users' standard of living. Security remains an after-thought in these devices resulting in vulnerabilities. While there exists a cryptographic protocol designed to solve such authentication problem, the computational complexity of cryptographic protocols and scalability problems make almost all cryptography-based authentication protocols impractical for IoT. Wireless RFF (Radio Frequency Fingerprinting) comes as a physical layer-based security authentication method that improves wireless security authentication, which is especially useful for the power and computing limited devices. As a proof-of-concept, this paper proposes a universal SDR (software defined Radio)-based inexpensive implementation intended to sense emitted wireless signals from IoT devices. Our approach is validated by extracting mobile phone signal bursts under different user-dedicated modes. The proposed setup is well adapted to accurately capture signals from different telecommunication standards. To ensure a unique identification of IoT devices, this paper also provides an optimum set of features useful to generate the device identity fingerprint.
IoT Malware Analysis. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:920–921.
.
2019. IoT devices can be used to fulfil many of our daily tasks. IoT could be wearable devices, home appliances, or even light bulbs. With the introduction of this new technology, however, vulnerabilities are being introduced and can be leveraged or exploited by malicious users. One common vehicle of exploitation is malicious software, or malware. Malware can be extremely harmful and compromise the confidentiality, integrity and availability (CIA triad) of information systems. This paper analyzes the types of malware attacks, introduce some mitigation approaches and discusses future challenges.
IoT Malware Dynamic Analysis Profiling System and Family Behavior Analysis. 2019 IEEE International Conference on Big Data (Big Data). :6013–6015.
.
2019. Not only the number of deployed IoT devices increases but also that of IoT malware increases. We eager to understand the threat made by IoT malware but we lack tools to observe, analyze and detect them. We design and implement an automatic, virtual machine-based profiling system to collect valuable IoT malware behavior, such as API call invocation, system call execution, etc. In addition to conventional profiling methods (e.g., strace and packet capture), the proposed profiling system adapts virtual machine introspection based API hooking technique to intercept API call invocation by malware, so that our introspection would not be detected by IoT malware. We then propose a method to convert the multiple sequential data (API calls) to a family behavior graph for further analysis.
Joint PHY/MAC Layer AN-Assisted Security Scheme in SVD-Based MIMO HARQ system. 2019 IEEE/CIC International Conference on Communications in China (ICCC). :328–333.
.
2019. With the explosive data growth arise from internet of things, how to ensure information security is facing unprecedented challenges. In this paper, a joint PHY/MAC layer security scheme with artificial noise design in singular value decomposition (SVD) based multiple input multiple output hybrid automatic retransmission request (MIMO HARQ) system is proposed to resolve the problem of low data rates in existing cross-layer security design and further adapt to the high data rate requirement of 5G. First, the SVD was applied to simplify MIMO systems into several parallel sub-channels employing HARQ protocol. Then, different from traditional null space based artificial noise design, the artificial noise design, which is dependent on the characteristics of channel states and transmission rounds, is detailed presented. Finally, the analytical and simulation results proved that with the help of the proposed artificial noise, both the information security and data rate performance can be significantly improved compared with that in single input single output (SISO) system.
Lightweight Node-level Malware Detection and Network-level Malware Confinement in IoT Networks. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :776–781.
.
2019. The sheer size of IoT networks being deployed today presents an "attack surface" and poses significant security risks at a scale never before encountered. In other words, a single device/node in a network that becomes infected with malware has the potential to spread malware across the network, eventually ceasing the network functionality. Simply detecting and quarantining the malware in IoT networks does not guarantee to prevent malware propagation. On the other hand, use of traditional control theory for malware confinement is not effective, as most of the existing works do not consider real-time malware control strategies that can be implemented using uncertain infection information of the nodes in the network or have the containment problem decoupled from network performance. In this work, we propose a two-pronged approach, where a runtime malware detector (HaRM) that employs Hardware Performance Counter (HPC) values to detect the malware and benign applications is devised. This information is fed during runtime to a stochastic model predictive controller to confine the malware propagation without hampering the network performance. With the proposed solution, a runtime malware detection accuracy of 92.21% with a runtime of 10ns is achieved, which is an order of magnitude faster than existing malware detection solutions. Synthesizing this output with the model predictive containment strategy lead to achieving an average network throughput of nearly 200% of that of IoT networks without any embedded defense.
Limitations and Approaches in Access Control and Identity Management for Constrained IoT Resources. 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). :431–432.
.
2019. The Internet of Things (IoT), smart sensors and mobile wearable devices are helping to provide services that are more ubiquitous, smarter, faster and easily accessible to users. However, security is a significant concern for the IoT, with access control and identity management are being two major issues. With the growing size and presence of these systems and the resource constrained nature of the IoT devices, an important question is how to manage policies in a manner that is both scalable and flexible. In this research, we aim at proposing a fine-grained and flexible access control architecture, and to examine an identity model for constrained IoT resources. To achieve this, first, we outline some key limitations in the state of the art access control and identity management for IoT. Then we devise our approach to address those limitations in a systematic way.
Location Privacy and Changes in WiFi Probe Request Based Connection Protocols Usage Through Years. 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech). :1–5.
.
2019. Location privacy is one of most frequently discussed terms in the mobile devices security breaches and data leaks. With the expected growth of the number of IoT devices, which is 20 billions by 2020., location privacy issues will be further brought to focus. In this paper we give an overview of location privacy implications in wireless networks, mainly focusing on user's Preferred Network List (list of previously used WiFi Access Points) contained within WiFi Probe Request packets. We will showcase the existing work and suggest interesting topics for future work. A chronological overview of sensitive location data we collected on a musical festival in years 2014, 2015, 2017 and 2018 is provided. We conclude that using passive WiFi monitoring scans produces different results through years, with a significant increase in the usage of a more secure Broadcast Probe Request packets and MAC address randomizations by the smartphone operating systems.
Measurement Characteristics of Different Integrated Three-Dimensional Magnetic Field Sensors. IEEE Magnetics Letters. 10:1–5.
.
2019. Datasheets of different commercially available integrated sensors for vector measurements of magnetic fields provide typical specifications, such as measurement range, sampling rate, resolution, and noise. Other characteristics of interest, such as linearity, cross-sensitivity, remanent magnetization, and drifts over temperature, are mostly missing. This letter presents testing results of those characteristics of integrated three-dimensional (3-D) sensors working with different sensor principles and technologies in a reproducible measuring process. The sensors are exposed to temperatures from -20 °C to 80 °C and are cycled in hysteresis loops in fields up to 2.5 mT. For applying high-accuracy magnetic fields, a calibrated 3-D Helmholtz coil setup is used. Commercially available integrated 3-D magnetic field sensors are put in operation on a printed circuit board using nonmagnetic passive components. All sensors are configured for best measurement accuracy according to their data-sheets. The results show that sensors based on anisotropic magnetoresistance have high accuracy and low offsets yet also a high degree of nonlinearity. Hall-based sensors show good linearity but also high cross-sensitivity. A magnetic remanence appears for Hall-based sensors with integrated magnetic concentrators as well as for sensors using anisotropic magnetoresistance. Nearly all sensors show remaining drifts over temperature regarding offset and sensitivity up to several percentages.
Measuring Trustworthiness of IoT Image Sensor Data Using Other Sensors’ Complementary Multimodal Data. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :775–780.
.
2019. Trust of image sensor data is becoming increasingly important as the Internet of Things (IoT) applications grow from home appliances to surveillance. Up to our knowledge, there exists only one work in literature that estimates trustworthiness of digital images applied to forensic applications, based on a machine learning technique. The efficacy of this technique is heavily dependent on availability of an appropriate training set and adequate variation of IoT sensor data with noise, interference and environmental condition, but availability of such data cannot be assured always. Therefore, to overcome this limitation, a robust method capable of estimating trustworthy measure with high accuracy is needed. Lowering cost of sensors allow many IoT applications to use multiple types of sensors to observe the same event. In such cases, complementary multimodal data of one sensor can be exploited to measure trust level of another sensor data. In this paper, for the first time, we introduce a completely new approach to estimate the trustworthiness of an image sensor data using another sensor's numerical data. We develop a theoretical model using the Dempster-Shafer theory (DST) framework. The efficacy of the proposed model in estimating trust level of an image sensor data is analyzed by observing a fire event using IoT image and temperature sensor data in a residential setup under different scenarios. The proposed model produces highly accurate trust level in all scenarios with authentic and forged image data.
A Method for Constructing Automotive Cybersecurity Tests, a CAN Fuzz Testing Example. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :1–8.
.
2019. There is a need for new tools and techniques to aid automotive engineers performing cybersecurity testing on connected car systems. This is in order to support the principle of secure-by-design. Our research has produced a method to construct useful automotive security tooling and tests. It has been used to implement Controller Area Network (CAN) fuzz testing (a dynamic security test) via a prototype CAN fuzzer. The black-box fuzz testing of a laboratory vehicle's display ECU demonstrates the value of a fuzzer in the automotive field, revealing bugs in the ECU software, and weaknesses in the vehicle's systems design.
MicroGuard: Securing Bare-Metal Microcontrollers against Code-Reuse Attacks. 2019 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.
.
2019. Bare-metal microcontrollers are a family of Internet of Things (IoT) devices which are increasingly deployed in critical industrial environments. Similar to other IoT devices, bare-metal microcontrollers are vulnerable to memory corruption and code-reuse attacks. We propose MicroGuard, a novel mitigation method based on component-level sandboxing and automated code randomization to securely encapsulate application components in isolated environments. We implemented MicroGuard and evaluated its efficacy and efficiency with a real-world benchmark against different types of attacks. As our evaluation shows, MicroGuard provides better security than ACES, current state-of-the-art protection framework for bare-metal microcontrollers, with a comparable performance overhead.
Micromagnetic Study of Media Noise Plateau in Heat-Assisted Magnetic Recording. IEEE Transactions on Magnetics. 55:1–4.
.
2019. The relationship between integrated media noise power and linear density in heat-assisted magnetic recording (HAMR) is discussed. A noise plateau for intermediate recording density has been observed in HAMR, similar to that found in perpendicular magnetic recording (PMR). Here, we show, by changing the temperature profile of the heat spot in HAMR, that we can tune the noise plateau regions to different recording densities. The heat spot with sharp temperature gradient favors a plateau at high recording density, while the heat spot with gradual temperature gradient favors a plateau at low recording density. This effect is argued to be a consequence of the competition between transition noise and remanence noise in HAMR.
MidSecThings: Assurance Solution for Security Smart Homes in IoT. 2019 IEEE 19th International Symposium on High Assurance Systems Engineering (HASE). :171–178.
.
2019. The interest over building security-based solutions to reduce the vulnerability exploits and mitigate the risks associated with smart homes in IoT is growing. However, our investigation identified to architect and implement distributed security mechanisms is still a challenge because is necessary to handle security and privacy in IoT middleware with a strong focus. Our investigation, it was identified the significant proportion of the systems that did not address security and did not describe the security approach in any meaningful detail. The idea proposed in this work is to provide middleware aim to implement security mechanisms in smart home and contribute as how guide to beginner developers' IoT middleware. The advantages of using MidSecThings are to avoid leakage data, unavailable service, unidentification action and not authorized access over IoT devices in smart home.
Mitigating Routing Misbehavior using Blockchain-Based Distributed Reputation Management System for IoT Networks. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
.
2019. With the rapid proliferation of Internet of Thing (IoT) devices, many security challenges could be introduced at low-end routers. Misbehaving routers affect the availability of the networks by dropping packets selectively and rejecting data forwarding services. Although existing Reputation Management (RM) systems are useful in identifying misbehaving routers, the centralized nature of the RM center has the risk of one-point failure. The emerging blockchain techniques, with the inherent decentralized consensus mechanism, provide a promising method to reduce this one-point failure risk. By adopting the distributed consensus mechanism, we propose a blockchain-based reputation management system in IoT networks to overcome the limitation of centralized router RM systems. The proposed solution utilizes the blockchain technique as a decentralized database to store router reports for calculating reputation of each router. With the proposed reputation calculation mechanism, the reliability of each router would be evaluated, and the malicious misbehaving routers with low reputations will be blacklisted and get isolated. More importantly, we develop an optimized group mining process for blockchain technique in order to improve the efficiency of block generation and reduce the resource consumption. The simulation results validate the distributed blockchain-based RM system in terms of attacks detection and system convergence performance, and the comparison result of the proposed group mining process with existing blockchain models illustrates the applicability and feasibility of the proposed works.
Mitigation of hard-coded credentials related attacks using QR code and secured web service for IoT. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
.
2019. Hard-coded credentials such as clear text log-in id and password provided by the IoT manufacturers and unsecured ways of remotely accessing IoT devices are the major security concerns of industry and academia. Limited memory, power, and processing capabilities of IoT devices further worsen the situations in improving the security of IoT devices. In such scenarios, a lightweight security algorithm up to some extent can minimize the risk. This paper proposes one such approach using Quick Response (QR) code to mitigate hard-coded credentials related attacks such as Mirai malware, wreak havoc, etc. The QR code based approach provides non-clear text unpredictable login id and password. Further, this paper also proposes a secured way of remotely accessing IoT devices through modified https. The proposed algorithms are implemented and verified using Raspberry Pi 3 model B.
Model-based simulation and threat analysis of in-vehicle networks. 2019 15th IEEE International Workshop on Factory Communication Systems (WFCS). :1–8.
.
2019. Automotive systems are currently undergoing a rapid evolution through the integration of the Internet of Things (IoT) and Software Defined Networking (SDN) technologies. The main focus of this evolution is to improve the driving experience, including automated controls, intelligent navigation and safety systems. Moreover, the extremely rapid pace that such technologies are brought into the vehicles, necessitates the presence of adequate testing of new features to avoid operational errors. Apart from testing though, IoT and SDN technologies also widen the threat landscape of cyber-security risks due to the amount of connectivity interfaces that are nowadays exposed in vehicles. In this paper we present a new method, based on OMNET++, for testing new in-vehicle features and assessing security risks through network simulation. The method is demonstrated through a case-study on a Toyota Prius, whose network data are analyzed for the detection of anomalies caused from security threats or operational errors.
Modeling and evaluation of a new IoT security system for mitigating DoS attacks to the MQTT broker. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
.
2019. In recent years, technology use has assumed an important role in the support of human activities. Intellectual work has become the main preferred human activity, while structured activities are going to become ever more automatized for increasing their efficiency. For this reason, we assist to the diffusion of ever more innovative devices able to face new emergent problems. These devices can interact with the environment and each other autonomously, taking decisions even without human control. This is the Internet of Things (IoT) phenomenon, favored by low cost, high mobility, high interaction and low power devices. This spread of devices has become uncontrolled, but security in this context continues to increase slowly. The purpose of this work is to model and evaluate a new IoT security system. The context is based on a generic IoT system in the presence of lightweight actuator and sensor nodes exchanging messages through Message Queue Telemetry Transport (MQTT) protocol. This work aims to increase the security of this protocol at application level, particularly mitigating Denial of Service (DoS) attacks. The system is based on the use of a host Intrusion Detection System (IDS) which applies a threshold based packet discarding policy to the different topics defined through MQTT.
Multi-Authority Attribute-Based Encryption for Resource-Constrained Users in Edge Computing. 2019 International Conference on Information Technology and Computer Application (ITCA). :323–326.
.
2019. Multi-authority attribute-based encryption (MA-ABE) is a promising technique to protect data privacy and achieve fine-grained access control in edge computing for Internet of Things (IoT). However, most of the existing MA-ABE schemes suffer from expensive computational cost in the encryption and decryption phases, which are not practical for resource constrained users in IoT. We propose a large-universe MA-CP-ABE scheme with online/offline encryption and outsourced decryption. In our scheme, most expensive encryption operations have been executed in the user's initialization phase by adding reusable ciphertext pool besides splitting the encryption algorithm to online encryption and offline encryption. Moreover, massive decryption operation are outsourced to the near edge server for reducing the computation overhead of decryption. The proposed scheme is proven statically secure under the q-DPBDHE2 assumption. The performance analysis results indicate that the proposed scheme is efficient and suitable for resource-constrained users in edge computing for IoT.