Biblio

Found 12046 results

Filters: Keyword is Resiliency  [Clear All Filters]
2021-12-20
Ferreira, Gabriel, Jia, Limin, Sunshine, Joshua, Kästner, Christian.  2021.  Containing Malicious Package Updates in Npm with a Lightweight Permission System. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1334–1346.
The large amount of third-party packages available in fast-moving software ecosystems, such as Node.js/npm, enables attackers to compromise applications by pushing malicious updates to their package dependencies. Studying the npm repository, we observed that many packages in the npm repository that are used in Node.js applications perform only simple computations and do not need access to filesystem or network APIs. This offers the opportunity to enforce least-privilege design per package, protecting applications and package dependencies from malicious updates. We propose a lightweight permission system that protects Node.js applications by enforcing package permissions at runtime. We discuss the design space of solutions and show that our system makes a large number of packages much harder to be exploited, almost for free.
Piccolboni, Luca, Guglielmo, Giuseppe Di, Carloni, Luca P., Sethumadhavan, Simha.  2021.  CRYLOGGER: Detecting Crypto Misuses Dynamically. 2021 IEEE Symposium on Security and Privacy (SP). :1972–1989.
Cryptographic (crypto) algorithms are the essential ingredients of all secure systems: crypto hash functions and encryption algorithms, for example, can guarantee properties such as integrity and confidentiality. Developers, however, can misuse the application programming interfaces (API) of such algorithms by using constant keys and weak passwords. This paper presents CRYLOGGER, the first open-source tool to detect crypto misuses dynamically. CRYLOGGER logs the parameters that are passed to the crypto APIs during the execution and checks their legitimacy offline by using a list of crypto rules. We compared CRYLOGGER with CryptoGuard, one of the most effective static tools to detect crypto misuses. We show that our tool complements the results of CryptoGuard, making the case for combining static and dynamic approaches. We analyzed 1780 popular Android apps downloaded from the Google Play Store to show that CRYLOGGER can detect crypto misuses on thousands of apps dynamically and automatically. We reverse-engineered 28 Android apps and confirmed the issues flagged by CRYLOGGER. We also disclosed the most critical vulnerabilities to app developers and collected their feedback.
2022-09-30
Wüstrich, Lars, Schröder, Lukas, Pahl, Marc-Oliver.  2021.  Cyber-Physical Anomaly Detection for ICS. 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM). :950–955.
Industrial Control Systems (ICS) are complex systems made up of many components with different tasks. For a safe and secure operation, each device needs to carry out its tasks correctly. To monitor a system and ensure the correct behavior of systems, anomaly detection is used.Models of expected behavior often rely only on cyber or physical features for anomaly detection. We propose an anomaly detection system that combines both types of features to create a dynamic fingerprint of an ICS. We present how a cyber-physical anomaly detection using sound on the physical layer can be designed, and which challenges need to be overcome for a successful implementation. We perform an initial evaluation for identifying actions of a 3D printer.
2022-05-09
Mittal, Sonam, Jindal, Priya, Ramkumar, K. R..  2021.  Data Privacy and System Security for Banking on Clouds using Homomorphic Encryption. 2021 2nd International Conference for Emerging Technology (INCET). :1–6.
In recent times, the use of cloud computing has gained popularity all over the world in the context of performing smart computations on big data. The privacy of sensitive data of the client is of utmost important issues. Data leakage or hijackers may theft significant information about the client that ultimately may affect the reputation and prestige of its owner (bank) and client (customers). In general, to save the privacy of our banking data it is preferred to store, process, and transmit the data in the form of encrypted text. But now the main concern leads to secure computation over encrypted text or another possible way to perform computation over clouds makes data more vulnerable to hacking and attacks. Existing classical encryption techniques such as RSA, AES, and others provide secure transaction procedures for data over clouds but these are not fit for secure computation over data in the clouds. In 2009, Gentry comes with a solution for such issues and presents his idea as Homomorphic encryption (HE) that can perform computation over encrypted text without decrypting the data itself. Now a day's privacy-enhancing techniques (PET) are there to explore more potential benefits in security issues and useful in historical cases of privacy failure. Differential privacy, Federated analysis, homomorphic encryption, zero-knowledge proof, and secure multiparty computation are a privacy-enhancing technique that may useful in financial services as these techniques provide a fully-fledged mechanism for financial institutes. With the collaboration of industries, these techniques are may enable new data-sharing agreements for a more secure solution over data. In this paper, the primary concern is to investigate the different standards and properties of homomorphic encryption in digital banking and financial institutions.
2022-04-25
Joseph, Zane, Nyirenda, Clement.  2021.  Deepfake Detection using a Two-Stream Capsule Network. 2021 IST-Africa Conference (IST-Africa). :1–8.
This paper aims to address the problem of Deepfake Detection using a Two-Stream Capsule Network. First we review methods used to create Deepfake content, as well as methods proposed in the literature to detect such Deepfake content. We then propose a novel architecture to detect Deepfakes, which consists of a two-stream Capsule network running in parallel that takes in both RGB images/frames as well as Error Level Analysis images. Results show that the proposed approach exhibits the detection accuracy of 73.39 % and 57.45 % for the Deepfake Detection Challenge (DFDC) and the Celeb-DF datasets respectively. These results are, however, from a preliminary implementation of the proposed approach. As part of future work, population-based optimization techniques such as Particle Swarm Optimization (PSO) will be used to tune the hyper parameters for better performance.
Khalil, Hady A., Maged, Shady A..  2021.  Deepfakes Creation and Detection Using Deep Learning. 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). :1–4.
Deep learning has been used in a wide range of applications like computer vision, natural language processing and image detection. The advancement in deep learning algorithms in image detection and manipulation has led to the creation of deepfakes, deepfakes use deep learning algorithms to create fake images that are at times very hard to distinguish from real images. With the rising concern around personal privacy and security, Many methods to detect deepfake images have emerged, in this paper the use of deep learning for creating as well as detecting deepfakes is explored, this paper also propose the use of deep learning image enhancement method to improve the quality of deepfakes created.
2022-02-22
Chen, Zhongyong, Han, Liegang, Xu, Yongshun, Yu, Zuwei.  2021.  Design and Implementation of A Vulnerability-Tolerant Reverse Proxy Based on Moving Target Defense for E-Government Application. 2021 2nd Information Communication Technologies Conference (ICTC). :270—273.
The digital transformation is injecting energy into economic growth and governance improvement for the China government. Digital governance and e-government services are playing a more and more important role in public management and social governance. Meanwhile, cyber-attacks and threats become the major challenges for e-government application systems. In this paper, we proposed a novel dynamic access entry scheme for web application, which provide a rapidly-changing defender-controlled attack surface based on Moving Target Defense (MTD) technology. The scheme can turn the static keywords of Uniform Resource Locator (URL) into the dynamic and random ones, which significantly increase the cost to adversaries attack. We present the prototype of the proposed scheme and evaluate the feasibility and effectiveness. The experimental results demonstrated the scheme is practical and effective.
2022-02-07
Acharya, Jatin, Chuadhary, Anshul, Chhabria, Anish, Jangale, Smita.  2021.  Detecting Malware, Malicious URLs and Virus Using Machine Learning and Signature Matching. 2021 2nd International Conference for Emerging Technology (INCET). :1–5.
Nowadays most of our data is stored on an electronic device. The risk of that device getting infected by Viruses, Malware, Worms, Trojan, Ransomware, or any unwanted invader has increased a lot these days. This is mainly because of easy access to the internet. Viruses and malware have evolved over time so identification of these files has become difficult. Not only by viruses and malware your device can be attacked by a click on forged URLs. Our proposed solution for this problem uses machine learning techniques and signature matching techniques. The main aim of our solution is to identify the malicious programs/URLs and act upon them. The core idea in identifying the malware is selecting the key features from the Portable Executable file headers using these features we trained a random forest model. This RF model will be used for scanning a file and determining if that file is malicious or not. For identification of the virus, we are using the signature matching technique which is used to match the MD5 hash of the file with the virus signature database containing the MD5 hash of the identified viruses and their families. To distinguish between benign and illegitimate URLs there is a logistic regression model used. The regression model uses a tokenizer for feature extraction from the URL that is to be classified. The tokenizer separates all the domains, sub-domains and separates the URLs on every `/'. Then a TfidfVectorizer (Term Frequency - Inverse Document Frequency) is used to convert the text into a weighted value. These values are used to predict if the URL is safe to visit or not. On the integration of all three modules, the final application will provide full system protection against malicious software.
2022-04-25
Rescio, Tommaso, Favale, Thomas, Soro, Francesca, Mellia, Marco, Drago, Idilio.  2021.  DPI Solutions in Practice: Benchmark and Comparison. 2021 IEEE Security and Privacy Workshops (SPW). :37–42.
Having a clear insight on the protocols carrying traffic is crucial for network applications. Deep Packet Inspection (DPI) has been a key technique to provide visibility into traffic. DPI has proven effective in various scenarios, and indeed several open source DPI solutions are maintained by the community. Yet, these solutions provide different classifications, and it is hard to establish a common ground truth. Independent works approaching the question of the quality of DPI are already aged and rely on limited datasets. Here, we test if open source DPI solutions can provide useful information in practical scenarios, e.g., supporting security applications. We provide an evaluation of the performance of four open-source DPI solutions, namely nDPI, Libprotoident, Tstat and Zeek. We use datasets covering various traffic scenarios, including operational networks, IoT scenarios and malware. As no ground truth is available, we study the consistency of classification across the solutions, investigating rootcauses of conflicts. Important for on-line security applications, we check whether DPI solutions provide reliable classification with a limited number of packets per flow. All in all, we confirm that DPI solutions still perform satisfactorily for well-known protocols. They however struggle with some P2P traffic and security scenarios (e.g., with malware traffic). All tested solutions reach a final classification after observing few packets with payload, showing adequacy for on-line applications.
2022-01-10
Acharya, Abiral, Oluoch, Jared.  2021.  A Dual Approach for Preventing Blackhole Attacks in Vehicular Ad Hoc Networks Using Statistical Techniques and Supervised Machine Learning. 2021 IEEE International Conference on Electro Information Technology (EIT). :230–235.
Vehicular Ad Hoc Networks (VANETs) have the potential to improve road safety and reduce traffic congestion by enhancing sharing of messages about road conditions. Communication in VANETs depends upon a Public Key Infrastructure (PKI) that checks for message confidentiality, integrity, and authentication. One challenge that the PKI infrastructure does not eliminate is the possibility of malicious vehicles mounting a Distributed Denial of Service (DDoS) attack. We present a scheme that combines statistical modeling and machine learning techniques to detect and prevent blackhole attacks in a VANET environment.Simulation results demonstrate that on average, our model produces an Area Under The Curve (ROC) and Receiver Operating Characteristics (AUC) score of 96.78% which is much higher than a no skill ROC AUC score and only 3.22% away from an ideal ROC AUC score. Considering all the performance metrics, we show that the Support Vector Machine (SVM) and Gradient Boosting classifier are more accurate and perform consistently better under various circumstances. Both have an accuracy of over 98%, F1-scores of over 95%, and ROC AUC scores of over 97%. Our scheme is robust and accurate as evidenced by its ability to identify and prevent blackhole attacks. Moreover, the scheme is scalable in that addition of vehicles to the network does not compromise its accuracy and robustness.
2022-05-06
S, Sudersan, B, Sowmiya, V.S, Abhijith, M, Thangavel, P, Varalakshmi.  2021.  Enhanced DNA Cryptosystem for Secure Cloud Data Storage. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :337—342.
Cloud computing has revolutionized the way how users store, process, and use data. It has evolved over the years to put forward various sophisticated models that offer enhanced performance. The growth of electronic data stored in the Cloud has made it crucial to access data without data loss and leakage. Security threats still prevent significant corporations that use sensitive data to employ cloud computing to handle their data. Traditional cryptographic techniques like DES, AES, etc... provide data confidentiality but are computationally complex. To overcome such complexities, a unique field of cryptography known as DNA Cryptography came into existence. DNA cryptography is a new field of cryptography that utilizes the chemical properties of DNA for secure data encoding. DNA cryptographic algorithms are much faster than traditional cryptographic methods and can bring about greater security with lesser computational costs. In this paper, we have proposed an enhanced DNA cryptosystem involving operations such as encryption, encoding table generation, and decryption based on the chemical properties of DNA. The performance analysis has proven that the proposed DNA cryptosystem is secure and efficient in Cloud data storage.
2022-02-04
Chowdhury, Subhajit Dutta, Zhang, Gengyu, Hu, Yinghua, Nuzzo, Pierluigi.  2021.  Enhancing SAT-Attack Resiliency and Cost-Effectiveness of Reconfigurable-Logic-Based Circuit Obfuscation. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
Logic locking is a well-explored defense mechanism against various types of hardware security attacks. Recent approaches to logic locking replace portions of a circuit with reconfigurable blocks such as look-up tables (LUTs) and switch boxes (SBs) to primarily achieve logic and routing obfuscation, respectively. However, these techniques may incur significant design overhead, and methods that can mitigate the implementation cost for a given security level are desirable. In this paper, we address this challenge by proposing an algorithm for deciding the location and inputs of the LUTs in LUT-based obfuscation to enhance security and reduce design overhead. We then introduce a locking method that combines LUTs with SBs to further robustify LUT-based obfuscation, largely independently of the specific LUT locations. We illustrate the effectiveness of the proposed approaches on a set of ISCAS benchmark circuits.
2021-12-20
Twardokus, Geoff, Rahbari, Hanif.  2021.  Evaluating V2V Security on an SDR Testbed. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–3.
We showcase the capabilities of V2Verifier, a new open-source software-defined radio (SDR) testbed for vehicle-to-vehicle (V2V) communications security, to expose the strengths and vulnerabilities of current V2V security systems based on the IEEE 1609.2 standard. V2Verifier supports both major V2V technologies and facilitates a broad range of experimentation with upper- and lower-layer attacks using a combination of SDRs and commercial V2V on-board units (OBUs). We demonstrate two separate attacks (jamming and replay) against Dedicated Short Range Communication (DSRC) and Cellular Vehicle-to-Everything (C-V2X) technologies, experimentally quantifying the threat posed by these types of attacks. We also use V2Verifier's open-source implementation to show how the 1609.2 standard can effectively mitigate certain types of attacks (e.g., message replay), facilitating further research into the security of V2V.
2022-04-19
McManus, Maxwell, Guan, Zhangyu, Bentley, Elizabeth Serena, Pudlewski, Scott.  2021.  Experimental Analysis of Cross-Layer Sensing for Protocol-Agnostic Packet Boundary Recognition. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
Radio-frequency (RF) sensing is a key technology for designing intelligent and secure wireless networks with high spectral efficiency and environment-aware adaptation capabilities. However, existing sensing techniques can extract only limited information from RF signals or assume that the RF signals are generated by certain known protocols. As a result, their applications are limited if proprietary protocols or encryption methods are adopted, or in environments subject to errors such as unintended interference. To address this challenge, we study protocol-agnostic cross-layer sensing to extract high-layer protocol information from raw RF samples without any a priori knowledge of the protocols. First, we present a framework for protocol-agnostic sensing for over-the-air (OTA) RF signals, by taking packet boundary recognition (PBR) as an example. The framework consists of three major components: OTA Signal Generator, Agnostic RF Sink, and Ground Truth Generator. Then, we develop a software-defined testbed using USRP SDRs, with eleven benchmark statistical algorithms implemented in the Agnostic RF Sink, including Kullback-Leibler divergence and cross-power spectral density, among others. Finally, we test the effectiveness of these statistical algorithms in PBR on OTA RF samples, considering a wide variety of transmission parameters, including modulation type, transmission distance, and packet length. It is found that none of these benchmark statistical algorithms can achieve consistently high PBR rate, and new algorithms are required particularly in next-generation low-latency wireless systems.
2022-01-31
Stevens, Clay, Soundy, Jared, Chan, Hau.  2021.  Exploring the Efficiency of Self-Organizing Software Teams with Game Theory. 2021 IEEE/ACM 43rd International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER). :36–40.
Over the last two decades, software development has moved away from centralized, plan-based management toward agile methodologies such as Scrum. Agile methodologies are founded on a shared set of core principles, including self-organizing software development teams. Such teams are promoted as a way to increase both developer productivity and team morale, which is echoed by academic research. However, recent works on agile neglect to consider strategic behavior among developers, particularly during task assignment-one of the primary functions of a self-organizing team. This paper argues that self-organizing software teams could be readily modeled using game theory, providing insight into how agile developers may act when behaving strategically. We support our argument by presenting a general model for self-assignment of development tasks based on and extending concepts drawn from established game theory research. We further introduce the software engineering community to two metrics drawn from game theory-the price-of-stability and price-of-anarchy-which can be used to gauge the efficiencies of self-organizing teams compared to centralized management. We demonstrate how these metrics can be used in a case study evaluating the hypothesis that smaller teams self-organize more efficiently than larger teams, with conditional support for that hypothesis. Our game-theoretic framework provides new perspective for the software engineering community, opening many avenues for future research.
2022-07-01
Wu, Zhijun, Cui, Weihang, Gao, Pan.  2021.  Filtration method of DDoS attacks based on time-frequency analysis. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :75–80.
Traditional DDoS attacks mainly send massive data packets through the attacking machine, consuming the network resources or server resources of the target server, making users unable to use server resources to achieve the purpose of denial of service. This type of attack is called a Flooding-based DDoS (FDDoS) attack. It has the characteristics of large traffic and suddenness. However, Low-rate DDoS (LDDoS) attack is a new type of DDoS attack. LDDoS utilize the TCP congestion control mechanism and sends periodic pulses to attack, which can seriously reduce the TCP flow throughput of the attacked link. It has the characteristics of small traffic and strong concealment. Each of these two DDoS attack methods has its own hard-to-handle characteristics, so that there is currently no particularly effective method to prevent such attacks. This paper uses time-frequency analysis to classify and filter DDoS traffic. The proposed filtering method is designed as a system in the actual environment. Experimental results show that the designed filtering algorithm can resist not only FDDoS attacks, but also LDDoS attacks.
2022-01-31
Li, Xigao, Azad, Babak Amin, Rahmati, Amir, Nikiforakis, Nick.  2021.  Good Bot, Bad Bot: Characterizing Automated Browsing Activity. 2021 IEEE Symposium on Security and Privacy (SP). :1589—1605.
As the web keeps increasing in size, the number of vulnerable and poorly-managed websites increases commensurately. Attackers rely on armies of malicious bots to discover these vulnerable websites, compromising their servers, and exfiltrating sensitive user data. It is, therefore, crucial for the security of the web to understand the population and behavior of malicious bots.In this paper, we report on the design, implementation, and results of Aristaeus, a system for deploying large numbers of "honeysites", i.e., websites that exist for the sole purpose of attracting and recording bot traffic. Through a seven-month-long experiment with 100 dedicated honeysites, Aristaeus recorded 26.4 million requests sent by more than 287K unique IP addresses, with 76,396 of them belonging to clearly malicious bots. By analyzing the type of requests and payloads that these bots send, we discover that the average honeysite received more than 37K requests each month, with more than 50% of these requests attempting to brute-force credentials, fingerprint the deployed web applications, and exploit large numbers of different vulnerabilities. By comparing the declared identity of these bots with their TLS handshakes and HTTP headers, we uncover that more than 86.2% of bots are claiming to be Mozilla Firefox and Google Chrome, yet are built on simple HTTP libraries and command-line tools.
2022-02-25
Barthe, Gilles, Cauligi, Sunjay, Grégoire, Benjamin, Koutsos, Adrien, Liao, Kevin, Oliveira, Tiago, Priya, Swarn, Rezk, Tamara, Schwabe, Peter.  2021.  High-Assurance Cryptography in the Spectre Era. 2021 IEEE Symposium on Security and Privacy (SP). :1884–1901.
High-assurance cryptography leverages methods from program verification and cryptography engineering to deliver efficient cryptographic software with machine-checked proofs of memory safety, functional correctness, provable security, and absence of timing leaks. Traditionally, these guarantees are established under a sequential execution semantics. However, this semantics is not aligned with the behavior of modern processors that make use of speculative execution to improve performance. This mismatch, combined with the high-profile Spectre-style attacks that exploit speculative execution, naturally casts doubts on the robustness of high-assurance cryptography guarantees. In this paper, we dispel these doubts by showing that the benefits of high-assurance cryptography extend to speculative execution, costing only a modest performance overhead. We build atop the Jasmin verification framework an end-to-end approach for proving properties of cryptographic software under speculative execution, and validate our approach experimentally with efficient, functionally correct assembly implementations of ChaCha20 and Poly1305, which are secure against both traditional timing and speculative execution attacks.
2022-01-31
Freire, Sávio, Rios, Nicolli, Pérez, Boris, Castellanos, Camilo, Correal, Darío, Ramač, Robert, Mandić, Vladimir, Taušan, Nebojša, López, Gustavo, Pacheco, Alexia et al..  2021.  How Experience Impacts Practitioners' Perception of Causes and Effects of Technical Debt. 2021 IEEE/ACM 13th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). :21–30.
Context: The technical debt (TD) metaphor helps to conceptualize the pending issues and trade-offs made during software development. Knowing TD causes can support in defining preventive actions and having information about effects aids in the prioritization of TD payment. Goal: To investigate the impact of the experience level on how practitioners perceive the most likely causes that lead to TD and the effects of TD that have the highest impacts on software projects. Method: We approach this topic by surveying 227 practitioners. Results: While experienced software developers focus on human factors as TD causes and external quality attributes as TD effects, low experienced developers seem to concentrate on technical issues as causes and internal quality issues and increased project effort as effects. Missing any of these types of causes could lead a team to miss the identification of important TD, or miss opportunities to preempt TD. On the other hand, missing important effects could hamper effective planning or erode the effectiveness of decisions about prioritizing TD items. Conclusion: Having software development teams composed of practitioners with a homogeneous experience level can erode the team's ability to effectively manage TD.
2022-02-04
Liu, Zepeng, Xiao, Shiwu, Dong, Huanyu.  2021.  Identification of Transformer Magnetizing Inrush Current Based on Empirical Mode Decomposition. 2021 IEEE 4th International Electrical and Energy Conference (CIEEC). :1–6.
Aiming at the fact that the existing feature quantities cannot well identify the magnetizing inrush current during remanence and bias and the huge number of feature quantities, a new identification method using empirical mode decomposition energy index and artificial intelligence algorithm is proposed in 'this paper. Decomposition and denoising are realized through empirical mode decomposition, and then the corresponding energy index is obtained for the waveform of each inherent modal component and simplified by the mean impact value method. Finally, the accuracy of prediction using artificial intelligence algorithm is close to 100%. This reflects the practicality of the method proposed in 'this article.
Roney, James, Appel, Troy, Pinisetti, Prateek, Mickens, James.  2021.  Identifying Valuable Pointers in Heap Data. 2021 IEEE Security and Privacy Workshops (SPW). :373—382.
Historically, attackers have sought to manipulate programs through the corruption of return addresses, function pointers, and other control flow data. However, as protections like ASLR, stack canaries, and no-execute bits have made such attacks more difficult, data-oriented exploits have received increasing attention. Such exploits try to subvert a program by reading or writing non-control data, without introducing any foreign code or violating the program’s legitimate control flow graph. Recently, a data-oriented exploitation technique called memory cartography was introduced, in which an attacker navigates between allocated memory regions using a precompiled map to disclose sensitive program data. The efficacy of memory cartography is dependent on inter-region pointers being located at constant offsets within memory regions; thus, cartographic attacks are difficult to launch against memory regions like heaps and stacks that have nondeterministic layouts. In this paper, we lower the barrier to successful attacks against nondeterministic memory, demonstrating that pointers between regions of memory often possess unique “signatures” that allow attackers to identify them with high accuracy. These signatures are accurate even when the pointers reside in non-deterministic memory areas. In many real-world programs, this allows an attacker that is capable of reading bytes from a single heap to access all of process memory. Our findings underscore the importance of memory isolation via separate address spaces.
2021-12-20
Wang, Pei, Bangert, Julian, Kern, Christoph.  2021.  If It's Not Secure, It Should Not Compile: Preventing DOM-Based XSS in Large-Scale Web Development with API Hardening. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). :1360–1372.
With tons of efforts spent on its mitigation, Cross-site scripting (XSS) remains one of the most prevalent security threats on the internet. Decades of exploitation and remediation demonstrated that code inspection and testing alone does not eliminate XSS vulnerabilities in complex web applications with a high degree of confidence. This paper introduces Google's secure-by-design engineering paradigm that effectively prevents DOM-based XSS vulnerabilities in large-scale web development. Our approach, named API hardening, enforces a series of company-wide secure coding practices. We provide a set of secure APIs to replace native DOM APIs that are prone to XSS vulnerabilities. Through a combination of type contracts and appropriate validation and escaping, the secure APIs ensure that applications based thereon are free of XSS vulnerabilities. We deploy a simple yet capable compile-time checker to guarantee that developers exclusively use our hardened APIs to interact with the DOM. We make various of efforts to scale this approach to tens of thousands of engineers without significant productivity impact. By offering rigorous tooling and consultant support, we help developers adopt the secure coding practices as seamlessly as possible. We present empirical results showing how API hardening has helped reduce the occurrences of XSS vulnerabilities in Google's enormous code base over the course of two-year deployment.
2022-09-09
Tan, Mingtian, Wan, Junpeng, Zhou, Zhe, Li, Zhou.  2021.  Invisible Probe: Timing Attacks with PCIe Congestion Side-channel. 2021 IEEE Symposium on Security and Privacy (SP). :322—338.
PCIe (Peripheral Component Interconnect express) protocol is the de facto protocol to bridge CPU and peripheral devices like GPU, NIC, and SSD drive. There is an increasing demand to install more peripheral devices on a single machine, but the PCIe interfaces offered by Intel CPUs are fixed. To resolve such contention, PCIe switch, PCH (Platform Controller Hub), or virtualization cards are installed on the machine to allow multiple devices to share a PCIe interface. Congestion happens when the collective PCIe traffic from the devices overwhelm the PCIe link capacity, and transmission delay is then introduced.In this work, we found the PCIe delay not only harms device performance but also leaks sensitive information about a user who uses the machine. In particular, as user’s activities might trigger data movement over PCIe (e.g., between CPU and GPU), by measuring PCIe congestion, an adversary accessing another device can infer the victim’s secret indirectly. Therefore, the delay resulted from I/O congestion can be exploited as a side-channel. We demonstrate the threat from PCIe congestion through 2 attack scenarios and 4 victim settings. Specifically, an attacker can learn the workload of a GPU in a remote server by probing a RDMA NIC that shares the same PCIe switch and measuring the delays. Based on the measurement, the attacker is able to know the keystroke timings of the victim, what webpage is rendered on the GPU, and what machine-learning model is running on the GPU. Besides, when the victim is using a low-speed device, e.g., an Ethernet NIC, an attacker controlling an NVMe SSD can launch a similar attack when they share a PCH or virtualization card. The evaluation result shows our attack can achieve high accuracy (e.g., 96.31% accuracy in inferring webpage visited by a victim).
2021-12-20
Cheng, Xia, Shi, Junyang, Sha, Mo, Guo, Linke.  2021.  Launching Smart Selective Jamming Attacks in WirelessHART Networks. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications. :1–10.
As a leading industrial wireless standard, WirelessHART has been widely implemented to build wireless sensor-actuator networks (WSANs) in industrial facilities, such as oil refineries, chemical plants, and factories. For instance, 54,835 WSANs that implement the WirelessHART standard have been deployed globally by Emerson process management, a WirelessHART network supplier, to support process automation. While the existing research to improve industrial WSANs focuses mainly on enhancing network performance, the security aspects have not been given enough attention. We have identified a new threat to WirelessHART networks, namely smart selective jamming attacks, where the attacker first cracks the channel usage, routes, and parameter configuration of the victim network and then jams the transmissions of interest on their specific communication channels in their specific time slots, which makes the attacks energy efficient and hardly detectable. In this paper, we present this severe, stealthy threat by demonstrating the step-by-step attack process on a 50-node network that runs a publicly accessible WirelessHART implementation. Experimental results show that the smart selective jamming attacks significantly reduce the network reliability without triggering network updates.
2022-07-15
Hua, Yi, Li, Zhangbing, Sheng, Hankang, Wang, Baichuan.  2021.  A Method for Finding Quasi-identifier of Single Structured Relational Data. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :93—98.
Quasi-identifier is an attribute combined with other attributes to identify specific tuples or partial tuples. Improper selection of quasi-identifiers will lead to the failure of current privacy protection anonymization technology. Therefore, in this paper, we propose a method to solve single structured relational data quasi-identifiers based on functional dependency and determines the attribute classification standard. Firstly, the solution scope of quasi-identifier is determined to be all attributes except identity attributes and critical attributes. Secondly, the real data set is used to evaluate the dependency relationship between the indefinite attribute subset and the identity attribute to solve the quasi-identifiers set. Finally, we propose an algorithm to find all quasi-identifiers and experiment on real data sets of different sizes. The results show that our method can achieve better performance on the same dataset.