Biblio
Filters: Keyword is security [Clear All Filters]
Matlab GUI-based Tool to Determine Performance Metrics of Physical Unclonable Functions. 2022 Cybernetics & Informatics (K&I). :1—5.
.
2022. This paper presents a MATLAB Graphical User Interface (GUI) based tool that determines the performance evaluation metrics of the physically unclonable functions (PUFs). The PUFs are hardware security primitives which can be utilized in several hardware security applications like integrated circuits protection, device authentication, secret key generation, and hardware obfuscation. Like any other technology approach, PUFs evaluation requires testing different performance metrics, each of which can be determined by at least one mathematical equation. The proposed tool (PUFs Tool) reads the PUF instances’ output and then computes and generates the values of the main PUFs’ performance metrics: uniqueness, reliability, uniformity, and bit-aliasing. In addition, it generates a bar code for each PUF instance considered in the evaluation process. The PUFs Tool is designed and developed using the app designer of MATLAB software 2021b.
A Mechine Learning Approach for Botnet Detection Using LightGBM. 2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA). :829–833.
.
2022. The botnet-based network assault are one of the most serious security threats overlay the Internet this day. Although significant progress has been made in this region of research in recent years, it is still an ongoing and challenging topic to virtually direction the threat of botnets due to their continuous evolution, increasing complexity and stealth, and the difficulties in detection and defense caused by the limitations of network and system architectures. In this paper, we propose a novel and efficient botnet detection method, and the results of the detection method are validated with the CTU-13 dataset.
Message Source Identification in Controller Area Network by Utilizing Diagnostic Communications and an Intrusion Detection System. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). :1–6.
.
2022. International regulations specified in WP.29 and international standards specified in ISO/SAE 21434 require security operations such as cyberattack detection and incident responses to protect vehicles from cyberattacks. To meet these requirements, many vehicle manufacturers are planning to install Intrusion Detection Systems (IDSs) in the Controller Area Network (CAN), which is a primary component of in-vehicle networks, in the coming years. Besides, many vehicle manufacturers and information security companies are developing technologies to identify attack paths related to IDS alerts to respond to cyberattacks appropriately and quickly. To develop the IDSs and the technologies to identify attack paths, it is essential to grasp normal communications performed on in-vehicle networks. Thus, our study aims to develop a technology that can easily grasp normal communications performed on in-vehicle networks. In this paper, we propose the first message source identification method that easily identifies CAN-IDs used by each Electronic Control Unit (ECU) connected to the CAN for message transmissions. We realize the proposed method by utilizing diagnostic communications and an IDS installed in the CAN (CAN-IDS). We evaluate the proposed method using an ECU installed in an actual vehicle and four kinds of simulated CAN-IDSs based on typical existing intrusion detection methods for the CAN. The evaluation results show that the proposed method can identify the CAN-ID used by the ECU for CAN message transmissions if a suitable simulated CAN-IDS for the proposed method is connected to the vehicle.
ISSN: 2577-2465
MicroBlind: Flexible and Secure File System Middleware for Application Sandboxes. 2022 IEEE International Conference on Cloud Engineering (IC2E). :221–232.
.
2022. Virtual machine (VM) based application sandboxes leverage strong isolation guarantees of virtualization techniques to address several security issues through effective containment of malware. Specifically, in end-user physical hosts, potentially vulnerable applications can be isolated from each other (and the host) using VM based sandboxes. However, sharing data across applications executing within different sandboxes is a non-trivial requirement for end-user systems because at the end of the day, all applications are used by the end-user owning the device. Existing file sharing techniques compromise the security or efficiency, especially considering lack of technical expertise of many end-users in the contemporary times. In this paper, we propose MicroBlind, a security hardened file sharing framework for virtualized sandboxes to support efficient data sharing across different application sandboxes. MicroBlind enables a simple file sharing management API for end users where the end user can orchestrate file sharing across different VM sandboxes in a secure manner. To demonstrate the efficacy of MicroBlind, we perform comprehensive empirical analysis against existing data sharing techniques (augmented for the sandboxing setup) and show that MicroBlind provides improved security and efficiency.
Mitigating Security Threats of Bitcoin Network by Reducing Message Broadcasts During Transaction Dissemination. 2022 14th International Conference on Computational Intelligence and Communication Networks (CICN). :772–777.
.
2022. Propagation delay in blockchain networks is a major impairment of message transmission and validation in the bitcoin network. The transaction delay caused by message propagation across long network chains can cause significant threats to the bitcoin network integrity by allowing miners to find blocks during the message consensus process. Potential threats of slow transaction dissemination include double-spending, partitions, and eclipse attacks. In this paper, we propose a method for minimizing propagation delay by reducing non-compulsory message broadcasts during transaction dissemination in the underlying blockchain network. Our method will decrease the propagation delay in the bitcoin network and consequently mitigate the security threats based on message dissemination delay. Our results show improvement in the delay time with more effect on networks with a large number of nodes.
ISSN: 2472-7555
Model-Agnostic Scoring Methods for Artificial Intelligence Assurance. 2022 IEEE 29th Annual Software Technology Conference (STC). :9–18.
.
2022. State of the art Artificial Intelligence Assurance (AIA) methods validate AI systems based on predefined goals and standards, are applied within a given domain, and are designed for a specific AI algorithm. Existing works do not provide information on assuring subjective AI goals such as fairness and trustworthiness. Other assurance goals are frequently required in an intelligent deployment, including explainability, safety, and security. Accordingly, issues such as value loading, generalization, context, and scalability arise; however, achieving multiple assurance goals without major trade-offs is generally deemed an unattainable task. In this manuscript, we present two AIA pipelines that are model-agnostic, independent of the domain (such as: healthcare, energy, banking), and provide scores for AIA goals including explainability, safety, and security. The two pipelines: Adversarial Logging Scoring Pipeline (ALSP) and Requirements Feedback Scoring Pipeline (RFSP) are scalable and tested with multiple use cases, such as a water distribution network and a telecommunications network, to illustrate their benefits. ALSP optimizes models using a game theory approach and it also logs and scores the actions of an AI model to detect adversarial inputs, and assures the datasets used for training. RFSP identifies the best hyper-parameters using a Bayesian approach and provides assurance scores for subjective goals such as ethical AI using user inputs and statistical assurance measures. Each pipeline has three algorithms that enforce the final assurance scores and other outcomes. Unlike ALSP (which is a parallel process), RFSP is user-driven and its actions are sequential. Data are collected for experimentation; the results of both pipelines are presented and contrasted.
Multi-Designated Receiver Authentication-Codes with Information-Theoretic Security. 2022 56th Annual Conference on Information Sciences and Systems (CISS). :84—89.
.
2022. A multi-designated receiver authentication code (MDRA-code) with information-theoretic security is proposed as an extension of the traditional multi-receiver authentication code. The purpose of the MDRA-code is to securely transmit a message via a broadcast channel from a single sender to an arbitrary subset of multiple receivers that have been designated by the sender, and only the receivers in the subset (i.e., not all receivers) should accept the message if an adversary is absent. This paper proposes a model and security formalization of MDRA-codes, and provides constructions of MDRA-codes.
Multi-level security defense method of smart substation based on data aggregation and convolution neural network. 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE). :1987–1991.
.
2022. Aiming at the prevention of information security risk in protection and control of smart substation, a multi-level security defense method of substation based on data aggregation and convolution neural network (CNN) is proposed. Firstly, the intelligent electronic device(IED) uses "digital certificate + digital signature" for the first level of identity authentication, and uses UKey identification code for the second level of physical identity authentication; Secondly, the device group of the monitoring layer judges whether the data report is tampered during transmission according to the registration stage and its own ID information, and the device group aggregates the data using the credential information; Finally, the convolution decomposition technology and depth separable technology are combined, and the time factor is introduced to control the degree of data fusion and the number of input channels of the network, so that the network model can learn the original data and fused data at the same time. Simulation results show that the proposed method can effectively save communication overhead, ensure the reliable transmission of messages under normal and abnormal operation, and effectively improve the security defense ability of smart substation.
Multi-Robot Security System based on Robot Operating System and Hybridized Blockchain Model. 2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT). :1–6.
.
2022. Multi robot systems are defined as a collection of two or more robots that are capable of working autonomously while coordinating with each other. Three challenges emerge while designing any multi robot system. The robots have to coordinate their path planning or trajectory planning in order to avoid collision during the course of navigation, while collaborating tasks with other robots to achieve a specific end goal for the system. The other challenge, which is the focus of this paper, is the security of the entire multi robot system. Since robots have to coordinate with each other, any one of them being malicious due to any kind of security threat, can lead to a chain reaction that may compromise the entire system. Such security threats can be fatal if not dealt with immediately. This paper proposes the use of a Hybridized Blockchain Model (HBM) to identify such security threats and take necessary actions in real time so that the system does not encounter any catastrophic failure. The proposed security architecture uses ROS (Robot operating system) to decentralize the information collected by robot clients and HBM to monitor the clients and take necessary real time actions.
Multi-subject information interaction and one-way hash chain authentication method for V2G application in Internet of Vehicles. 2022 4th International Conference on Intelligent Information Processing (IIP). :134–137.
.
2022. Internet of Vehicles consists of a three-layer architecture of electric vehicles, charging piles, and a grid dispatch management control center. Therefore, V2G presents multi-level, multi-agent and frequent information interaction, which requires a highly secure and lightweight identity authentication method. Based on the characteristics of Internet of Vehicles, this paper designs a multi-subject information interaction and one-way hash chain authentication method, it includes one-way hash chain and key distribution update strategy. The operation experiment of multiple electric vehicles and charging piles shows that the algorithm proposed in this paper can meet the V2G ID authentication requirements of Internet of Vehicles, and has the advantages of lightweight and low consumption. It is of great significance to improve the security protection level of Internet of Vehicles V2G.
Network Security Situation Assessment Method Based on Absorbing Markov Chain. 2022 International Conference on Networking and Network Applications (NaNA). :556–561.
.
2022. This paper has a new network security evaluation method as an absorbing Markov chain-based assessment method. This method is different from other network security situation assessment methods based on graph theory. It effectively refinement issues such as poor objectivity of other methods, incomplete consideration of evaluation factors, and mismatching of evaluation results with the actual situation of the network. Firstly, this method collects the security elements in the network. Then, using graph theory combined with absorbing Markov chain, the threat values of vulnerable nodes are calculated and sorted. Finally, the maximum possible attack path is obtained by blending network asset information to determine the current network security status. The experimental results prove that the method fully considers the vulnerability and threat node ranking and the specific case of system network assets, which makes the evaluation result close to the actual network situation.
A Network-based IoT Covert Channel. 2022 4th International Conference on Computer Communication and the Internet (ICCCI). :91—99.
.
2022. Information leaks are a top concern to industry and government leaders. The Internet of Things (IoT) is a rapidly growing technology capable of sensing real-world events. IoT devices lack a common security standard and typically use lightweight security solutions, exposing the sensitive real-world data they gather. Covert channels are a practical method of exfiltrating data from these devices.This research presents a novel IoT covert timing channel (CTC) that encodes data within preexisting network information, namely ports or addresses. This method eliminates the need for inter-packet delays (IPD) to encode data. Seven different encoding methods are implemented between two IoT protocols, TCP/IP and ZigBee. The TCP/IP covert channel is created by mimicking a Ring smart doorbell and implemented using Amazon Web Services (AWS) servers to generate traffic. The ZigBee channel is built by copying a Philips Hue lighting system and executed on an isolated local area network (LAN). Variants of the CTC focus either on Stealth or Bandwidth. Stealth methods mimic legitimate traffic captures to make them difficult to detect while the Bandwidth methods forgo this approach for maximum throughput. Detection results are presented using shape-based and regularity-based detection tests.The Stealth results have a throughput of 4.61 bits per second (bps) for TCP/IP and 3.90 bps for ZigBee. They also evade shape and regularity-based detection tests. The Bandwidth methods average 81.7 Kbps for TCP/IP and 9.76 bps for ZigBee but are evident in detection tests. The results show that CTC using address or port encoding can have superior throughput or detectability compared to IPD-based CTCs.
Neural Network-Based DDoS Detection on Edge Computing Architecture. 2022 4th International Conference on Applied Machine Learning (ICAML). :1—4.
.
2022. The safety of the power system is inherently vital, due to the high risk of the electronic power system. In the wave of digitization in recent years, many power systems have been digitized to a certain extent. Under this circumstance, network security is particularly important, in order to ensure the normal operation of the power system. However, with the development of the Internet, network security issues are becoming more and more serious. Among all kinds of network attacks, the Distributed Denial of Service (DDoS) is a major threat. Once, attackers used huge volumes of traffic in short time to bring down the victim server. Now some attackers just use low volumes of traffic but for a long time to create trouble for attack detection. There are many methods for DDoS detection, but no one can fully detect it because of the huge volumes of traffic. In order to better detect DDoS and make sure the safety of electronic power system, we propose a novel detection method based on neural network. The proposed model and its service are deployed to the edge cloud, which can improve the real-time performance for detection. The experiment results show that our model can detect attacks well and has good real-time performance.
Node Protection using Hiding Identity for IPv6 Based Network. 2022 Muthanna International Conference on Engineering Science and Technology (MICEST). :111—117.
.
2022. Protecting an identity of IPv6 packet against Denial-of-Service (DoS) attack, depend on the proposed methods of cryptography and steganography. Reliable communication using the security aspect is the most visible issue, particularly in IPv6 network applications. Problems such as DoS attacks, IP spoofing and other kinds of passive attacks are common. This paper suggests an approach based on generating a randomly unique identities for every node. The generated identity is encrypted and hided in the transmitted packets of the sender side. In the receiver side, the received packet verified to identify the source before processed. Also, the paper involves implementing nine experiments that are used to test the proposed scheme. The scheme is based on creating the address of IPv6, then passing it to the logistics map then encrypted by RSA and authenticated by SHA2. In addition, network performance is computed by OPNET modular. The results showed better computation power consumption in case of lost packet, average events, memory and time, and the better results as total memory is 35,523 KB, average events/sec is 250,52, traffic sent is 30,324 packets/sec, traffic received is 27,227 packets/sec, and lose packets is 3,097 packets/sec.
A non-interactive verifiable computation model of perceptual layer data based on CP-ABE. 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE). :799—803.
.
2022. The computing of smart devices at the perception layer of the power Internet of Things is often insufficient, and complex computing can be outsourced to server resources such as the cloud computing, but the allocation process is not safe and controllable. Under special constraints of the power Internet of Things such as multi-users and heterogeneous terminals, we propose a CP-ABE-based non-interactive verifiable computation model of perceptual layer data. This model is based on CP-ABE, NPOT, FHE and other relevant safety and verifiable theories, and designs a new multi-user non-interactive secure verifiable computing scheme to ensure that only users with the decryption key can participate in the execution of NPOT Scheme. In terms of the calculation process design of the model, we gave a detailed description of the system model, security model, plan. Based on the definition given, the correctness and safety of the non-interactive safety verifiable model design in the power Internet of Things environment are proved, and the interaction cost of the model is analyzed. Finally, it proves that the CP-ABE-based non-interactive verifiable computation model for the perceptual layer proposed in this paper has greatly improved security, applicability, and verifiability, and is able to meet the security outsourcing of computing in the power Internet of Things environment.
Nonlinear cyber-physical system security control under false data injection attack. 2022 41st Chinese Control Conference (CCC). :4311–4316.
.
2022. We investigate the fuzzy adaptive compensation control problem for nonlinear cyber-physical system with false data injection attack over digital communication links. The fuzzy logic system is first introduced to approximate uncertain nonlinear functions. And the time-varying sliding mode surface is designed. Secondly, for the actual require-ment of data transmission, three uniform quantizers are designed to quantify system state and sliding mode surface and control input signal, respectively. Then, the adaptive fuzzy laws are designed, which can effectively compensate for FDI attack and the quantization errors. Furthermore, the system stability and the reachability of sliding surface are strictly guaranteed by using adaptive fuzzy laws. Finally, we use an example to verify the effectiveness of the method.
ISSN: 1934-1768
A Novel and Secure Framework to Detect Unauthorized Access to an Optical Fog-Cloud Computing Network. 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC). :618—622.
.
2022. Securing optical edge devices across an optical network is a critical challenge for the technological capabilities of fog/cloud computing. Locating and blocking rogue devices from transmitting data frames in an optical network is a significant security problem due to their widespread distribution over the optical fog cloud. A malicious actor might simply compromise such a device and execute assaults that degrade the optical channel’s Quality. In this study, we advocate an innovative framework for the use of an optical network to facilitate cloud and fog computing in a safe environment. This framework is sustainable and able to detect hostile equipment in optical fog and cloud and redirect it to a honeypot, where the assault may be halted and analyzed. To do this, it employs a model based on a two-stage hidden Markov, a fog manager based on an intrusion detection system, and an optical virtual honeypot. An internal assault is mitigated by simulated testing of the suggested system. The findings validate the adaptable and affordable access for cloud computing and optical fog.
A Novel Password Secure Mechanism using Reformation based Optimized Honey Encryption and Decryption Technique. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). :877–880.
.
2022. The exponential rise of online services has heightened awareness of safeguarding the various applications that cooperate with and provide Internet users. Users must present their credentials, such as user name and secret code, to the servers to be authorized. This sensitive data should be secured from being exploited due to numerous security breaches, resulting in criminal activity. It is vital to secure systems against numerous risks. This article offers a novel approach to protecting against brute force attacks. A solution is presented where the user obtains the keypad on each occurrence. Following the establishment of the keypad, the webserver produces an encrypted password for the user's Computer/device authentication. The encrypted password will be used for authentication; users must type the amended one-time password (OTP) every time they access the website. This research protects passwords using reformation-based encryption and decryption and optimal honey encryption (OH-E) and decryption.
ISSN: 2768-5330
A Novel Secure Physical Layer Key Generation Method in Connected and Autonomous Vehicles (CAVs). 2022 IEEE Conference on Communications and Network Security (CNS). :1–6.
.
2022. A novel secure physical layer key generation method for Connected and Autonomous Vehicles (CAVs) against an attacker is proposed under fading and Additive White Gaussian Noise (AWGN). In the proposed method, a random sequence key is added to the demodulated sequence to generate a unique pre-shared key (PSK) to enhance security. Extensive computer simulation results proved that an attacker cannot extract the same legitimate PSK generated by the received vehicle even if identical fading and AWGN parameters are used both for the legitimate vehicle and attacker.
Odd-Even Hash Algorithm: A Improvement of Cuckoo Hash Algorithm. 2021 Ninth International Conference on Advanced Cloud and Big Data (CBD). :1—6.
.
2022. Hash-based data structures and algorithms are currently flourishing on the Internet. It is an effective way to store large amounts of information, especially for applications related to measurement, monitoring and security. At present, there are many hash table algorithms such as: Cuckoo Hash, Peacock Hash, Double Hash, Link Hash and D-left Hash algorithm. However, there are still some problems in these hash table algorithms, such as excessive memory space, long insertion and query operations, and insertion failures caused by infinite loops that require rehashing. This paper improves the kick-out mechanism of the Cuckoo Hash algorithm, and proposes a new hash table structure- Odd-Even Hash (OE Hash) algorithm. The experimental results show that OE Hash algorithm is more efficient than the existing Link Hash algorithm, Linear Hash algorithm, Cuckoo Hash algorithm, etc. OE Hash algorithm takes into account the performance of both query time and insertion time while occupying the least space, and there is no insertion failure that leads to rehashing, which is suitable for massive data storage.
An OpenPLC-based Active Real-time Anomaly Detection Framework for Industrial Control Systems. 2022 China Automation Congress (CAC). :5899—5904.
.
2022. In recent years, the design of anomaly detectors has attracted a tremendous surge of interest due to security issues in industrial control systems (ICS). Restricted by hardware resources, most anomaly detectors can only be deployed at the remote monitoring ends, far away from the control sites, which brings potential threats to anomaly detection. In this paper, we propose an active real-time anomaly detection framework deployed in the controller of OpenPLC, which is a standardized open-source PLC and has high scalability. Specifically, we add adaptive active noises to control signals, and then identify a linear dynamic system model of the plant offline and implement it in the controller. Finally, we design two filters to process the estimated residuals based on the obtained model and use χ2 detector for anomaly detection. Extensive experiments are conducted on an industrial control virtual platform to show the effectiveness of the proposed detection framework.
Optimal Energy Storage System Placement for Robust Stabilization of Power Systems Against Dynamic Load Altering Attacks. 2022 30th Mediterranean Conference on Control and Automation (MED). :821–828.
.
2022. This paper presents a study on the "Dynamic Load Altering Attacks" (D-LAAs), their effects on the dynamics of a transmission network, and provides a robust control protection scheme, based on polytopic uncertainties, invariance theory, Lyapunov arguments and graph theory. The proposed algorithm returns an optimal Energy Storage Systems (ESSs) placement, that minimizes the number of ESSs placed in the network, together with the associated control law that can robustly stabilize against D-LAAs. The paper provides a contextualization of the problem and a modelling approach for power networks subject to D-LAAs, suitable for the designed robust control protection scheme. The paper also proposes a reference scenario for the study of the dynamics of the control actions and their effects in different cases. The approach is evaluated by numerical simulations on large networks.
ISSN: 2473-3504
An Optimal Solution for a Human Wrist Rotation Recognition System by Utilizing Visible Light Communication. 2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom). :1–8.
.
2022. Wrist-worn devices enable access to essential information and they are suitable for a wide range of applications, such as gesture and activity recognition. Wrist-worn devices require appropriate technologies when used in sensitive areas, overcoming vulnerabilities in regard to security and privacy. In this work, we propose an approach to recognize wrist rotation by utilizing Visible Light Communication (VLC) that is enabled by low-cost LEDs in an indoor environment. In this regard, we address the channel model of a VLC communicating wristband (VLCcw) in terms of the following factors. The directionality and the spectral composition of the light and the corresponding spectral sensitivity and the directional characteristics of the utilized photodiode (PD). We verify our VLCcw from the simulation environment by a small-scale experimental setup. Then, we analyze the system when white and RGBW LEDs are used. In addition, we optimized the VLCcw system by adding more receivers for the purpose of reducing the number of LEDs on VLCcw. Our results show that the proposed approach generates a feasible real-world simulation environment.
Optimization and Prediction of Intelligent Tourism Data. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :186–188.
.
2022. Tourism is one of the main sources of income in Australia. The number of tourists will affect airlines, hotels and other stakeholders. Predicting the arrival of tourists can make full preparations for welcoming tourists. This paper selects Queensland Tourism data as intelligent data. Carry out data visualization around the intelligent data, establish seasonal ARIMA model, find out the characteristics and predict. In order to improve the accuracy of prediction. Based on the tourism data around Queensland, build a 10 layer Back Propagation neural network model. It is proved that the network shows good performance for the data prediction of this paper.
OUTFS+. An Efficient User-Side Encrypted File System Using IBE With Parallel Encryption. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :760–766.
.
2022. Cloud computing is a fast growing field that provides the user with resources like software, infrastructure and virtual hardware processing power. The steady rise of cloud computing in recent times allowed large companies and even individual users to move towards working with cloud storage systems. However, the risks of leakage of uploaded data in the cloud storage and the questions about the privacy of such systems are becoming a huge problem. Security incidents occur frequently everywhere around the world. Sometimes, data leak may occur at the server side by hackers for their own profit. Data being shared must be encrypted before outsourcing it to the cloud storage. Existing encryption/decryption systems utilize large computational power and have troubles managing the files. This paper introduces a file system that is a more efficient, virtual, with encryption/decryption scheme using parallel encryption. To make encryption and decryption of files easier, Parallel encryption is used in place of serial encryption which is integrated with Identity-Based Encryption in the file system. The proposed file system aims to secure files, reduce the chances of file stored in cloud storage getting leaked thus providing better security. The proposed file system, OutFS+, is more robust and secure than its predecessor, OutFS. Cloud outsourcing takes place faster and the files can be downloaded to the OutFS+ instance on the other side. Moreover, OutFS+ is secure since it is a virtual layer on the operating system and can be unmounted whenever the user wants to.