Biblio
A cyber-physical system (CPS) is expected to be resilient to more than one type of adversary. In this paper, we consider a CPS that has to satisfy a linear temporal logic (LTL) objective in the presence of two kinds of adversaries. The first adversary has the ability to tamper with inputs to the CPS to influence satisfaction of the LTL objective. The interaction of the CPS with this adversary is modeled as a stochastic game. We synthesize a controller for the CPS to maximize the probability of satisfying the LTL objective under any policy of this adversary. The second adversary is an eavesdropper who can observe labeled trajectories of the CPS generated from the previous step. It could then use this information to launch other kinds of attacks. A labeled trajectory is a sequence of labels, where a label is associated to a state and is linked to the satisfaction of the LTL objective at that state. We use differential privacy to quantify the indistinguishability between states that are related to each other when the eavesdropper sees a labeled trajectory. Two trajectories of equal length will be differentially private if they are differentially private at each state along the respective trajectories. We use a skewed Kantorovich metric to compute distances between probability distributions over states resulting from actions chosen according to policies from related states in order to quantify differential privacy. Moreover, we do this in a manner that does not affect the satisfaction probability of the LTL objective. We validate our approach on a simulation of a UAV that has to satisfy an LTL objective in an adversarial environment.
The security of wireless network devices has received widespread attention, but most existing schemes cannot achieve fine-grained device identification. In practice, the security vulnerabilities of a device are heavily depending on its model and firmware version. Motivated by this issue, we propose a universal, extensible and device-independent framework called SCAFFISD, which can provide fine-grained identification of wireless routers. It can generate access rules to extract effective information from the router admin page automatically and perform quick scans for known device vulnerabilities. Meanwhile, SCAFFISD can identify rogue access points (APs) in combination with existing detection methods, with the purpose of performing a comprehensive security assessment of wireless networks. We implement the prototype of SCAFFISD and verify its effectiveness through security scans of actual products.
The rapid proliferation of biometrics has led to growing concerns about the security and privacy of the biometric data (template). A biometric uniquely identifies an individual and unlike passwords, it cannot be revoked or replaced since it is unique and fixed for every individual. To address this problem, many biometric template protection methods using fully homomorphic encryption have been proposed. But, most of them (i) are computationally expensive and practically infeasible (ii) do not support operations over real valued biometric feature vectors without quantization (iii) do not support packing of real valued feature vectors into a ciphertext (iv) require multi-shot enrollment of users for improved matching performance. To address these limitations, we propose a secure and privacy preserving method for biometric template protection using fully homomorphic encryption. The proposed method is computationally efficient and practically feasible, supports operations over real valued feature vectors without quantization and supports packing of real valued feature vectors into a single ciphertext. In addition, the proposed method enrolls the users using one-shot enrollment. To evaluate the proposed method, we use three face datasets namely LFW, FEI and Georgia tech face dataset. The encrypted face template (for 128 dimensional feature vector) requires 32.8 KB of memory space and it takes 2.83 milliseconds to match a pair of encrypted templates. The proposed method improves the matching performance by 3 % when compared to state-of-the-art, while providing high template security.
Mobile wearable health devices have expanded prevalent usage and become very popular because of the valuable health monitor system. These devices provide general health tips and monitoring human health parameters as well as generally assisting the user to take better health of themselves. However, these devices are associated with security and privacy risk among the consumers because these devices deal with sensitive data information such as users sleeping arrangements, dieting formula such as eating constraint, pulse rate and so on. In this paper, we analyze the significant security and privacy features of three very popular health tracker devices: Fitbit, Jawbone and Google Glass. We very carefully analyze the devices' strength and how the devices communicate and its Bluetooth pairing process with mobile devices. We explore the possible malicious attack through Bluetooth networking by hacker. The outcomes of this analysis show how these devices allow third parties to gain sensitive information from the device exact location that causes the potential privacy breach for users. We analyze the reasons of user data security and privacy are gained by unauthorized people on wearable devices and the possible challenge to secure user data as well as the comparison of three wearable devices (Fitbit, Jawbone and Google Glass) security vulnerability and attack type.
Experts often design security and privacy technology with specific use cases and threat models in mind. In practice however, end users are not aware of these threats and potential countermeasures. Furthermore, mis-conceptions about the benefits and limitations of security and privacy technology inhibit large-scale adoption by end users. In this paper, we address this challenge and contribute a qualitative study on end users' and security experts' perceptions of threat models and potential countermeasures. We follow an inductive research approach to explore perceptions and mental models of both security experts and end users. We conducted semi-structured interviews with 8 security experts and 13 end users. Our results suggest that in contrast to security experts, end users neglect acquaintances and friends as attackers in their threat models. Our findings highlight that experts value technical countermeasures whereas end users try to implement trust-based defensive methods.
Technology is advancing rapidly and with this advancement, it has become apparent that it is nearly impossible to not leave a digital trace when committing a crime. As evidenced by multiple cases handled by law enforcement, Fitbit data has proved to be useful when determining the validity of alibis and in piecing together the timeline of a crime scene. In our paper, experiments testing the accuracy and reliability of GPS-tracked activities logged by the Fitbit Alta tracker and Ionic smartwatch are conducted. Potential indicators of manipulated or altered GPS-tracked activities are identified to help guide digital forensic investigators when handling such Fitbit data as evidence.
In cyber threat information sharing, secure transfer and protecting privacy are very important. In this paper we solve these issues by suggesting a platform based on private permissioned Blockchain, which provides us with access control as well. The platform is called Anon-ISAC and is built on the Enhanced Privacy ID (EPID) zero-knowledge proof scheme. It makes use of permissioned Blockchain as a way to keep identity anonymous. Organizations can share their information on incidents or other artifacts among trusted parties, while they keep their identity hidden. This will save them from unwanted consequences of exposure of sensitive security information.
Cloud forensics investigates the crime committed over cloud infrastructures like SLA-violations and storage privacy. Cloud storage forensics is the process of recording the history of the creation and operations performed on a cloud data object and investing it. Secure data provenance in the Cloud is crucial for data accountability, forensics, and privacy. Towards this, we present a Cloud-based data provenance framework using Blockchain, which traces data record operations and generates provenance data. Initially, we design a dropbox like application using AWS S3 storage. The application creates a cloud storage application for the students and faculty of the university, thereby making the storage and sharing of work and resources efficient. Later, we design a data provenance mechanism for confidential files of users using Ethereum blockchain. We also evaluate the proposed system using performance parameters like query and transaction latency by varying the load and number of nodes of the blockchain network.
To our best knowledge, the p-sensitive k-anonymity model is a sophisticated model to resist linking attacks and homogeneous attacks in data publishing. However, if the distribution of sensitive values is skew, the model is difficult to defend against skew attacks and even faces sensitive attacks. In practice, the privacy requirements of different sensitive values are not always identical. The “one size fits all” unified privacy protection level may cause unnecessary information loss. To address these problems, the paper quantifies privacy requirements with the concept of IDF and concerns more about sensitive groups. Two enhanced anonymous models with personalized protection characteristic, that is, (p,αisg) -sensitive k-anonymity model and (pi,αisg)-sensitive k-anonymity model, are then proposed to resist skew attacks and sensitive attacks. Furthermore, two clustering algorithms with global search and local search are designed to implement our models. Experimental results show that the two enhanced models have outstanding advantages in better privacy at the expense of a little data utility.
Analyzing multi-dimensional geospatial data is difficult and immersive analytics systems are used to visualize geospatial data and models. There is little previous work evaluating when immersive and non-immersive visualizations are the most suitable for data analysis and more research is needed.
Vulnerabilities in privileged software layers have been exploited with severe consequences. Recently, Trusted Execution Environments (TEEs) based technologies have emerged as a promising approach since they claim strong confidentiality and integrity guarantees regardless of the trustworthiness of the underlying system software. In this paper, we consider one of the most prominent TEE technologies, referred to as Intel Software Guard Extensions (SGX). Despite many formal approaches, there is still a lack of formal proof of some critical processes of Intel SGX, such as remote attestation. To fill this gap, we propose a fully automated, rigorous, and sound formal approach to specify and verify the Enhanced Privacy ID (EPID)-based remote attestation in Intel SGX under the assumption that there are no side-channel attacks and no vulnerabilities inside the enclave. The evaluation indicates that the confidentiality of attestation keys is preserved against a Dolev-Yao adversary in this technology. We also present a few of the many inconsistencies found in the existing literature on Intel SGX attestation during formal specification.