Biblio
Filters: Keyword is security [Clear All Filters]
Testing and Analysis of IPv6-Based Internet of Things Products for Mission-Critical Network Applications. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM). :66—71.
.
2022. This paper uses the test tool provided by the Internet Protocol Version 6 (IPv6) Forum to test the protocol conformance of IPv6 devices. The installation and testing process of IPv6 Ready Logo protocol conformance test suite developed by TAHI PROJECT team is described in detail. This section describes the test content and evaluation criteria of the suite, analyzes the problems encountered during the installation and use of the suite, describes the method of analyzing the test results of the suite, and describes the test content added to the latest version of the test suite. The test suite can realize automatic testing, the test cases accurately reflect the requirements of the IPv6 protocol specification, can be used to judge whether IPv6-based Internet of Things(IoT) devices meets the relevant protocol standards.
Threat Detection and Response in Linux Endpoints. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :447–449.
.
2022. We demonstrate an in-house built Endpoint Detection and Response (EDR) for linux systems using open-sourced tools like Osquery and Elastic. The advantage of building an in-house EDR tools against using commercial EDR tools provides both the knowledge and the technical capability to detect and investigate security incidents. We discuss the architecture of the tools and advantages it offers. Specifically, in our method all the endpoint logs are collected at a common server which we leverage to perform correlation between events happening on different endpoints and automatically detect threats like pivoting and lateral movements. We discuss various attacks that can be detected by our tool.
ISSN: 2155-2509
Threat detection in Cognitive radio networks using SHA-3 algorithm. TENCON 2022 - 2022 IEEE Region 10 Conference (TENCON). :1–6.
.
2022. Cognitive Radio Network makes intelligent use of the spectrum resources. However, spectrum sensing is vulnerable to numerous harmful assaults. To lower the network's performance, hackers attempt to alter the sensed result. In the fusion centre, blockchain technology is used to make broad judgments on spectrum sensing in order to detect and thwart hostile activities. The sensed local results are hashed using the SHA 3 technique. This improves spectrum sensing precision and effectively thwarts harmful attacks. In comparison to other established techniques like equal gain combining, the simulation results demonstrate higher detection probability and sensing precision. Thus, employing Blockchain technology, cognitive radio network security can be significantly enhanced.
A Threat Model and Security Recommendations for IoT Sensors in Connected Vehicle Networks. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1—5.
.
2022. Intelligent transportation systems, such as connected vehicles, are able to establish real-time, optimized and collision-free communication with the surrounding ecosystem. Introducing the internet of things (IoT) in connected vehicles relies on deployment of massive scale sensors, actuators, electronic control units (ECUs) and antennas with embedded software and communication technologies. Combined with the lack of designed-in security for sensors and ECUs, this creates challenges for security engineers and architects to identify, understand and analyze threats so that actions can be taken to protect the system assets. This paper proposes a novel STRIDE-based threat model for IoT sensors in connected vehicle networks aimed at addressing these challenges. Using a reference architecture of a connected vehicle, we identify system assets in connected vehicle sub-systems such as devices and peripherals that mostly involve sensors. Moreover, we provide a prioritized set of security recommendations, with consideration to the feasibility and deployment challenges, which enables practical applicability of the developed threat model to help specify security requirements to protect critical assets within the sensor network.
The Threat of Deep Fake Technology to Trusted Identity Management. 2022 International Conference on Cyber Resilience (ICCR). :1—5.
.
2022. With the rapid development of artificial intelligence technology, deepfake technology based on deep learning is receiving more and more attention from society or the industry. While enriching people's cultural and entertainment life, in-depth fakes technology has also caused many social problems, especially potential risks to managing network credible identities. With the continuous advancement of deep fakes technology, the security threats and trust crisis caused by it will become more serious. It is urgent to take adequate measures to curb the abuse risk of deep fakes. The article first introduces the principles and characteristics of deep fakes technology and then deeply analyzes its severe challenges to network trusted identity management. Finally, it researches the supervision and technical level and puts forward targeted preventive countermeasures.
Threats and Vulnerabilities Handling via Dual-stack Sandboxing Based on Security Mechanisms Model. 2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE). :113–118.
.
2022. To train new staff to be efficient and ready for the tasks assigned is vital. They must be equipped with knowledge and skills so that they can carry out their responsibility to ensure smooth daily working activities. As transitioning to IPv6 has taken place for more than a decade, it is understood that having a dual-stack network is common in any organization or enterprise. However, many Internet users may not realize the importance of IPv6 security due to a lack of awareness and knowledge of cyber and computer security. Therefore, this paper presents an approach to educating people by introducing a security mechanisms model that can be applied in handling security challenges via network sandboxing by setting up an isolated dual stack network testbed using GNS3 to perform network security analysis. The finding shows that applying security mechanisms such as access control lists (ACLs) and host-based firewalls can help counter the attacks. This proves that knowledge and skills to handle dual-stack security are crucial. In future, more kinds of attacks should be tested and also more types of security mechanisms can be applied on a dual-stack network to provide more information and to provide network engineers insights on how they can benefit from network sandboxing to sharpen their knowledge and skills.
Topic Modeling for Cyber Threat Intelligence (CTI). 2022 Seventh International Conference on Informatics and Computing (ICIC). :1–7.
.
2022. Topic modeling algorithms from the natural language processing (NLP) discipline have been used for various applications. For instance, topic modeling for the product recommendation systems in the e-commerce systems. In this paper, we briefly reviewed topic modeling applications and then described our proposed idea of utilizing topic modeling approaches for cyber threat intelligence (CTI) applications. We improved the previous work by implementing BERTopic and Top2Vec approaches, enabling users to select their preferred pre-trained text/sentence embedding model, and supporting various languages. We implemented our proposed idea as the new topic modeling module for the Open Web Application Security Project (OWASP) Maryam: Open-Source Intelligence (OSINT) framework. We also described our experiment results using a leaked hacker forum dataset (nulled.io) to attract more researchers and open-source communities to participate in the Maryam project of OWASP Foundation.
Toward A Real-Time Elliptic Curve Cryptography-Based Facial Security System. 2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). :364–367.
.
2022. This paper presents a novel approach for a facial security system using elliptic curve cryptography. Face images extracted from input video are encrypted before sending to a remote server. The input face images are completely encrypted by mapping each pixel value of the detected face from the input video frame to a point on an elliptic curve. The original image can be recovered when needed using the elliptic curve cryptography decryption function. Specifically, we modify point multiplication designed for projective coordinates and apply the modified approach in affine coordinates to speed up scalar point multiplication operation. Image encryption and decryption operations are also facilitated using our existing scheme. Simulation results on Visual Studio demonstrate that the proposed systems help accelerate encryption and decryption operations while maintaining information confidentiality.
Towards Black-Box Adversarial Attacks on Interpretable Deep Learning Systems. 2022 IEEE International Conference on Multimedia and Expo (ICME). :1–6.
.
2022. Recent works have empirically shown that neural network interpretability is susceptible to malicious manipulations. However, existing attacks against Interpretable Deep Learning Systems (IDLSes) all focus on the white-box setting, which is obviously unpractical in real-world scenarios. In this paper, we make the first attempt to attack IDLSes in the decision-based black-box setting. We propose a new framework called Dual Black-box Adversarial Attack (DBAA) which can generate adversarial examples that are misclassified as the target class, yet have very similar interpretations to their benign cases. We conduct comprehensive experiments on different combinations of classifiers and interpreters to illustrate the effectiveness of DBAA. Empirical results show that in all the cases, DBAA achieves high attack success rates and Intersection over Union (IoU) scores.
Towards Design Patterns for Production Security. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). :1—4.
.
2022. In Production System Engineering (PSE), domain experts aim at effectively and efficiently analyzing and mitigating information security risks to product and process qualities for manufacturing. However, traditional security standards do not connect security analysis to the value stream of the production system nor to production quality requirements. This paper aims at facilitating security analysis for production quality already in the design phase of PSE. In this paper, we (i) identify the connection between security and production quality, and (ii) introduce the Production Security Network (PSN) to efficiently derive reusable security requirements and design patterns for PSE. We evaluate the PSN with threat scenarios in a feasibility study. The study results indicate that the PSN satisfies the requirements for systematic security analysis. The design patterns provide a good foundation for improving the communication of domain experts by connecting security and quality concerns.
Towards the Integration of Security and Safety Patterns in the Design of Safety-Critical Embedded Systems. 2022 4th International Conference on Applied Automation and Industrial Diagnostics (ICAAID). 1:1–6.
.
2022. The design of safety-critical embedded systems is a complex process that involves the reuse of proven solutions to fulfill a set of requirements. While safety is considered as the major requirement to be satisfied in safety-critical embedded systems, the security attacks can affect the security as well as the safety of these systems. Therefore, ensuring the security of the safety-critical embedded systems is as important as ensuring the safety requirements. The concept of design patterns, which provides common solutions to widely recurring design problems, have been extensively engaged in the design of the hardware and software in many fields, including embedded systems. However, there is an inadequacy of experience with security patterns in the field of safety-critical embedded systems. To address this problem, this paper proposes an approach to integrate security patterns with safety patterns in the design of safety-critical embedded systems. Moreover, it presents a customized representation for security patterns to be more relevant to the common safety patterns in the context of safety-critical embedded systems.
A traditional medicine intellectual property protection scheme based on Hyperledger Fabric. 2022 4th International Conference on Advances in Computer Technology, Information Science and Communications (CTISC). :1–5.
.
2022. Due to its decentralized trust mechanism, blockchain is increasingly used as a trust intermediary for multi-party cooperation to reduce the cost and risk of maintaining centralized trust nowadays. And as the requirements for privacy and high throughput, consortium blockchain is widely used in data sharing and business cooperation in practical application scenarios. Nowadays, the protection of traditional medicine has been regarded as human intangible cultural heritage in recent years, but this kind of protection still faces the problem that traditional medicine prescriptions are unsuitable for disclosure and difficult to protect. Hyperledger is a consortium blockchain featuring authorized access, high throughput, and tamper-resistance, making it ideal for privacy protection and information depository in traditional medicine protection. This study proposes a solution for intellectual property protection of traditional medicine by using a blockchain platform to record prescription iterations and clinical trial data. The privacy and confidentiality of Hyperledger can keep intellectual property information safe and private. In addition, the author proposes to invite the Patent Offices and legal institutions to join the blockchain network, maintain users' properties and issue certificates, which can provide a legal basis for rights protection when infringement occurs. Finally, the researchers have built a system corresponding to the scheme and tested the system. The test outcomes of the system can explain the usability of the system. And through the test of system throughput, under low system configuration, it can reach about 200 query operations per second, which can meet the application requirements of relevant organizations and governments.
Transient Stability Assessment and Dynamic Security Region in Power Electronics Dominated Power Systems. 2022 IEEE International Conference on Power Systems Technology (POWERCON). :1—6.
.
2022. Transient stability accidents induced by converter-based resources have been emerging frequently around the world. In this paper, the transient stability of the grid-tied voltage source converter (VSC) system is studied through estimating the basin of attraction (BOA) based on the hyperplane or hypersurface method. Meanwhile, fault critical clearing times are estimated, based on the approximated BOA and numerical fault trajectory. Further, the dynamic security region (DSR), an important index in traditional power systems, is extended to power-electronics-dominated power systems in this paper. The DSR of VSC is defined in the space composed of active current references. Based on the estimated BOA, the single-VSC-infinite-bus system is taken as an example and its DSR is evaluated. Finally, all these analytical results are well verified by several numerical simulations in MATLAB/Simulink.
The transitional phase of Boost.Asio and POCO C++ networking libraries towards IPv6 and IoT networking security. 2022 IEEE International Conference on Smart Internet of Things (SmartIoT). :80—85.
.
2022. With the global transition to the IPv6 (Internet Protocol version 6), IP (Internet Protocol) validation efficiency and IPv6 support from the aspect of network programming are gaining more importance. As global computer networks grow in the era of IoT (Internet of Things), IP address validation is an inevitable process for assuring strong network privacy and security. The complexity of IP validation has been increased due to the rather drastic change in the memory architecture needed for storing IPv6 addresses. Low-level programming languages like C/C++ are a great choice for handling memory spaces and working with simple devices connected in an IoT (Internet of Things) network. This paper analyzes some user-defined and open-source implementations of IP validation codes in Boost. Asio and POCO C++ networking libraries, as well as the IP security support provided for general networking purposes and IoT. Considering a couple of sample codes, the paper gives a conclusion on whether these C++ implementations answer the needs for flexibility and security of the upcoming era of IPv6 addressed computers.
True-Time-Delay Line of Chipless RFID Tag for Security & IoT Sensing Applications. 2022 5th International Conference on Information and Communications Technology (ICOIACT). :1–6.
.
2022. In this paper, a novel composite right/left-handed transmission line (CRLH TL) 3-unit cell is presented for finding excellent time-delay (TD) efficiency of Chipless RFID's True-Time-Delay Lines (TTDLs). RFID (Radio Frequency Identification) is a non-contact automatic identification technology that uses radio frequency (RF) signals to identify target items automatically and retrieve pertinent data without the need for human participation. However, as compared to barcodes, RFID tags are prohibitively expensive and complex to manufacture. Chipless RFID tags are RFID tags that do not contain silicon chips and are therefore less expensive and easier to manufacture. It combines radio broadcasting technology with radar technology. Radio broadcasting technology use radio waves to send and receive voice, pictures, numbers, and symbols, whereas radar technology employs the radio wave reflection theory. Chipless RFID lowers the cost of sensors such as gas, temperature, humidity, and pressure. In addition, Chipless RFID tags can be used as sensors which are also required for security purposes and future IoT applications.
ISSN: 2770-4661
A Trust Based DNS System to Prevent Eclipse Attack on Blockchain Networks. 2022 15th International Conference on Security of Information and Networks (SIN). :01—08.
.
2022. The blockchain network is often considered a reliable and secure network. However, some security attacks, such as eclipse attacks, have a significant impact on blockchain networks. In order to perform an eclipse attack, the attacker must be able to control enough IP addresses. This type of attack can be mitigated by blocking incoming connections. Connected machines may only establish outbound connections to machines they trust, such as those on a whitelist that other network peers maintain. However, this technique is not scalable since the solution does not allow nodes with new incoming communications to join the network. In this paper, we propose a scalable and secure trust-based solution against eclipse attacks with a peer-selection strategy that minimizes the probability of eclipse attacks from nodes in the network by developing a trust point. Finally, we experimentally analyze the proposed solution by creating a network simulation environment. The analysis results show that the proposed solution reduces the probability of an eclipse attack and has a success rate of over 97%.
Trust-Aware Security system for Dynamic Southbound Communication in Software Defined Network. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :93—97.
.
2022. The vast proliferation of the connected devices makes the operation of the traditional networks so complex and drops the network performance, particularly, failure cases. In fact, a novel solution is proposed to enable the management of the network resources and services named software defined network (SDN). SDN splits the data plane and the control plane by centralizing all the control plane on one common platform. Further, SDN makes the control plane programmable by offering high flexibility for the network management and monitoring mostly in failure cases. However, the main challenge in SDN is security that is presented as the first barrier for its development. Security in SDN is presented at various levels and forms, particularly, the communication between the data plane and control plane that presents a weak point in SDN framework. In this article, we suggest a new security framework focused on the combination between the trust and awareness concepts (TAS-SDN) for a dynamic southbound communication SDN. Further, TAS-SDN uses trust levels to establish a secure communication between the control plane and data plane. As a result, we discuss the implementation and the performance of TAS-SDN which presents a promote security solution in terms of time execution, complexity and scalability for SDN.
U-CAN: A Convolutional Neural Network Based Intrusion Detection for Controller Area Networks. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :1481–1488.
.
2022. The Controller area network (CAN) is the most extensively used in-vehicle network. It is set to enable communication between a number of electronic control units (ECU) that are widely found in most modern vehicles. CAN is the de facto in-vehicle network standard due to its error avoidance techniques and similar features, but it is vulnerable to various attacks. In this research, we propose a CAN bus intrusion detection system (IDS) based on convolutional neural networks (CNN). U-CAN is a segmentation model that is trained by monitoring CAN traffic data that are preprocessed using hamming distance and saliency detection algorithm. The model is trained and tested using publicly available datasets of raw and reverse-engineered CAN frames. With an F\_1 Score of 0.997, U-CAN can detect DoS, Fuzzy, spoofing gear, and spoofing RPM attacks of the publicly available raw CAN frames. The model trained on reverse-engineered CAN signals that contain plateau attacks also results in a true positive rate and false-positive rate of 0.971 and 0.998, respectively.
ISSN: 0730-3157
The Unexplored Terrain of Compiler Warnings. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :283–284.
.
2022. The authors' industry experiences suggest that compiler warnings, a lightweight version of program analysis, are valuable early bug detection tools. Significant costs are associated with patches and security bulletins for issues that could have been avoided if compiler warnings were addressed. Yet, the industry's attitude towards compiler warnings is mixed. Practices range from silencing all compiler warnings to having a zero-tolerance policy as to any warnings. Current published data indicates that addressing compiler warnings early is beneficial. However, support for this value theory stems from grey literature or is anecdotal. Additional focused research is needed to truly assess the cost-benefit of addressing warnings.
Vehicle Security and Road Safety System Based on Internet of Things. 2022 IEEE International Conference on Current Development in Engineering and Technology (CCET). :1–5.
.
2022. Roads are the backbone of our country, they play an important role for human progress. Roads seem to be dangerous and harmful for human beings on hills, near rivers, lakes and small ridges. It's possible with the help of IoT (Internet of things) to incorporate all the things made efficiently and effectively. IoT in combination with roads make daily life smart and excellent. This paper shows IoT technology will be the beginning of smart cities and it will reduce road accidents and collisions. If all vehicles are IoT based and connected with the internet, then an efficient method to guide, it performs urgent action, when less time is available. Internet and antenna technology in combination with IoT perform fully automation in our day-to-day life. It will provide excellent service as well as accuracy and precision.
Vulnerability Assessment framework for a Smart Grid. 2022 4th Global Power, Energy and Communication Conference (GPECOM). :449—454.
.
2022. The increasing demand for the interconnected IoT based smart grid is facing threats from cyber-attacks due to inherent vulnerability in the smart grid network. There is a pressing need to evaluate and model these vulnerabilities in the network to avoid cascading failures in power systems. In this paper, we propose and evaluate a vulnerability assessment framework based on attack probability for the protection and security of a smart grid. Several factors were taken into consideration such as the probability of attack, propagation of attack from a parent node to child nodes, effectiveness of basic metering system, Kalman estimation and Advanced Metering Infrastructure (AMI). The IEEE-300 bus smart grid was simulated using MATPOWER to study the effectiveness of the proposed framework by injecting false data injection attacks (FDIA); and studying their propagation. Our results show that the use of severity assessment standards such as Common Vulnerability Scoring System (CVSS), AMI measurements and Kalman estimates were very effective for evaluating the vulnerability assessment of smart grid in the presence of FDIA attack scenarios.
Vulnerability Modeling and Protection Strategies via Supervisory Control Theory. 2022 IEEE 11th Global Conference on Consumer Electronics (GCCE). :559–560.
.
2022. The paper aims to discover vulnerabilities by application of supervisory control theory and to design a defensive supervisor against vulnerability attacks. Supervisory control restricts the system behavior to satisfy the control specifications. The existence condition of the supervisor, sometimes results in undesirable plant behavior, which can be regarded as a vulnerability of the control specifications. We aim to design a more robust supervisor against this vulnerability.
ISSN: 2378-8143
Web Platform for General Robot Controlling system. 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :109–112.
.
2022. AbuSaif is a human-like social robot designed and built at the UAE University's Artificial Intelligence and Robotics Lab. AbuSaif was initially operated by a classical personal computer (PC), like most of the existing social robots. Thus, most of the robot's functionalities are limited to the capacity of that mounted PC. To overcome this, in this study, we propose a web-based platform that shall take the benefits of clustering in cloud computing. Our proposed platform will increase the operational capability and functionality of AbuSaif, especially those needed to operate artificial intelligence algorithms. We believe that the robot will become more intelligent and autonomous using our proposed web platform.
WhatsApp: Cyber Security Risk Management, Governance and Control. 2022 Fifth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU). :160–165.
.
2022. This document takes an in-depth approach to identify WhatsApp's Security risk management, governance and controls. WhatsApp is a communication mobile application that is available on both android and IOS, recently acquired by Facebook and allows us to stay connected. This document identifies all necessary assets, threats, vulnerabilities, and risks to WhatsApp and further provides mitigations and security controls to possibly utilize and secure the application.
When Does Backdoor Attack Succeed in Image Reconstruction? A Study of Heuristics vs. Bi-Level Solution ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :4398—4402.
.
2022. Recent studies have demonstrated the lack of robustness of image reconstruction networks to test-time evasion attacks, posing security risks and potential for misdiagnoses. In this paper, we evaluate how vulnerable such networks are to training-time poisoning attacks for the first time. In contrast to image classification, we find that trigger-embedded basic backdoor attacks on these models executed using heuristics lead to poor attack performance. Thus, it is non-trivial to generate backdoor attacks for image reconstruction. To tackle the problem, we propose a bi-level optimization (BLO)-based attack generation method and investigate its effectiveness on image reconstruction. We show that BLO-generated back-door attacks can yield a significant improvement over the heuristics-based attack strategy.