Biblio

Found 2356 results

Filters: Keyword is privacy  [Clear All Filters]
2021-01-11
Huang, K., Yang, T..  2020.  Additive and Subtractive Cuckoo Filters. 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS). :1–10.
Bloom filters (BFs) are fast and space-efficient data structures used for set membership queries in many applications. BFs are required to satisfy three key requirements: low space cost, high-speed lookups, and fast updates. Prior works do not satisfy these requirements at the same time. The standard BF does not support deletions of items and the variants that support deletions need additional space or performance overhead. The state-of-the-art cuckoo filters (CF) has high performance with seemingly low space cost. However, the CF suffers a critical issue of varying space cost per item. This is because the exclusive-OR (XOR) operation used by the CF requires the total number of buckets to be a power of two, leading to the space inflation. To address the issue, in this paper we propose a scalable variant of the cuckoo filter called additive and subtractive cuckoo filter (ASCF). We aim to improve the space efficiency while sustaining comparably high performance. The ASCF uses the addition and subtraction (ADD/SUB) operations instead of the XOR operation to compute an item's two candidate bucket indexes based on its fingerprint. Experimental results show that the ASCF achieves both low space cost and high performance. Compared to the CF, the ASCF reduces up to 1.9x space cost per item while maintaining the same lookup and update throughput. In addition, the ASCF outperforms other filters in both space cost and performance.
2021-02-23
Kabatiansky, G., Egorova, E..  2020.  Adversarial multiple access channels and a new model of multimedia fingerprinting coding. 2020 IEEE Conference on Communications and Network Security (CNS). :1—5.

We consider different models of malicious multiple access channels, especially for binary adder channel and for A-channel, and show how they can be used for the reformulation of digital fingerprinting coding problems. In particular, we propose a new model of multimedia fingerprinting coding. In the new model, not only zeroes and plus/minus ones but arbitrary coefficients of linear combinations of noise-like signals for forming watermarks (digital fingerprints) can be used. This modification allows dramatically increase the possible number of users with the property that if t or less malicious users create a forge digital fingerprint then a dealer of the system can find all of them with zero-error probability. We show how arisen problems are related to the compressed sensing problem.

2021-07-02
Haque, Shaheryar Ehsan I, Saleem, Shahzad.  2020.  Augmented reality based criminal investigation system (ARCRIME). 2020 8th International Symposium on Digital Forensics and Security (ISDFS). :1—6.
Crime scene investigation and preservation are fundamentally the pillars of forensics. Numerous cases have been discussed in this paper where mishandling of evidence or improper investigation leads to lengthy trials and even worse incorrect verdicts. Whether the problem is lack of training of first responders or any other scenario, it is essential for police officers to properly preserve the evidence. Second problem is the criminal profiling where each district department has its own method of storing information about criminals. ARCRIME intends to digitally transform the way police combat crime. It will allow police officers to create a copy of the scene of crime so that it can be presented in courts or in forensics labs. It will be in the form of wearable glasses for officers on site whereas officers during training will be wearing a headset. The trainee officers will be provided with simulations of cases which have already been resolved. Officers on scene would be provided with intelligence about the crime and the suspect they are interviewing. They would be able to create a case file with audio recording and images which can be digitally sent to a prosecution lawyer. This paper also explores the risks involved with ARCRIME and also weighs in their impact and likelihood of happening. Certain contingency plans have been highlighted in the same section as well to respond to emergency situations.
2021-04-27
Chen, B., Wu, L., Wang, H., Zhou, L., He, D..  2020.  A Blockchain-Based Searchable Public-Key Encryption With Forward and Backward Privacy for Cloud-Assisted Vehicular Social Networks. IEEE Transactions on Vehicular Technology. 69:5813–5825.
As the integration of the Internet of Vehicles and social networks, vehicular social networks (VSN) not only improves the efficiency and reliability of vehicular communication environment, but also provide more comprehensive social services for users. However, with the emergence of advanced communication and computing technologies, more and more data can be fast and conveniently collected from heterogeneous devices, and VSN has to meet new security challenges such as data security and privacy protection. Searchable encryption (SE) as a promising cryptographic primitive is devoted to data confidentiality without sacrificing data searchability. However, most existing schemes are vulnerable to the adaptive leakage-exploiting attacks or can not meet the efficiency requirements of practical applications, especially the searchable public-key encryption schemes (SPE). To achieve secure and efficient keyword search in VSN, we design a new blockchain-based searchable public-key encryption scheme with forward and backward privacy (BSPEFB). BSPEFB is a decentralized searchable public-key encryption scheme since the central search cloud server is replaced by the smart contract. Meanwhile, BSPEFB supports forward and backward privacy to achieve privacy protection. Finally, we implement a prototype of our basic construction and demonstrate the practicability of the proposed scheme in applications.
2021-06-01
Lopes, Carmelo Riccardo, Zito, Pietro, Lampasi, Alessandro, Ala, Guido, Zizzo, Gaetano, Sanseverino, Eleonora Riva.  2020.  Conceptual Design and Modeling of Fast Discharge Unit for Quench Protection of Superconducting Toroidal Field Magnets of DTT. 2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON). :623—628.
The paper deals with the modelling and simulation of a Fast Discharge Unit (FDU) for quench protection of the Toroidal Field (TF) magnets of the Divertor Tokamak Test, an experimental facility under design and construction in Frascati (Italy). The FDU is a safety key component that protects the superconducting magnets when a quench is detected through the fast extraction of the energy stored in superconducting magnets by adding in the TF magnets a dump (or discharge) resistor. In the paper, two different configurations of dump resistors (fixed and variable respectively) have been analysed and discussed. As a first result, it is possible to underline that the configuration with variable dump resistor is more efficient than the one with a fixed dump resistor.
2021-10-12
Adibi, Mahya, van der Woude, Jacob.  2020.  Distributed Learning Control for Economic Power Dispatch: A Privacy Preserved Approach*. 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE). :821–826.
We present a privacy-preserving distributed reinforcement learning-based control scheme to address the problem of frequency control and economic dispatch in power generation systems. The proposed control approach requires neither a priori system model knowledge nor the mathematical formulation of the generation cost functions. Due to not requiring the generation cost models, the control scheme is capable of dealing with scenarios in which the cost functions are hard to formulate and/or non-convex. Furthermore, it is privacy-preserving, i.e. none of the units in the network needs to communicate its cost function and/or control policy to its neighbors. To realize this, we propose an actor-critic algorithm with function approximation in which the actor step is performed individually by each unit with no need to infer the policies of others. Moreover, in the critic step each generation unit shares its estimate of the local measurements and the estimate of its cost function with the neighbors, and via performing a consensus algorithm, a consensual estimate is achieved. The performance of our proposed control scheme, in terms of minimizing the overall cost while persistently fulfilling the demand and fast reaction and convergence of our distributed algorithm, is demonstrated on a benchmark case study.
2020-04-24
Kim, Chang-Woo, Jang, Gang-Heyon, Shin, Kyung-Hun, Jeong, Sang-Sub, You, Dae-Joon, Choi, Jang-Young.  2020.  Electromagnetic Design and Dynamic Characteristics of Permanent Magnet Linear Oscillating Machines Considering Instantaneous Inductance According to Mover Position. IEEE Transactions on Applied Superconductivity. 30:1—5.

Interior permanent magnet (IPM)-type linear oscillating actuators (LOAs) have a higher output power density than typical LOAs. Their mover consists of a permanent magnet (PM) and an iron core, however, this configuration generates significant side forces. The device can malfunction due to eccentricity in the electromagnetic behavior. Thus, here an electromagnetic design was developed to minimize this side force. In addition, dynamic analysis was performed considering the mechanical systems of LOAs. To perform a more accurate analysis, instantaneous inductance was considered according to the mover's position.

2021-03-04
Levina, A., Kamnev, I., Zikratov, I..  2020.  Implementation White Box Cryptography in Substitution-Permutation network. 2020 9th Mediterranean Conference on Embedded Computing (MECO). :1—3.

Advances in technology have led not only to increased security and privacy but also to new channels of information leakage. New leak channels have resulted in the emergence of increased relevance of various types of attacks. One such attacks are Side-Channel Attacks, i.e. attacks aimed to find vulnerabilities in the practical component of the algorithm. However, with the development of these types of attacks, methods of protection against them have also appeared. One of such methods is White-Box Cryptography.

2020-12-14
Quevedo, C. H. O. O., Quevedo, A. M. B. C., Campos, G. A., Gomes, R. L., Celestino, J., Serhrouchni, A..  2020.  An Intelligent Mechanism for Sybil Attacks Detection in VANETs. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Vehicular Ad Hoc Networks (VANETs) have a strategic goal to achieve service delivery in roads and smart cities, considering the integration and communication between vehicles, sensors and fixed road-side components (routers, gateways and services). VANETs have singular characteristics such as fast mobile nodes, self-organization, distributed network and frequently changing topology. Despite the recent evolution of VANETs, security, data integrity and users privacy information are major concerns, since attacks prevention is still open issue. One of the most dangerous attacks in VANETs is the Sybil, which forges false identities in the network to disrupt compromise the communication between the network nodes. Sybil attacks affect the service delivery related to road safety, traffic congestion, multimedia entertainment and others. Thus, VANETs claim for security mechanism to prevent Sybil attacks. Within this context, this paper proposes a mechanism, called SyDVELM, to detect Sybil attacks in VANETs based on artificial intelligence techniques. The SyDVELM mechanism uses Extreme Learning Machine (ELM) with occasional features of vehicular nodes, minimizing the identification time, maximizing the detection accuracy and improving the scalability. The results suggest that the suitability of SyDVELM mechanism to mitigate Sybil attacks and to maintain the service delivery in VANETs.
2020-12-21
Seliem, M., Elgazzar, K..  2020.  LPA-SDP: A Lightweight Privacy-Aware Service Discovery Protocol for IoT Environments. 2020 IEEE 6th World Forum on Internet of Things (WF-IoT). :1–7.
Latest forecasts show that 50 billion devices will be connected to the Internet by 2020. These devices will provide ubiquitous data access and enable smarter interactions in all aspects of our everyday life, including vital domains such as healthcare and battlefields, where privacy is a key requirement. With the increasing adoption of IoT and the explosion of these resource-constrained devices, manual discovery and configuration become significantly challenging. Despite there is a number of resource discovery protocols that can be efficiently used in IoT deployments, none of these protocols provides any privacy consideration. This paper presents LPA-SDT, a novel technique for service discovery that builds privacy into the design from the ground up. Performance evaluation demonstrates that LPA-SDT outperforms state-of-the-art discovery techniques for resource-constrained environments while preserving user and data privacy.
2021-01-18
Sebbah, A., Kadri, B..  2020.  A Privacy and Authentication Scheme for IoT Environments Using ECC and Fuzzy Extractor. 2020 International Conference on Intelligent Systems and Computer Vision (ISCV). :1–5.
The internet of things (IoT) is consisting of many complementary elements which have their own specificities and capacities. These elements are gaining new application and use cases in our lives. Nevertheless, they open a negative horizon of security and privacy issues which must be treated delicately before the deployment of any IoT. Recently, different works emerged dealing with the same branch of issues, like the work of Yuwen Chen et al. that is called LightPriAuth. LightPriAuth has several drawbacks and weakness against various popular attacks such as Insider attack and stolen smart card. Our objective in this paper is to propose a novel solution which is “authentication scheme with three factor using ECC and fuzzy extractor” to ensure security and privacy. The obtained results had proven the superiority of our scheme's performances compared to that of LightPriAuth which, additionally, had defeated the weaknesses left by LightPriAuth.
2021-04-27
Stanković, I., Brajović, M., Daković, M., Stanković, L., Ioana, C..  2020.  Quantization Effect in Nonuniform Nonsparse Signal Reconstruction. 2020 9th Mediterranean Conference on Embedded Computing (MECO). :1–4.
This paper examines the influence of quantization on the compressive sensing theory applied to the nonuniformly sampled nonsparse signals with reduced set of randomly positioned measurements. The error of the reconstruction will be generalized to exact expected squared error expression. The aim is to connect the generalized random sampling strategy with the quantization effect, finding the resulting error of the reconstruction. Small sampling deviations correspond to the imprecisions of the sampling strategy, while completely random sampling schemes causes large sampling deviations. Numerical examples provide an agreement between the statistical results and theoretical values.
2021-07-02
Arpaia, Pasquale, Bonavolontà, Francesco, Cioffi, Antonella.  2020.  Security vulnerability in Internet of Things sensor networks protected by Advanced Encryption Standard. 2020 IEEE International Workshop on Metrology for Industry 4.0 IoT. :452—457.
In the new era of Internet of Things, the emerging of smart devices makes security and privacy the first requirements and the major challenges of a distributed network. Despite the implementation of security measures, as encryption mechanisms protecting sensor data, and cryptographic algorithms, various attacks seem to undermine the IoT devices security. This paper reports the preliminary results of a side-channel attack (scatter attack) addressed on an 8-bit IoT microcontroller protected by the Advanced Encryption Standard. The attack, based on an high-SNR data acquisition micro-system and a suitable statistical analysis, allows to discover part of the encryption key, demonstrating the security vulnerability of Internet of Things sensor networks protected by the AES.
Lehman, Sarah M., Alrumayh, Abrar S., Ling, Haibin, Tan, Chiu C..  2020.  Stealthy Privacy Attacks Against Mobile AR Apps. 2020 IEEE Conference on Communications and Network Security (CNS). :1—5.
The proliferation of mobile augmented reality applications and the toolkits to create them have serious implications for user privacy. In this paper, we explore how malicious AR app developers can leverage capabilities offered by commercially available AR libraries, and describe how edge computing can be used to address this privacy problem.
2021-07-07
Karmakar, Kallol Krishna, Varadharajan, Vijay, Tupakula, Uday, Nepal, Surya, Thapa, Chandra.  2020.  Towards a Security Enhanced Virtualised Network Infrastructure for Internet of Medical Things (IoMT). 2020 6th IEEE Conference on Network Softwarization (NetSoft). :257–261.
Internet of Medical Things (IoMT) are getting popular in the smart healthcare domain. These devices are resource-constrained and are vulnerable to attack. As the IoMTs are connected to the healthcare network infrastructure, it becomes the primary target of the adversary due to weak security and privacy measures. In this regard, this paper proposes a security architecture for smart healthcare network infrastructures. The architecture uses various security components or services that are developed and deployed as virtual network functions. This makes the security architecture ready for future network frameworks such as OpenMANO. Besides, in this security architecture, only authenticated and trusted IoMTs serve the patients along with an encryption-based communication protocol, thus creating a secure, privacy-preserving and trusted healthcare network infrastructure.
2022-10-20
Xu, Yueyao.  2020.  Unsupervised Deep Learning for Text Steganalysis. 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI). :112—115.
Text steganography aims to embed hidden messages in text information while the goal of text steganalysis is to identify the existence of hidden information or further uncover the embedded message from the text. Steganalysis has received significant attention recently for the security and privacy purpose. In this paper, we develop unsupervised learning approaches for text steganalysis. In particular, two detection models based on deep learning have been proposed to detect hidden information that may be embedded in text from a global and a local perspective. Extensive studies have been carried out on the Chinese poetry text steganography datasets. It is seen that the proposed models show strong empirical performance in steganographic text detection.
2021-03-04
Cao, L., Wan, Z..  2020.  Anonymous scheme for blockchain atomic swap based on zero-knowledge proof. 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). :371—374.
The blockchain's cross-chain atomic exchange uses smart contracts to replace trusted third parties, but atomic exchange cannot guarantee the anonymity of transactions, and it will inevitably increase the risk of privacy leakage. Therefore, this paper proposes an atom based on zero-knowledge proof. Improved methods of exchange to ensure the privacy of both parties in a transaction. The anonymous improvement scheme in this article uses the UTXO unconsumed model to add a new anonymous list in the blockchain. When sending assets to smart contracts, zero-knowledge proof is used to provide self-certification of ownership of the asset, and then the transaction is broken down. Only the hash value of the transaction is sent to the node, and the discarded list is used to verify the validity of the transaction, which achieves the effect of storing assets anonymously in the smart contract. At the same time, a smart contract is added when the two parties in the transaction communicate to exchange the contract address of the newly set smart contract between the two parties in the transaction. This can prevent the smart contract address information from being stolen when the two parties in the transaction communicate directly.
2021-02-03
Lee, J..  2020.  CanvasMirror: Secure Integration of Third-Party Libraries in a WebVR Environment. 2020 50th Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S). :75—76.

Web technology has evolved to offer 360-degree immersive browsing experiences. This new technology, called WebVR, enables virtual reality by rendering a three-dimensional world on an HTML canvas. Unfortunately, there exists no browser-supported way of sharing this canvas between different parties. As a result, third-party library providers with ill intent (e.g., stealing sensitive information from end-users) can easily distort the entire WebVR site. To mitigate the new threats posed in WebVR, we propose CanvasMirror, which allows publishers to specify the behaviors of third-party libraries and enforce this specification. We show that CanvasMirror effectively separates the third-party context from the host origin by leveraging the privilege separation technique and safely integrates VR contents on a shared canvas.

2021-01-28
Javed, M. U., Jamal, A., Javaid, N., Haider, N., Imran, M..  2020.  Conditional Anonymity enabled Blockchain-based Ad Dissemination in Vehicular Ad-hoc Network. 2020 International Wireless Communications and Mobile Computing (IWCMC). :2149—2153.

Advertisement sharing in vehicular network through vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication is a fascinating in-vehicle service for advertisers and the users due to multiple reasons. It enable advertisers to promote their product or services in the region of their interest. Also the users get to receive more relevant ads. Usually, users tend to contribute in dissemination of ads if their privacy is preserved and if some incentive is provided. Recent researches have focused on enabling both of the parameters for the users by developing fair incentive mechanism which preserves privacy by using Zero-Knowledge Proof of Knowledge (ZKPoK) (Ming et al., 2019). However, the anonymity provided by ZKPoK can introduce internal attacker scenarios in the network due to which authenticated users can disseminate fake ads in the network without payment. As the existing scheme uses certificate-less cryptography, due to which malicious users cannot be removed from the network. In order to resolve these challenges, we employed conditional anonymity and introduced Monitoring Authority (MA) in the system. In our proposed scheme, the pseudonyms are assigned to the vehicles while their real identities are stored in Certification Authority (CA) in encrypted form. The pseudonyms are updated after a pre-defined time threshold to prevent behavioural privacy leakage. We performed security and performance analysis to show the efficiency of our proposed system.

2021-04-29
Fejrskov, M., Pedersen, J. M., Vasilomanolakis, E..  2020.  Cyber-security research by ISPs: A NetFlow and DNS Anonymization Policy. :1—8.

Internet Service Providers (ISPs) have an economic and operational interest in detecting malicious network activity relating to their subscribers. However, it is unclear what kind of traffic data an ISP has available for cyber-security research, and under which legal conditions it can be used. This paper gives an overview of the challenges posed by legislation and of the data sources available to a European ISP. DNS and NetFlow logs are identified as relevant data sources and the state of the art in anonymization and fingerprinting techniques is discussed. Based on legislation, data availability and privacy considerations, a practically applicable anonymization policy is presented.

2021-06-30
Sikarwar, Himani, Das, Debasis.  2020.  An Efficient Lightweight Authentication and Batch Verification Scheme for Universal Internet of Vehicles (UIoV). 2020 International Wireless Communications and Mobile Computing (IWCMC). :1266—1271.
Ensuring secure transmission over the communication channel is a fundamental responsibility to achieve the implementation objective of universal internet of vehicles (UIoV) efficiently. Characteristics like highly dynamic topology and scalability of UIoV makes it more vulnerable to different types of privacy and security attacks. Considerable scope of improvement in terms of time complexity and performance can be observed within the existing schemes that address the privacy and security aspects of UIoV. In this paper, we present an improvised authentication and lightweight batch verification method for security and privacy in UIoV. The suggested method reduces the message loss rate, which occurred due to the response time delay by implementing some low-cost cryptographic operations like one-way hash function, concatenation, XOR, and bilinear map. Furthermore, the performance analysis proves that the proposed method is more reliable that reduces the computational delay and has a better performance in the delay-sensitive network as compared to the existing schemes. The experimental results are obtained by implementing the proposed scheme on a desktop-based configuration as well as Raspberry Pi 4.
2021-06-01
Ghouse, Mohammed, Nene, Manisha J..  2020.  Graph Neural Networks for Prevention of Leakage of Secret Data. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :994—999.
The study presents the design and development of security solution pertaining to prevention of leakage of secret data that is in transit (DIT) to be deployed in a Network Gateway, the Gateway is the link connecting the Trusted Network with the Un-trusted Network. The entire solution includes, tasks such as classification of data flowing in the network, followed by the confinement of the identified data, the confinement of the identified data is done either by tagging the data or by means of encryption, however the later form is employed to achieve confinement of classified data under secret category thereby achieving confidentiality of the same. GNN is used for achieving the categorization function and the results are found to be satisfying with less processing time. The dataset that is used is the publicly available dataset and is available in its labeled format. The final deployment will however be based on the datasets that is available to meet a particular requirement of an Organization/Institution. Any organization can prepare a customized dataset suiting its requirements and train the model. The model can then be used for meeting the DLP requirement.
2021-03-30
Foroughi, F., Hadipour, H., Shafiee, A. M..  2020.  High-Performance Monitoring Sensors for Home Computer Users Security Profiling. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—7.

Recognising user's risky behaviours in real-time is an important element of providing appropriate solutions and recommending suitable actions for responding to cybersecurity threats. Employing user modelling and machine learning can make this process automated by requires high-performance intelligent agent to create the user security profile. User profiling is the process of producing a profile of the user from historical information and past details. This research tries to identify the monitoring factors and suggests a novel observation solution to create high-performance sensors to generate the user security profile for a home user concerning the user's privacy. This observer agent helps to create a decision-making model that influences the user's decision following real-time threats or risky behaviours.

2021-06-01
Pandey, Pragya, Kaur, Inderjeet.  2020.  Improved MODLEACH with Effective Energy Utilization Technique for WSN. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :987—992.
Wireless sensor network (WSNs) formed from an enormous number of sensor hub with the capacity to detect and process information in the physical world in a convenient way. The sensor nodes contain a battery imperative, which point of confinement the system lifetime. Because of vitality limitations, the arrangement of WSNs will required development methods to keep up the system lifetime. The vitality productive steering is the need of the innovative WSN systems to build the process time of system. The WSN system is for the most part battery worked which should be ration as conceivable as to cause system to continue longer and more. WSN has developed as a significant figuring stage in the ongoing couple of years. WSN comprises of countless sensor points, which are worked by a little battery. The vitality of the battery worked nodes is the defenseless asset of the WSN, which is exhausted at a high rate when data is transmitted, because transmission vitality is subject to the separation of transmission. Sensor nodes can be sent in the cruel condition. When they are conveyed, it ends up difficult to supplant or energize its battery. Therefore, the battery intensity of sensor hub ought to be utilized proficiently. Many steering conventions have been proposed so far to boost the system lifetime and abatement the utilization vitality, the fundamental point of the sensor hubs is information correspondence, implies move of information packs from one hub to other inside the system. This correspondence is finished utilizing grouping and normal vitality of a hub. Each bunch chooses a pioneer called group head. The group heads CHs are chosen based by and large vitality and the likelihood. There are number of bunching conventions utilized for the group Head determination, the principle idea is the existence time of a system which relies on the normal vitality of the hub. In this work we proposed a model, which utilizes the leftover vitality for group head choice and LZW pressure Technique during the transmission of information bundles from CHs to base station. Work enhanced the throughput and life time of system and recoveries the vitality of hub during transmission and moves more information in less vitality utilization. The Proposed convention is called COMPRESSED MODLEACH.
2021-02-03
Cecotti, H., Richard, Q., Gravellier, J., Callaghan, M..  2020.  Magnetic Resonance Imaging Visualization in Fully Immersive Virtual Reality. 2020 6th International Conference of the Immersive Learning Research Network (iLRN). :205—209.

The availability of commercial fully immersive virtual reality systems allows the proposal and development of new applications that offer novel ways to visualize and interact with multidimensional neuroimaging data. We propose a system for the visualization and interaction with Magnetic Resonance Imaging (MRI) scans in a fully immersive learning environment in virtual reality. The system extracts the different slices from a DICOM file and presents the slices in a 3D environment where the user can display and rotate the MRI scan, and select the clipping plane in all the possible orientations. The 3D environment includes two parts: 1) a cube that displays the MRI scan in 3D and 2) three panels that include the axial, sagittal, and coronal views, where it is possible to directly access a desired slice. In addition, the environment includes a representation of the brain where it is possible to access and browse directly through the slices with the controller. This application can be used both for educational purposes as an immersive learning tool, and by neuroscience researchers as a more convenient way to browse through an MRI scan to better analyze 3D data.