Biblio
Performance analysis of newly designed solutions is essential for efficient Internet of Things and Wireless Sensor Network (WSN) deployments. Simulation and experimental evaluation practices are vital steps for the development process of protocols and applications for wireless technologies. Nowadays, the new solutions can be tested at a very large scale over both simulators and testbeds. In this paper, we first discuss the importance of repeatable experimental setups for reproducible performance evaluation results. To this aim, we present FIT IoT-LAB, a very large-scale and experimental testbed, i.e., consists of 2769 low-power wireless devices and 127 mobile robots. We then demonstrate through a number of experiments conducted on FIT IoT-LAB testbed, how to conduct meaningful experiments under real-world conditions. Finally, we discuss to what extent results obtained from experiments could be considered as scientific, i.e., reproducible by the community.
The Internet of Things (IoT) is the latest Internet evolution that incorporates a diverse range of things such as sensors, actuators, and services deployed by different organizations and individuals to support a variety of applications. The information captured by IoT present an unprecedented opportunity to solve large-scale problems in those application domains to deliver services; example applications include precision agriculture, environment monitoring, smart health, smart manufacturing, and smart cities. Like all other Internet based services in the past, IoT-based services are also being developed and deployed without security consideration. By nature, IoT devices and services are vulnerable to malicious cyber threats as they cannot be given the same protection that is received by enterprise services within an enterprise perimeter. While IoT services will play an important role in our daily life resulting in improved productivity and quality of life, the trend has also “encouraged” cyber-exploitation and evolution and diversification of malicious cyber threats. Hence, there is a need for coordinated efforts from the research community to address resulting concerns, such as those presented in this special section. Several potential research topics are also identified in this special section.
Internet of Things(IoT) is the next big boom in the networking field. The vision of IoT is to connect daily used objects (which have the ability of sensing and actuation) to the Internet. This may or may or may not involve human. IoT field is still maturing and has many open issues. We build up on the security issues. As the devices have low computational power and low memory the existing security mechanisms (which are a necessity) should also be optimized accordingly or a clean slate approach needs to be followed. This is a survey paper to focus on the security aspects of IoT. We further also discuss the open challenges in this field.
Security threats may hinder the large scale adoption of the emerging Internet of Things (IoT) technologies. Besides efforts have already been made in the direction of data integrity preservation, confidentiality and privacy, several issues are still open. The existing solutions are mainly based on encryption techniques, but no attention is actually paid to key management. A clever key distribution system, along with a key replacement mechanism, are essentials for assuring a secure approach. In this paper, two popular key management systems, conceived for wireless sensor networks, are integrated in a real IoT middleware and compared in order to evaluate their performance in terms of overhead, delay and robustness towards malicious attacks.
The Internet of Things (IoT) presents itself as a promising set of key technologies to provide advanced smart applications. IoT has become a major trend lately and smart solutions can be found in a large variety of products. Since it provides a flexible and easy way to gather data from huge numbers of devices and exploit them ot provide new applications, it has become a central research area lately. However, due to the fact that IoT aims to interconnect millions of constrained devices that are monitoring the everyday life of people, acting upon physical objects around them, the security and privacy challenges are huge. Nevertheless, only lately the research focus has been on security and privacy solutions. Many solutions and IoT frameworks have only a minimum set of security, which is a basic access control. The EU FP7 project RERUM has a main focus on designing an IoT architecture based on the concepts of Security and Privacy by design. A central part of RERUM is the implementation of a middleware layer that provides extra functionalities for improved security and privacy. This work, presents the main elements of the RERUM middleware, which is based on the widely accepted OpenIoT middleware.
By connecting devices, people, vehicles and infrastructures everywhere in a city, governments and their partners can improve community wellbeing and other economic and financial aspects (e.g., cost and energy savings). Nonetheless, smart cities are complex ecosystems that comprise many different stakeholders (network operators, managed service providers, logistic centers...) who must work together to provide the best services and unlock the commercial potential of the IoT. This is one of the major challenges that faces today's smart city movement, and more generally the IoT as a whole. Indeed, while new smart connected objects hit the market every day, they mostly feed "vertical silos" (e.g., vertical apps, siloed apps...) that are closed to the rest of the IoT, thus hampering developers to produce new added value across multiple platforms. Within this context, the contribution of this paper is twofold: (i) present the EU vision and ongoing activities to overcome the problem of vertical silos; (ii) introduce recent IoT standards used as part of a recent Horizon 2020 IoT project to address this problem. The implementation of those standards for enhanced sporting event management in a smart city/government context (FIFA World Cup 2022) is developed, presented, and evaluated as a proof-of-concept.
In IoT environments, the user may have many devices to connect each other and share the data. Also, the device will not have the powerful computation and storage ability. Many studies have focused on the lightweight authentication between the cloud server and the client in this environment. They can use the cloud server to help sensors or proxies to finish the authentication. But in the client side, how to create the group session key without the cloud capability is the most important issue in IoT environments. The most popular application network of IoT environments is the wireless body area network (WBAN). In WBAN, the proxy usually needs to control and monitor user's health data transmitted from the sensors. In this situation, the group authentication and group session key generation is needed. In this paper, in order to provide an efficient and robust group authentication and group session key generation in the client side of IoT environments, we propose a lightweight authentication scheme with dynamic group members in IoT environments. Our proposed scheme can satisfy the properties including the flexible generation of shared group keys, the dynamic participation, the active revocation, the low communication and computation cost, and no time synchronization problem. Also our scheme can achieve the security requirements including the mutual authentication, the group session key agreement, and prevent all various well-known attacks.
Defense-in-depth is an important security architecture principle that has significant application to industrial control systems (ICS), cloud services, storehouses of sensitive data, and many other areas. We claim that an ideal defense-in-depth posture is 'deep', containing many layers of security, and 'narrow', the number of node independent attack paths is minimized. Unfortunately, accurately calculating both depth and width is difficult using standard graph algorithms because of a lack of independence between multiple vulnerability instances (i.e., if an attacker can penetrate a particular vulnerability on one host then they can likely penetrate the same vulnerability on another host). To address this, we represent known weaknesses and vulnerabilities as a type of colored attack graph. We measure depth and width through solving the shortest color path and minimum color cut problems. We prove both of these to be NP-Hard and thus for our solution we provide a suite of greedy heuristics. We then empirically apply our approach to large randomly generated networks as well as to ICS networks generated from a published ICS attack template. Lastly, we discuss how to use these results to help guide improvements to defense-in-depth postures.
The Internet of Things (IoT) paradigm, in conjunction with the one of smart cities, is pursuing toward the concept of smart buildings, i.e., “intelligent” buildings able to receive data from a network of sensors and thus to adapt the environment. IoT sensors can monitor a wide range of environmental features such as the energy consumption inside a building at fine-grained level (e.g., for a specific wall-socket). Some smart buildings already deploy energy monitoring in order to optimize the energy use for good purposes (e.g., to save money, to reduce pollution). Unfortunately, such measurements raise a significant amount of privacy concerns. In this paper, we investigate the feasibility of recognizing the pair laptop-user (i.e., a user using her own laptop) from the energy traces produced by her laptop. We design MTPlug, a framework that achieves this goal relying on supervised machine learning techniques as pattern recognition in multivariate time series. We present a comprehensive implementation of this system and run a thorough set of experiments. In particular, we collected data by monitoring the energy consumption of two groups of laptop users, some office employees and some intruders, for a total of 27 people. We show that our system is able to build an energy profile for a laptop user with accuracy above 80%, in less than 3.5 hours of laptop usage. To the best of our knowledge, this is the first research that assesses the feasibility of laptop users profiling relying uniquely on fine-grained energy traces collected using wall-socket smart meters.
Simple connectivity and data requirements together with high lifetime of battery are the main issues for the machine-to-machine (M2M) communications. 3GPP focuses on three main licensed standardizations based on Long Term Evolution (LTE), GSM and clean-slate technologies. The paper considers the last one and proposes a modified slotted-Aloha method to increase the capability of supporting a massive number of low-throughput devices. The proposed method increases the access rate of users belonging to each class considered in the clean-slate standard and consequently the total throughput offered by the system. To derive the mean access rate per class, we use the Markov chain approach and simulation results are provided for scenarios with different data rate and also in terms of cell average delay.
Privacy protection in Internet of Things (IoTs) has long been the topic of extensive research in the last decade. The perceptual layer of IoTs suffers the most significant privacy disclosing because of the limitation of hardware resources. Data encryption and anonymization are the most common methods to protect private information for the perceptual layer of IoTs. However, these efforts are ineffective to avoid privacy disclosure if the communication environment exists unknown wireless nodes which could be malicious devices. Therefore, in this paper we derive an innovative and passive method called Horizontal Hierarchy Slicing (HHS) method to detect the existence of unknown wireless devices which could result negative means to the privacy. PAM algorithm is used to cluster the HHS curves and analyze whether unknown wireless devices exist in the communicating environment. Link Quality Indicator data are utilized as the network parameters in this paper. The simulation results show their effectiveness in privacy protection.
Devices in the internet of things (IoT) are frequently (i) resource-constrained, and (ii) deployed in unmonitored, physically unsecured environments. Securing these devices requires tractable cryptographic protocols, as well as cost effective tamper resistance solutions. We propose and evaluate cryptographic protocols that leverage physical unclonable functions (PUFs): circuits whose input to output mapping depends on the unique characteristics of the physical hardware on which it is executed. PUF-based protocols have the benefit of minimizing private key exposure, as well as providing cost-effective tamper resistance. We present and experimentally evaluate an elliptic curve based variant of a theoretical PUF-based authentication protocol proposed previously in the literature. Our work improves over an existing proof-of-concept implementation, which relied on the discrete logarithm problem as proposed in the original work. In contrast, our construction uses elliptic curve cryptography, which substantially reduces the computational and storage burden on the device. We describe PUF-based algorithms for device enrollment, authentication, decryption, and digital signature generation. The performance of each construction is experimentally evaluated on a resource-constrained device to demonstrate tractability in the IoT domain. We demonstrate that our implementation achieves practical performance results, while also providing realistic security. Our work demonstrates that PUF-based protocols may be practically and securely deployed on low-cost resource-constrained IoT devices.
The Internet of Things (IoT) systems are designed and developed either as standalone applications from the ground-up or with the help of IoT middleware platforms. They are designed to support different kinds of scenarios, such as smart homes and smart cities. Thus far, privacy concerns have not been explicitly considered by IoT applications and middleware platforms. This is partly due to the lack of systematic methods for designing privacy that can guide the software development process in IoT. In this paper, we propose a set of guidelines, a privacy by-design framework, that can be used to assess privacy capabilities and gaps of existing IoT applications as well as middleware platforms. We have evaluated two open source IoT middleware platforms, namely OpenIoT and Eclipse SmartHome, to demonstrate how our framework can be used in this way.
The Internet of Things (IoT) offers new opportunities, but alongside those come many challenges for security and privacy. Most IoT devices offer no choice to users of where data is published, which data is made available and what identities are used for both devices and users. The aim of this work is to explore new middleware models and techniques that can provide users with more choice as well as enhance privacy and security. This paper outlines a new model and a prototype of a middleware system that implements this model.
Internet infrastructure developments and the rise of the IoT Socio-Technical Systems (STS) have frequently generated more unsecure protocols to facilitate the rapid intercommunication between the plethoras of IoT devices. Whereas, current development of the IoT has been mainly focused on enabling and effectively meeting the functionality requirement of digital-enabled enterprises we have seen scant regard to their IA architecture, marginalizing system resilience with blatant afterthoughts to cyber defence. Whilst interconnected IoT devices do facilitate and expand information sharing; they further increase of risk exposure and potential loss of trust to their Socio-Technical Systems. A change in the IoT paradigm is needed to enable a security-first mind-set; if the trusted sharing of information built upon dependable resilient growth of IoT is to be established and maintained. We argue that Information Assurance is paramount to the success of IoT, specifically its resilience and dependability to continue its safe support for our digital economy.
The evolution of the Internet of Things (IoT) requires a well-defined infrastructure of systems that provides services for device abstraction and data management, and also supports the development of applications. Middleware for IoT has been recognized as the system that can provide these services and has become increasingly important for IoT in recent years. The large amount of data that flows into a middleware system demands a security architecture that ensures the protection of all layers of the system, including the communication channels and border APIs used to integrate the applications and IoT devices. However, this security architecture should be based on lightweight approaches since middleware systems are widely applied in constrained environments. Some works have already defined new solutions and adaptations to existing approaches in order to mitigate IoT middleware security problems. In this sense, this article discusses the role of lightweight approaches to the standardization of a security architecture for IoT middleware systems. This article also analyzes concepts and existing works, and presents some important IoT middleware challenges that may be addressed by emerging lightweight security approaches in order to achieve the consolidation of a standard security architecture and the mitigation of the security problems found in IoT middleware systems.
The National Science Foundation has made investments in Software Defined Networking (SDN) and Network Function Virtualization (NFV) for many years, in both the research and infrastructure areas. SDN and NFV enable systems to become more open to transformative research, with implications for revolutionary new applications and services. Additionally, the emerging concept of Software-Defined Exchanges will enable large-scale interconnection of Software Defined infrastructures, owned and operated by many different organizations, to provide logically isolated 'on demand' global scale infrastructure on an end-to-end basis, with enhanced flexibility and security for new applications. This talk will examine past NSF investments and successes in SDN/NFV, identify new research opportunities available to the community and present challenges that need to be overcome to make SDN/NFV a reality in operational cyberinfrastructure.
Internet of Things is gaining research attention as one of the important fields that will affect our daily life vastly. Today, around us this revolutionary technology is growing and evolving day by day. This technology offers certain benefits like automatic processing, improved logistics and device communication that would help us to improve our social life, health, living standards and infrastructure. However, due to their simple architecture and presence on wide variety of fields they pose serious concern to security. Due to the low end architecture there are many security issues associated with IoT network devices. In this paper, we try to address the security issue by proposing JavaScript sandbox as a method to execute IoT program. Using this sandbox we also implement the strategy to control the execution of the sandbox while the program is being executed on it.
Video surveillance, closed-circuit TV and IP-camera systems became virtually omnipresent and indispensable for many organizations, businesses, and users. Their main purpose is to provide physical security, increase safety, and prevent crime. They also became increasingly complex, comprising many communication means, embedded hardware and non-trivial firmware. However, most research to date focused mainly on the privacy aspects of such systems, and did not fully address their issues related to cyber-security in general, and visual layer (i.e., imagery semantics) attacks in particular. In this paper, we conduct a systematic review of existing and novel threats in video surveillance, closed-circuit TV and IP-camera systems based on publicly available data. The insights can then be used to better understand and identify the security and the privacy risks associated with the development, deployment and use of these systems. We study existing and novel threats, along with their existing or possible countermeasures, and summarize this knowledge into a comprehensive table that can be used in a practical way as a security checklist when assessing cyber-security level of existing or new CCTV designs and deployments. We also provide a set of recommendations and mitigations that can help improve the security and privacy levels provided by the hardware, the firmware, the network communications and the operation of video surveillance systems. We hope the findings in this paper will provide a valuable knowledge of the threat landscape that such systems are exposed to, as well as promote further research and widen the scope of this field beyond its current boundaries.
Ensuring security in the military applications of IoT is a big challenge. The main reasons for this state of affairs is that the sensor nodes of the network are usually mobile, use wireless links, have a small processing power and have a little energy resources. The paper presents the solution for cryptographic protection of transmission between sensor nodes in the data link layer and for cryptographic protection of data stored in the sensor node resources. For this purpose, the Trusted Platform Module (TPM) was used. The proposed solution makes it possible to build secure and fault tolerant sensor network. The following aspects were presented in the paper: the model of such a network, applied security solutions, analysis of the security in the network and selected investigation results of such a network were presented.
New viewpoints of covert channels are presented in this work. First, the origin of covert channels is traced back to acc ess control and a new class of covert channel, air-gap covert channels, is presented. Second, we study the design of covert channels and provide novel insights that differentiate the research area of undetectable communication from that of covert channels. Third, we argue that secure systems can be characterized as fixed-source systems or continuous-source systems, i.e., systems whose security is compromised if their design allows a covert channel to communicate a small, fixed amount of information or communicate information at a sufficiently high, continuous rate, respectively. Consequently, we challenge the traditional method for measuring covert channels, which is based on Shannon capacity, and propose that a new measure, steganographic capacity, be used to accurately assess the risk posed by covert channels, particularly those affecting fixed-source systems. Additionally, our comprehensive review of covert channels has led us to the conclusion that important properties of covert channels have not been captured in previous taxonomies. We, therefore, present novel extensions to existing taxonomies to more accurately characterize covert channels.
SDN has become the wide area network technology, which the academic and industry most concerned about.The limited table sizes of today’s SDN switches has turned to the most prominent short planks in the network design implementation. TCAM based flow table can provide an excellent matching performance while it really costs much. Even the flow table overflow cannot be prevented by a fixed-capacity flow table. In this paper, we design FTS(Flow Table Sharing) mechanism that can improve the performance disaster caused by overflow. We demonstrate that FTS reduces both control messages quantity and RTT time by two orders of magnitude compared to current state-of-the-art OpenFlow table-miss handler.
Lightweight block ciphers, which are required for IoT devices, have attracted attention. Simeck, which is one of the most popular lightweight block ciphers, can be implemented on IoT devices in the smallest area. Regarding the hardware security, the threat of electromagnetic analysis has been reported. However, electromagnetic analysis of Simeck has not been reported. Therefore, this study proposes a dedicated electromagnetic analysis for a lightweight block cipher Simeck to ensure the safety of IoT devices in the future. To our knowledge, this is the first electromagnetic analysis for Simeck. Experiments using a FPGA prove the validity of the proposed method.
This paper presents the foundations of secured and trusted architecture for the Internet of Things platforms, based on Secure Elements (SE). Some IoT networks could be managed by service providers, dealing with smart grids or healthcare. Many platforms are using DTLS or TLS protocols. Therefore SEs running such stacks could provide strong mutual authentication and secure communications. Three future research directions are illustrated by previous experiments. TLS/DTLS SE servers for objects, CoAP DTLS clients for SIM modules, and RACS authorization servers based on SE TLS servers.
Internet has been being becoming the most famous and biggest communication networks as social, industrial, and public infrastructure since Internet was invented at late 1960s. In a historical retrospect of Internet's evolution, the Internet architecture continues evolution repeatedly by going through various technical challenges, for instance, in early 1990s, Internet had encountered danger of scalability, after a short while it had been overcome and successfully evolved by applying emerging techniques such as CIDR, NAT, and IPv6. Especially this paper emphasizes scalability issues as technical challenges with forecasting that Internet of things era has come. Firstly, we describe the Identifier and locator separation scheme that can achieve dramatically architectural evolution in historical perspective. Additionally, it reviews various kinds of Identifier and locator separation scheme because recently the scheme can be the major design pillar towards future of Internet architecture such as both various clean-slated future Internet architectures and evolving Internet architectures. Lastly we show a result of analysis by analysis table for future of internet of everything where number of Internet connected devices will growth to more than 20 billion by 2020.