Biblio

Filters: Keyword is attacks  [Clear All Filters]
2021-03-09
Oosthoek, K., Doerr, C..  2020.  From Hodl to Heist: Analysis of Cyber Security Threats to Bitcoin Exchanges. 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1—9.

Bitcoin is gaining traction as an alternative store of value. Its market capitalization transcends all other cryptocurrencies in the market. But its high monetary value also makes it an attractive target to cyber criminal actors. Hacking campaigns usually target the weakest points in an ecosystem. In Bitcoin, these are currently the exchange platforms. As each exchange breach potentially decreases Bitcoin's market value by billions, it is a threat not only to direct victims, but to everyone owning Bitcoin. Based on an extensive analysis of 36 breaches of Bitcoin exchanges, we show the attack patterns used to exploit Bitcoin exchange platforms using an industry standard for reporting intelligence on cyber security breaches. Based on this we are able to provide an overview of the most common attack vectors, showing that all except three hacks were possible due to relatively lax security. We also show that while the security regimen of Bitcoin exchanges is not on par with other financial service providers, the use of stolen credentials, which does not require any hacking, is decreasing. We also show that the amount of BTC taken during a breach is decreasing, as well as the exchanges that terminate after being breached. With exchanges being targeted by nation-state hacking groups, security needs to be a first concern.

2020-03-02
Alioto, Massimo, Taneja, Sachin.  2019.  Enabling Ubiquitous Hardware Security via Energy-Efficient Primitives and Systems : (Invited Paper). 2019 IEEE Custom Integrated Circuits Conference (CICC). :1–8.
Security down to hardware (HW) has become a fundamental requirement in highly-connected and ubiquitously deployed systems, as a result of the recent discovery of a wide range of vulnerabilities in commercial devices, as well as the affordability of several attacks that were traditionally considered unlikely. HW security is now a fundamental requirement in view of the massive attack surface that they expose, and the substantial power penalty entailed by solutions at higher levels of abstraction.In large-scale networks of connected devices, attacks need to be counteracted at low cost down to individual nodes, which need to be identified or authenticated securely, and protect confidentiality and integrity of the data that is sensed, stored, processed and wirelessly exchanged. In many security-sensitive applications, physical attacks against individual chips need to be counteracted to truly enable an end-to-end chain of trust from nodes to cloud and actuation (i.e., always-on security). These requirements have motivated the on-going global research and development effort to assure hardware security at low cost and power penalty down to low-end devices (i.e., ubiquitous security).This paper provides a fresh overview of the fundamentals, the design requirements and the state of the art in primitives for HW security. Challenges and future directions are discussed using recent silicon demonstrations as case studies.
2020-02-24
Tahir, Faiza, Nasir, Samra, Khalid, Zainab.  2019.  Privacy-Preserving Authentication Protocol based on Hybrid Cryptography for VANETs. 2019 International Conference on Applied and Engineering Mathematics (ICAEM). :80–85.
The key concerns in VANET communication are the security and privacy of the vehicles involved, but at the same time an efficient way to provide non-repudiation in the ad-hoc network is an important requirement. Most schemes proposed are using public key infrastructure (PKI) or symmetric key encryption to achieve security in VANET; both individually lack in serving the required purpose of providing privacy preservation of the involved On-Board Units (OBUs) (while still being able to offer non-repudiation) and amount to very sizeable overheads in computation. This paper proposes a privacy-preserving authentication protocol that employs hybrid cryptography, using the best features of PKI and symmetric cryptography to form a protocol that is scalable, efficient and offers services of integrity, non-repudiation, conditional privacy, and unlinkability; while still keeping the computational overhead at a reasonable level. The performance and security analysis of this scheme is provided to support the propositions.
2020-06-01
Surnin, Oleg, Hussain, Fatima, Hussain, Rasheed, Ostrovskaya, Svetlana, Polovinkin, Andrey, Lee, JooYoung, Fernando, Xavier.  2019.  Probabilistic Estimation of Honeypot Detection in Internet of Things Environment. 2019 International Conference on Computing, Networking and Communications (ICNC). :191–196.
With the emergence of the Internet of Things (IoT) and the increasing number of resource-constrained interconnected smart devices, there is a noticeable increase in the number of cyber security crimes. In the face of the possible attacks on IoT networks such as network intrusion, denial of service, spoofing and so on, there is a need to develop efficient methods to locate vulnerabilities and mitigate attacks in IoT networks. Without loss of generality, we consider only intrusion-related threats to IoT. A honeypot is a system used to understand the potential dynamic threats and act as a proactive measure to detect any intrusion into the network. It is used as a trap for intruders to control unauthorized access to the network by analyzing malicious traffic. However, a sophisticated attacker can detect the presence of a honeypot and abort the intrusion mission. Therefore it is essential for honeypots to be undetectable. In this paper, we study and analyze possible techniques for SSH and telnet honeypot detection. Moreover, we propose a new methodology for probabilistic estimation of honeypot detection and an automated software implemented this methodology.
2020-04-17
Nair, Harsha, Sridaran, R..  2019.  An Innovative Model (HS) to Enhance the Security in Windows Operating System - A Case Study. 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom). :1207—1211.

Confidentiality, authentication, privacy and integrity are the pillars of securing data. The most generic way of providing security is setting up passwords and usernames collectively known as login credentials. Operating systems use different techniques to ensure security of login credentials yet brute force attacks and dictionary attacks along with various other types which leads to success in passing or cracking passwords.The objective of proposed HS model is to enhance the protection of SAM file used by Windows Registry so that the system is preserved from intruders.

2020-12-01
SAADI, C., kandrouch, i, CHAOUI, H..  2019.  Proposed security by IDS-AM in Android system. 2019 5th International Conference on Optimization and Applications (ICOA). :1—7.

Mobile systems are always growing, automatically they need enough resources to secure them. Indeed, traditional techniques for protecting the mobile environment are no longer effective. We need to look for new mechanisms to protect the mobile environment from malicious behavior. In this paper, we examine one of the most popular systems, Android OS. Next, we will propose a distributed architecture based on IDS-AM to detect intrusions by mobile agents (IDS-AM).

2020-12-17
Basan, E., Gritsynin, A., Avdeenko, T..  2019.  Framework for Analyzing the Security of Robot Control Systems. 2019 International Conference on Information Systems and Computer Science (INCISCOS). :354—360.

The purpose of this work is to analyze the security model of a robotized system, to analyze the approaches to assessing the security of this system, and to develop our own framework. The solution to this problem involves the use of developed frameworks. The analysis will be conducted on a robotic system of robots. The prefix structures assume that the robotic system is divided into levels, and after that it is necessary to directly protect each level. Each level has its own characteristics and drawbacks that must be considered when developing a security system for a robotic system.

2020-07-06
Sheela, A., Revathi, S., Iqbal, Atif.  2019.  Cyber Risks Assessment For Intelligent And Non-Intelligent Attacks In Power System. 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC). :40–45.
Smart power grid is a perfect model of Cyber Physical System (CPS) which is an important component for a comfortable life. The major concern of the electrical network is safety and reliable operation. A cyber attacker in the operation of power system would create a major damage to the entire power system structure and affect the continuity of the power supply by adversely changing its parameters. A risk assessment method is presented for evaluating the cyber security assessment of power systems taking into consideration the need for protection systems. The paper considers the impact of bus and transmission line protection systems located in substations on the cyber physical performance of power systems. The proposed method is to simulate the response of power systems to sudden attacks on various power system preset value and parameters. This paper focuses on the cyber attacks which occur in a co-ordinated way so that many power system components will be in risk. The risk can be modelled as the combined probability of power system impact due to attacks and of successful interruption into the system. Stochastic Petri Nets is employed for assessing the risks. The effectiveness of the proposed cyber security risk assessment method is simulated for a IEEE39 bus system.
2020-10-19
Indira, K, Ajitha, P, Reshma, V, Tamizhselvi, A.  2019.  An Efficient Secured Routing Protocol for Software Defined Internet of Vehicles. 2019 International Conference on Computational Intelligence in Data Science (ICCIDS). :1–4.
Vehicular ad hoc network is one of most recent research areas to deploy intelligent Transport System. Due to their highly dynamic topology, energy constrained and no central point coordination, routing with minimal delay, minimal energy and maximize throughput is a big challenge. Software Defined Networking (SDN) is new paradigm to improve overall network lifetime. It incorporates dynamic changes with minimal end-end delay, and enhances network intelligence. Along with this, intelligence secure routing is also a major constraint. This paper proposes a novel approach to Energy efficient secured routing protocol for Software Defined Internet of vehicles using Restricted Boltzmann Algorithm. This algorithm is to detect hostile routes with minimum delay, minimum energy and maximum throughput compared with traditional routing protocols.
2020-09-18
Ling, Mee Hong, Yau, Kok-Lim Alvin.  2019.  Can Reinforcement Learning Address Security Issues? an Investigation into a Clustering Scheme in Distributed Cognitive Radio Networks 2019 International Conference on Information Networking (ICOIN). :296—300.

This paper investigates the effectiveness of reinforcement learning (RL) model in clustering as an approach to achieve higher network scalability in distributed cognitive radio networks. Specifically, it analyzes the effects of RL parameters, namely the learning rate and discount factor in a volatile environment, which consists of member nodes (or secondary users) that launch attacks with various probabilities of attack. The clusterhead, which resides in an operating region (environment) that is characterized by the probability of attacks, countermeasures the malicious SUs by leveraging on a RL model. Simulation results have shown that in a volatile operating environment, the RL model with learning rate α= 1 provides the highest network scalability when the probability of attacks ranges between 0.3 and 0.7, while the discount factor γ does not play a significant role in learning in an operating environment that is volatile due to attacks.

2020-06-01
Nandhini, P.S., Mehtre, B.M..  2019.  Intrusion Detection System Based RPL Attack Detection Techniques and Countermeasures in IoT: A Comparison. 2019 International Conference on Communication and Electronics Systems (ICCES). :666—672.

Routing Protocol for Low power and Lossy Network (RPL) is a light weight routing protocol designed for LLN (Low Power Lossy Networks). It is a source routing protocol. Due to constrained nature of resources in LLN, RPL is exposed to various attacks such as blackhole attack, wormhole attack, rank attack, version attack, etc. IDS (Intrusion Detection System) is one of the countermeasures for detection and prevention of attacks for RPL based loT. Traditional IDS techniques are not suitable for LLN due to certain characteristics like different protocol stack, standards and constrained resources. In this paper, we have presented various IDS research contribution for RPL based routing attacks. We have also classified the proposed IDS in the literature, according to the detection techniques. Therefore, this comparison will be an eye-opening stuff for future research in mitigating routing attacks for RPL based IoT.

2020-03-02
Lastinec, Jan, Keszeli, Mario.  2019.  Analysis of Realistic Attack Scenarios in Vehicle Ad-Hoc Networks. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1–6.

The pace of technological development in automotive and transportation has been accelerating rapidly in recent years. Automation of driver assistance systems, autonomous driving, increasing vehicle connectivity and emerging inter-vehicular communication (V2V) are among the most disruptive innovations, the latter of which also raises numerous unprecedented security concerns. This paper is focused on the security of V2V communication in vehicle ad-hoc networks (VANET) with the main goal of identifying realistic attack scenarios and evaluating their impact, as well as possible security countermeasures to thwart the attacks. The evaluation has been done in OMNeT++ simulation environment and the results indicate that common attacks, such as replay attack or message falsification, can be eliminated by utilizing digital signatures and message validation. However, detection and mitigation of advanced attacks such as Sybil attack requires more complex approach. The paper also presents a simple detection method of Sybil nodes based on measuring the signal strength of received messages and maintaining reputation of sending nodes. The evaluation results suggest that the presented method is able to detect Sybil nodes in VANET and contributes to the improvement of traffic flow.

2020-02-10
Rizvi, Syed, Imler, Jarrett, Ritchey, Luke, Tokar, Michael.  2019.  Securing PKES against Relay Attacks using Coordinate Tracing and Multi-Factor Authentication. 2019 53rd Annual Conference on Information Sciences and Systems (CISS). :1–6.

In most produced modern vehicles, Passive Keyless Entry and Start System (PKES), a newer form of an entry access system, is becoming more and more popular. The PKES system allows the consumer to enter within a certain range and have the vehicle's doors unlock automatically without pressing any buttons on the key. This technology increases the overall convenience to the consumer; however, it is vulnerable to attacks known as relay and amplified relay attacks. A relay attack consists of placing a device near the vehicle and a device near the key to relay the signal between the key and the vehicle. On the other hand, an amplified relay attack uses only a singular amplifier to increase the range of the vehicle sensors to reach the key. By exploiting these two different vulnerabilities within the PKES system, an attacker can gain unauthorized access to the vehicle, leading to damage or even stolen property. To minimize both vulnerabilities, we propose a coordinate tracing system with an additional Bluetooth communication channel. The coordinate tracing system, or PKES Forcefield, traces the authorized key's longitude and latitude in real time using two proposed algorithms, known as the Key Bearing algorithm and the Longitude and Latitude Key (LLK) algorithm. To further add security, a Bluetooth communication channel will be implemented. With an additional channel established, a second frequency can be traced within a secondary PKES Forcefield. The LLK Algorithm computes both locations of frequencies and analyzes the results to form a pattern. Furthermore, the PKES Forcefield movement-tracing allows a vehicle to understand when an attacker attempts to transmit an unauthenticated signal and blocks any signal from being amplified over a fixed range.

2020-04-06
Shen, Yuanqi, Li, You, Kong, Shuyu, Rezaei, Amin, Zhou, Hai.  2019.  SigAttack: New High-level SAT-based Attack on Logic Encryptions. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :940–943.
Logic encryption is a powerful hardware protection technique that uses extra key inputs to lock a circuit from piracy or unauthorized use. The recent discovery of the SAT-based attack with Distinguishing Input Pattern (DIP) generation has rendered all traditional logic encryptions vulnerable, and thus the creation of new encryption methods. However, a critical question for any new encryption method is whether security against the DIP-generation attack means security against all other attacks. In this paper, a new high-level SAT-based attack called SigAttack has been discovered and thoroughly investigated. It is based on extracting a key-revealing signature in the encryption. A majority of all known SAT-resilient encryptions are shown to be vulnerable to SigAttack. By formulating the condition under which SigAttack is effective, the paper also provides guidance for the future logic encryption design.
2020-01-27
Matyukhina, Alina, Stakhanova, Natalia, Dalla Preda, Mila, Perley, Celine.  2019.  Adversarial Authorship Attribution in Open-Source Projects. Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy. :291–302.

Open-source software is open to anyone by design, whether it is a community of developers, hackers or malicious users. Authors of open-source software typically hide their identity through nicknames and avatars. However, they have no protection against authorship attribution techniques that are able to create software author profiles just by analyzing software characteristics. In this paper we present an author imitation attack that allows to deceive current authorship attribution systems and mimic a coding style of a target developer. Withing this context we explore the potential of the existing attribution techniques to be deceived. Our results show that we are able to imitate the coding style of the developers based on the data collected from the popular source code repository, GitHub. To subvert author imitation attack, we propose a novel author obfuscation approach that allows us to hide the coding style of the author. Unlike existing obfuscation tools, this new obfuscation technique uses transformations that preserve code readability. We assess the effectiveness of our attacks on several datasets produced by actual developers from GitHub, and participants of the GoogleCodeJam competition. Throughout our experiments we show that the author hiding can be achieved by making sensible transformations which significantly reduce the likelihood of identifying the author's style to 0% by current authorship attribution systems.

2020-12-11
Kousri, M. R., Deniau, V., Gransart, C., Villain, J..  2019.  Optimized Time-Frequency Processing Dedicated to the Detection of Jamming Attacks on Wi-Fi Communications. 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC). :1—4.

Attacks by Jamming on wireless communication network can provoke Denial of Services. According to the communication system which is affected, the consequences can be more or less critical. In this paper, we propose to develop an algorithm which could be implemented at the reception stage of a communication terminal in order to detect the presence of jamming signals. The work is performed on Wi-Fi communication signals and demonstrates the necessity to have a specific signal processing at the reception stage to be able to detect the presence of jamming signals.

2020-09-04
Khan, Samar, Khodke, Priti A., Bhagat, Amol P..  2018.  An Approach to Fault Tolerant Key Generation and Secure Spread Spectrum Communiction. 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE). :1—6.
Wireless communications have encountered a considerable improvement and have integrated human life through various applications, mainly by the widespread of mobile ad hoc and sensor networks. A fundamental characteristic of wireless communications are in their broadcast nature, which allows accessibility of information without placing restrictions on a user's location. However, accessibility also makes wireless communications vulnerable to eavesdropping. To enhance the security of network communication, we propose a separate key generation server which is responsible for key generation using complex random algorithm. The key will remain in database in encrypted format. To prevent brute force attack, we propose various group key generation algorithms in which every group will have separate group key to verify group member's identity. The group key will be verified with the session information before decryption, so that our system will prevent attack if any attacker knows the group key. To increase the security of the system, we propose three level encryption securities: Client side encryption using AES, Server side encryption using AES, and Artificial noise generation and addition. By using this our system is free from brute force attack as we are using three level message security and complex Random key generation algorithms.
2019-12-16
Murvay, Pal-Stefan, Groza, Bogdan.  2018.  A Brief Look at the Security of DeviceNet Communication in Industrial Control Systems. Proceedings of the Central European Cybersecurity Conference 2018. :5:1–5:6.
Security is a vital aspect of industrial control systems since they are used in critical infrastructures and manufacturing processes. As demonstrated by the increasing number of emerging exploits, securing such systems is still a challenge as the employed fieldbus technologies do not offer intrinsic support for basic security objectives. In this work we discuss some security aspects of DeviceNet, a communication protocol widely used for control applications especially in the North American industrial sector. Having the Controller Area Network (CAN) protocol at its base, DeviceNet inherits all the vulnerabilities that were already illustrated on CAN in-vehicle communication. We discuss how the lack of security in DeviceNet can be exploited and point on the fact that these vulnerabilities can be modelled by existing formal verification tools and countermeasures can be put in place.
2019-03-04
Elbez, Ghada, Keller, Hubert B., Hagenmeyer, Veit.  2018.  A New Classification of Attacks Against the Cyber-Physical Security of Smart Grids. Proceedings of the 13th International Conference on Availability, Reliability and Security. :63:1–63:6.
Modern critical infrastructures such as Smart Grids (SGs) rely heavily on Information and Communication Technology (ICT) systems to monitor and control operations and states within large-scale facilities. The potential offered by SGs includes an effective integration of renewables, a demand-response action and a dynamic pricing system. The increasing use of ICT for the communication infrastructure of modern power systems offers advantages but can give rise to cyber attacks that compromise the security of the SG. To deal efficiently with the security concerns of SGs, a survey of the different attacks that consider the physical as well as the cyber characteristics of modern power grids is required. In the present paper, first the specific differences between SGs with respect to both Information Technology (IT) systems and conventional energy grids are discussed. Thereafter, the specific security requirements of SGs are presented in order to raise awareness of the new security challenges. Finally, a new classification of cyber attacks, based on the architecture of the SG, is proposed and details for each category are provided. The new classification is distinguished by its focus on the cyber-physical security of the SG in particular, which gives a comprehensive overview of the different threats. Thus, this new classification forms the necessary knowledge-basis for the design of respective countermeasures.
2019-12-18
M, Suchitra, S M, Renuka, Sreerekha, Lingaraj K..  2018.  DDoS Prevention Using D-PID. 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). :453-457.

In recent years, the attacks on systems have increased and among such attack is Distributed Denial of Service (DDoS) attack. The path identifiers (PIDs) used for inter-domain routing are static, which makes it easier the attack easier. To address this vulnerability, this paper addresses the usage of Dynamic Path Identifiers (D-PIDs) for routing. The PID of inter-domain path connector is kept oblivious and changes dynamically, thus making it difficult to attack the system. The prototype designed with major components like client, server and router analyses the outcome of D-PID usage instead of PIDs. The results show that, DDoS attacks can be effectively prevented if Dynamic Path Identifiers (D-PIDs) are used instead of Static Path Identifiers (PIDs).

2019-06-10
Hmouda, E., Li, W..  2018.  Detection and Prevention of Attacks in MANETs by Improving the EAACK Protocol. SoutheastCon 2018. :1–7.

Mobile Ad Hoc Networks are dynamic in nature and have no rigid or reliable network infrastructure by their very definition. They are expected to be self-governed and have dynamic wireless links which are not entirely reliable in terms of connectivity and security. Several factors could cause their degradation, such as attacks by malicious and selfish nodes which result in data carrying packets being dropped which in turn could cause breaks in communication between nodes in the network. This paper aims to address the issue of remedy and mitigation of the damage caused by packet drops. We proposed an improvement on the EAACK protocol to reduce the network overhead packet delivery ratio by using hybrid cryptography techniques DES due to its higher efficiency in block encryption, and RSA due to its management in key cipher. Comparing to the existing approaches, our simulated results show that hybrid cryptography techniques provide higher malicious behavior detection rates, and improve the performance. This research can also lead to more future efforts in using hybrid encryption based authentication techniques for attack detection/prevention in MANETs.

2019-02-14
Jenkins, J., Cai, H..  2018.  Leveraging Historical Versions of Android Apps for Efficient and Precise Taint Analysis. 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR). :265-269.

Today, computing on various Android devices is pervasive. However, growing security vulnerabilities and attacks in the Android ecosystem constitute various threats through user apps. Taint analysis is a common technique for defending against these threats, yet it suffers from challenges in attaining practical simultaneous scalability and effectiveness. This paper presents a novel approach to fast and precise taint checking, called incremental taint analysis, by exploiting the evolving nature of Android apps. The analysis narrows down the search space of taint checking from an entire app, as conventionally addressed, to the parts of the program that are different from its previous versions. This technique improves the overall efficiency of checking multiple versions of the app as it evolves. We have implemented the techniques as a tool prototype, EVOTAINT, and evaluated our analysis by applying it to real-world evolving Android apps. Our preliminary results show that the incremental approach largely reduced the cost of taint analysis, by 78.6% on average, yet without sacrificing the analysis effectiveness, relative to a representative precise taint analysis as the baseline.

2019-01-16
Varshney, G., Bagade, S., Sinha, S..  2018.  Malicious browser extensions: A growing threat: A case study on Google Chrome: Ongoing work in progress. 2018 International Conference on Information Networking (ICOIN). :188–193.

Browser extensions are a way through which third party developers provide a set of additional functionalities on top of the traditional functionalities provided by a browser. It has been identified that the browser extension platform can be used by hackers to carry out attacks of sophisticated kinds. These attacks include phishing, spying, DDoS, email spamming, affiliate fraud, mal-advertising, payment frauds etc. In this paper, we showcase the vulnerability of the current browsers to these attacks by taking Google Chrome as the case study as it is a popular browser. The paper also discusses the technical reason which makes it possible for the attackers to launch such attacks via browser extensions. A set of suggestions and solutions that can thwart the attack possibilities has been discussed.

2018-11-19
Ali, S., Khan, M. A., Ahmad, J., Malik, A. W., ur Rehman, A..  2018.  Detection and Prevention of Black Hole Attacks in IOT Amp;Amp; WSN. 2018 Third International Conference on Fog and Mobile Edge Computing (FMEC). :217–226.

Wireless Sensor Network is the combination of small devices called sensor nodes, gateways and software. These nodes use wireless medium for transmission and are capable to sense and transmit the data to other nodes. Generally, WSN composed of two types of nodes i.e. generic nodes and gateway nodes. Generic nodes having the ability to sense while gateway nodes are used to route that information. IoT now extended to IoET (internet of Everything) to cover all electronics exist around, like a body sensor networks, VANET's, smart grid stations, smartphone, PDA's, autonomous cars, refrigerators and smart toasters that can communicate and share information using existing network technologies. The sensor nodes in WSN have very limited transmission range as well as limited processing speed, storage capacities and low battery power. Despite a wide range of applications using WSN, its resource constrained nature given birth to a number severe security attacks e.g. Selective Forwarding attack, Jamming-attack, Sinkhole attack, Wormhole attack, Sybil attack, hello Flood attacks, Grey Hole, and the most dangerous BlackHole Attacks. Attackers can easily exploit these vulnerabilities to compromise the WSN network.

2019-09-09
Tonane, P., Deshpande, S..  2018.  Trust Based Certificate Revocation and Attacks in MANETs. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :1089-1093.

Due to the changing nature of Mobile Ad-Hoc Network (MANET) security is an important concern and hence in this paper, we carryout vector-based trust mechanism, which is established on the behavior of nodes in forwarding and dropping the data packets determines the trust on each node and we are using the Enhanced Certificate Revocation scheme (ECR), which avoid the attacker by blacklisting the blackhole attacker. To enhance more security for node and network, we assign a unique key for every individual node which can avoid most of the attacks in MANET