Biblio

Found 2356 results

Filters: Keyword is privacy  [Clear All Filters]
2019-03-15
Kim, D., Shin, D., Shin, D..  2018.  Unauthorized Access Point Detection Using Machine Learning Algorithms for Information Protection. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1876-1878.

With the frequent use of Wi-Fi and hotspots that provide a wireless Internet environment, awareness and threats to wireless AP (Access Point) security are steadily increasing. Especially when using unauthorized APs in company, government and military facilities, there is a high possibility of being subjected to various viruses and hacking attacks. It is necessary to detect unauthorized Aps for protection of information. In this paper, we use RTT (Round Trip Time) value data set to detect authorized and unauthorized APs in wired / wireless integrated environment, analyze them using machine learning algorithms including SVM (Support Vector Machine), C4.5, KNN (K Nearest Neighbors) and MLP (Multilayer Perceptron). Overall, KNN shows the highest accuracy.

2019-12-10
Sun, Jie, Yu, Jiancheng, Zhang, Aiqun, Song, Aijun, Zhang, Fumin.  2018.  Underwater Acoustic Intensity Field Reconstruction by Kriged Compressive Sensing. Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems. :5:1-5:8.

This paper presents a novel Kriged Compressive Sensing (KCS) approach for the reconstruction of underwater acoustic intensity fields sampled by multiple gliders following sawtooth sampling patterns. Blank areas in between the sampling trajectories may cause unsatisfying reconstruction results. The KCS method leverages spatial statistical correlation properties of the acoustic intensity field being sampled to improve the compressive reconstruction process. Virtual data samples generated from a kriging method are inserted into the blank areas. We show that by using the virtual samples along with real samples, the acoustic intensity field can be reconstructed with higher accuracy when coherent spatial patterns exist. Corresponding algorithms are developed for both unweighted and weighted KCS methods. By distinguishing the virtual samples from real samples through weighting, the reconstruction results can be further improved. Simulation results show that both algorithms can improve the reconstruction results according to the PSNR and SSIM metrics. The methods are applied to process the ocean ambient noise data collected by the Sea-Wing acoustic gliders in the South China Sea.

2019-02-22
Roberts, Jasmine.  2018.  Using Affective Computing for Proxemic Interactions in Mixed-Reality. Proceedings of the Symposium on Spatial User Interaction. :176-176.

Immersive technologies have been touted as empathetic mediums. This capability has yet to be fully explored through machine learning integration. Our demo seeks to explore proxemics in mixed-reality (MR) human-human interactions. The author developed a system, where spatial features can be manipulated in real time by identifying emotions corresponding to unique combinations of facial micro-expressions and tonal analysis. The Magic Leap One is used as the interactive interface, the first commercial spatial computing head mounted (virtual retinal) display (HUD). A novel spatial user interface visualization element is prototyped that leverages the affordances of mixed-reality by introducing both a spatial and affective component to interfaces.

2019-03-15
Lin, W., Lin, H., Wang, P., Wu, B., Tsai, J..  2018.  Using Convolutional Neural Networks to Network Intrusion Detection for Cyber Threats. 2018 IEEE International Conference on Applied System Invention (ICASI). :1107-1110.

In practice, Defenders need a more efficient network detection approach which has the advantages of quick-responding learning capability of new network behavioural features for network intrusion detection purpose. In many applications the capability of Deep Learning techniques has been confirmed to outperform classic approaches. Accordingly, this study focused on network intrusion detection using convolutional neural networks (CNNs) based on LeNet-5 to classify the network threats. The experiment results show that the prediction accuracy of intrusion detection goes up to 99.65% with samples more than 10,000. The overall accuracy rate is 97.53%.

2019-12-17
Marwecki, Sebastian, Brehm, Maximilian, Wagner, Lukas, Cheng, Lung-Pan, Mueller, Florian 'Floyd', Baudisch, Patrick.  2018.  VirtualSpace - Overloading Physical Space with Multiple Virtual Reality Users. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. :241:1-241:10.

Although virtual reality hardware is now widely available, the uptake of real walking is hindered by the fact that it requires often impractically large amounts of physical space. To address this, we present VirtualSpace, a novel system that allows overloading multiple users immersed in different VR experiences into the same physical space. VirtualSpace accomplishes this by containing each user in a subset of the physical space at all times, which we call tiles; app-invoked maneuvers then shuffle tiles and users across the entire physical space. This allows apps to move their users to where their narrative requires them to be while hiding from users that they are confined to a tile. We show how this enables VirtualSpace to pack four users into 16m2. In our study we found that VirtualSpace allowed participants to use more space and to feel less confined than in a control condition with static, pre-allocated space.

2019-01-21
Nemati, H., Dagenais, M. R..  2018.  VM processes state detection by hypervisor tracing. 2018 Annual IEEE International Systems Conference (SysCon). :1–8.

The diagnosis of performance issues in cloud environments is a challenging problem, due to the different levels of virtualization, the diversity of applications and their interactions on the same physical host. Moreover, because of privacy, security, ease of deployment and execution overhead, an agent-less method, which limits its data collection to the physical host level, is often the only acceptable solution. In this paper, a precise host-based method, to recover wait state for the processes inside a given Virtual Machine (VM), is proposed. The virtual Process State Detection (vPSD) algorithm computes the state of processes through host kernel tracing. The state of a virtual Process (vProcess) is displayed in an interactive trace viewer (Trace Compass) for further inspection. Our proposed VM trace analysis algorithm has been open-sourced for further enhancements and for the benefit of other developers. Experimental evaluations were conducted using a mix of workload types (CPU, Disk, and Network), with different applications like Hadoop, MySQL, and Apache. vPSD, being based on host hypervisor tracing, brings a lower overhead (around 0.03%) as compared to other approaches.

2019-06-10
Liu, D., Li, Y., Tang, Y., Wang, B., Xie, W..  2018.  VMPBL: Identifying Vulnerable Functions Based on Machine Learning Combining Patched Information and Binary Comparison Technique by LCS. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :800-807.

Nowadays, most vendors apply the same open source code to their products, which is dangerous. In addition, when manufacturers release patches, they generally hide the exact location of the vulnerabilities. So, identifying vulnerabilities in binaries is crucial. However, just searching source program has a lower identifying accuracy of vulnerability, which requires operators further to differentiate searched results. Under this context, we propose VMPBL to enhance identifying the accuracy of vulnerability with the help of patch files. VMPBL, compared with other proposed schemes, uses patched functions according to its vulnerable functions in patch file to further distinguish results. We establish a prototype of VMPBL, which can effectively identify vulnerable function types and get rid of safe functions from results. Firstly, we get the potential vulnerable-patched functions by binary comparison technique based on K-Trace algorithm. Then we combine the functions with vulnerability and patch knowledge database to classify these function pairs and identify the possible vulnerable functions and the vulnerability types. Finally, we test some programs containing real-world CWE vulnerabilities, and one of the experimental results about CWE415 shows that the results returned from only searching source program are about twice as much as the results from VMPBL. We can see that using VMPBL can significantly reduce the false positive rate of discovering vulnerabilities compared with analyzing source files alone.

2019-01-31
Manikonda, Lydia, Deotale, Aditya, Kambhampati, Subbarao.  2018.  What's Up with Privacy?: User Preferences and Privacy Concerns in Intelligent Personal Assistants Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. :229–235.

The recent breakthroughs in Artificial Intelligence (AI) have allowed individuals to rely on automated systems for a variety of reasons. Some of these systems are the currently popular voice-enabled systems like Echo by Amazon and Home by Google that are also called as Intelligent Personal Assistants (IPAs). Though there are rising concerns about privacy and ethical implications, users of these IPAs seem to continue using these systems. We aim to investigate to what extent users are concerned about privacy and how they are handling these concerns while using the IPAs. By utilizing the reviews posted online along with the responses to a survey, this paper provides a set of insights about the detected markers related to user interests and privacy challenges. The insights suggest that users of these systems irrespective of their concerns about privacy, are generally positive in terms of utilizing IPAs in their everyday lives. However, there is a significant percentage of users who are concerned about privacy and take further actions to address related concerns. Some percentage of users expressed that they do not have any privacy concerns but when they learned about the "always listening" feature of these devices, their concern about privacy increased.

2019-11-19
Dijkhuis, Sander, van Wijk, Remco, Dorhout, Hidde, Bharosa, Nitesh.  2018.  When Willeke Can Get Rid of Paperwork: A Lean Infrastructure for Qualified Information Exchange Based on Trusted Identities. Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age. :89:1-89:10.

As a frequent participant in eSociety, Willeke is often preoccupied with paperwork because there is no easy to use, affordable way to act as a qualified person in the digital world. Confidential interactions take place over insecure channels like e-mail and post. This situation poses risks and costs for service providers, civilians and governments, while goals regarding confidentiality and privacy are not always met. The objective of this paper is to demonstrate an alternative architecture in which identifying persons, exchanging information, authorizing external parties and signing documents will become more user-friendly and secure. As a starting point, each person has their personal data space, provided by a qualified trust service provider that also issues a high level of assurance electronic ID. Three main building blocks are required: (1) secure exchange between the personal data space of each person, (2) coordination functionalities provided by a token based infrastructure, and (3) governance over this infrastructure. Following the design science research approach, we developed prototypes of the building blocks that we will pilot in practice. Policy makers and practitioners that want to enable Willeke to get rid of her paperwork can find guidance throughout this paper and are welcome to join the pilots in the Netherlands.

2019-02-25
Fang, Yong, Peng, Jiayi, Liu, Liang, Huang, Cheng.  2018.  WOVSQLI: Detection of SQL Injection Behaviors Using Word Vector and LSTM. Proceedings of the 2Nd International Conference on Cryptography, Security and Privacy. :170–174.

The Structured Query Language Injection Attack (SQLIA) is one of the most serious and popular threats of web applications. The results of SQLIA include the data loss or complete host takeover. Detection of SQLIA is always an intractable challenge because of the heterogeneity of the attack payloads. In this paper, a novel method to detect SQLIA based on word vector of SQL tokens and LSTM neural networks is described. In the proposed method, SQL query strings were firstly syntactically analyzed into tokens, and then likelihood ratio test is used to build the word vector of SQL tokens, ultimately, an LSTM model is trained with sequences of token word vectors. We developed a tool named WOVSQLI, which implements the proposed technique, and it was evaluated with a dataset from several sources. The results of experiments demonstrate that WOVSQLI can effectively identify SQLIA.

2019-06-10
Tran, T. K., Sato, H., Kubo, M..  2018.  One-Shot Learning Approach for Unknown Malware Classification. 2018 5th Asian Conference on Defense Technology (ACDT). :8-13.

Early detection of new kinds of malware always plays an important role in defending the network systems. Especially, if intelligent protection systems could themselves detect an existence of new malware types in their system, even with a very small number of malware samples, it must be a huge benefit for the organization as well as the social since it help preventing the spreading of that kind of malware. To deal with learning from few samples, term ``one-shot learning'' or ``fewshot learning'' was introduced, and mostly used in computer vision to recognize images, handwriting, etc. An approach introduced in this paper takes advantage of One-shot learning algorithms in solving the malware classification problem by using Memory Augmented Neural Network in combination with malware's API calls sequence, which is a very valuable source of information for identifying malware behavior. In addition, it also use some advantages of the development in Natural Language Processing field such as word2vec, etc. to convert those API sequences to numeric vectors before feeding to the one-shot learning network. The results confirm very good accuracies compared to the other traditional methods.

2020-09-28
Li, Kai, Kurunathan, Harrison, Severino, Ricardo, Tovar, Eduardo.  2018.  Cooperative Key Generation for Data Dissemination in Cyber-Physical Systems. 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS). :331–332.
Securing wireless communication is significant for privacy and confidentiality of sensing data in Cyber-Physical Systems (CPS). However, due to broadcast nature of radio channels, disseminating sensory data is vulnerable to eavesdropping and message modification. Generating secret keys by extracting the shared randomness in a wireless fading channel is a promising way to improve the communication security. In this poster, we present a novel secret key generation protocol for securing real-time data dissemination in CPS, where the sensor nodes cooperatively generate a shared key by estimating the quantized fading channel randomness. A 2-hop wireless sensor network testbed is built and preliminary experimental results show that the quantization intervals and distance between the nodes lead to a secret bit mismatch.
2020-04-20
To, Hien, Shahabi, Cyrus, Xiong, Li.  2018.  Privacy-Preserving Online Task Assignment in Spatial Crowdsourcing with Untrusted Server. 2018 IEEE 34th International Conference on Data Engineering (ICDE). :833–844.
With spatial crowdsourcing (SC), requesters outsource their spatiotemporal tasks (tasks associated with location and time) to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. However, current solutions require the locations of the workers and/or the tasks to be disclosed to untrusted parties (SC server) for effective assignments of tasks to workers. In this paper we propose a framework for assigning tasks to workers in an online manner without compromising the location privacy of workers and tasks. We perturb the locations of both tasks and workers based on geo-indistinguishability and then devise techniques to quantify the probability of reachability between a task and a worker, given their perturbed locations. We investigate both analytical and empirical models for quantifying the worker-task pair reachability and propose task assignment strategies that strike a balance among various metrics such as the number of completed tasks, worker travel distance and system overhead. Extensive experiments on real-world datasets show that our proposed techniques result in minimal disclosure of task locations and no disclosure of worker locations without significantly sacrificing the total number of assigned tasks.
To, Hien, Shahabi, Cyrus, Xiong, Li.  2018.  Privacy-Preserving Online Task Assignment in Spatial Crowdsourcing with Untrusted Server. 2018 IEEE 34th International Conference on Data Engineering (ICDE). :833–844.
With spatial crowdsourcing (SC), requesters outsource their spatiotemporal tasks (tasks associated with location and time) to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. However, current solutions require the locations of the workers and/or the tasks to be disclosed to untrusted parties (SC server) for effective assignments of tasks to workers. In this paper we propose a framework for assigning tasks to workers in an online manner without compromising the location privacy of workers and tasks. We perturb the locations of both tasks and workers based on geo-indistinguishability and then devise techniques to quantify the probability of reachability between a task and a worker, given their perturbed locations. We investigate both analytical and empirical models for quantifying the worker-task pair reachability and propose task assignment strategies that strike a balance among various metrics such as the number of completed tasks, worker travel distance and system overhead. Extensive experiments on real-world datasets show that our proposed techniques result in minimal disclosure of task locations and no disclosure of worker locations without significantly sacrificing the total number of assigned tasks.
2020-09-28
Sliwa, Benjamin, Haferkamp, Marcus, Al-Askary, Manar, Dorn, Dennis, Wietfeld, Christian.  2018.  A radio-fingerprinting-based vehicle classification system for intelligent traffic control in smart cities. 2018 Annual IEEE International Systems Conference (SysCon). :1–5.
The measurement and provision of precise and up-to-date traffic-related key performance indicators is a key element and crucial factor for intelligent traffic control systems in upcoming smart cities. The street network is considered as a highly-dynamic Cyber Physical System (CPS) where measured information forms the foundation for dynamic control methods aiming to optimize the overall system state. Apart from global system parameters like traffic flow and density, specific data, such as velocity of individual vehicles as well as vehicle type information, can be leveraged for highly sophisticated traffic control methods like dynamic type-specific lane assignments. Consequently, solutions for acquiring these kinds of information are required and have to comply with strict requirements ranging from accuracy over cost-efficiency to privacy preservation. In this paper, we present a system for classifying vehicles based on their radio-fingerprint. In contrast to other approaches, the proposed system is able to provide real-time capable and precise vehicle classification as well as cost-efficient installation and maintenance, privacy preservation and weather independence. The system performance in terms of accuracy and resource-efficiency is evaluated in the field using comprehensive measurements. Using a machine learning based approach, the resulting success ratio for classifying cars and trucks is above 99%.
2019-02-25
Ojagbule, O., Wimmer, H., Haddad, R. J..  2018.  Vulnerability Analysis of Content Management Systems to SQL Injection Using SQLMAP. SoutheastCon 2018. :1–7.

There are over 1 billion websites today, and most of them are designed using content management systems. Cybersecurity is one of the most discussed topics when it comes to a web application and protecting the confidentiality, integrity of data has become paramount. SQLi is one of the most commonly used techniques that hackers use to exploit a security vulnerability in a web application. In this paper, we compared SQLi vulnerabilities found on the three most commonly used content management systems using a vulnerability scanner called Nikto, then SQLMAP for penetration testing. This was carried on default WordPress, Drupal and Joomla website pages installed on a LAMP server (Iocalhost). Results showed that each of the content management systems was not susceptible to SQLi attacks but gave warnings about other vulnerabilities that could be exploited. Also, we suggested practices that could be implemented to prevent SQL injections.

2019-06-10
Xue, S., Zhang, L., Li, A., Li, X., Ruan, C., Huang, W..  2018.  AppDNA: App Behavior Profiling via Graph-Based Deep Learning. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :1475-1483.

Better understanding of mobile applications' behaviors would lead to better malware detection/classification and better app recommendation for users. In this work, we design a framework AppDNA to automatically generate a compact representation for each app to comprehensively profile its behaviors. The behavior difference between two apps can be measured by the distance between their representations. As a result, the versatile representation can be generated once for each app, and then be used for a wide variety of objectives, including malware detection, app categorizing, plagiarism detection, etc. Based on a systematic and deep understanding of an app's behavior, we propose to perform a function-call-graph-based app profiling. We carefully design a graph-encoding method to convert a typically extremely large call-graph to a 64-dimension fix-size vector to achieve robust app profiling. Our extensive evaluations based on 86,332 benign and malicious apps demonstrate that our system performs app profiling (thus malware detection, classification, and app recommendation) to a high accuracy with extremely low computation cost: it classifies 4024 (benign/malware) apps using around 5.06 second with accuracy about 93.07%; it classifies 570 malware's family (total 21 families) using around 0.83 second with accuracy 82.3%; it classifies 9,730 apps' functionality with accuracy 33.3% for a total of 7 categories and accuracy of 88.1 % for 2 categories.

2020-10-16
AlEnezi, Ali, AlMeraj, Zainab, Manuel, Paul.  2018.  Challenges of IoT Based Smart-Government Development. 2018 IEEE Green Technologies Conference (GreenTech). :155—160.

Smart governments are known as extensions of e-governments both built on the Internet of Things (IoT). In this paper, we classify smart governments into two types (1) new generation and (2) extended smart-government. We then put forth a framework for smart governments implementation and discuss the major challenges in its implementation showing security as the most prominent challenge in USA, mindscaping in Kuwait and investment in India.

2021-10-26
Celia Paulsen, Jon M. Boyens, Nadya Bartol, Kris Winkler.  2018.  Criticality Analysis Process Model: Prioritizing Systems and Components. Criticality Analysis Process Model. :1-94.

NISTIR 8179 describes a Criticality Analysis Process Model – a structured method of prioritizing programs, systems, and components based on their importance to the mission and the risk that their ineffective or unsatisfactory operation or loss may present to the mission. The Criticality Analysis Process Model presented in this document adopts and adapts concepts presented in risk management, system engineering, software engineering, security engineering, privacy engineering, safety applications, business analysis, systems analysis, acquisition guidance, and cyber supply chain risk management publications. The Criticality Analysis Process Model can be used as a component of a holistic and comprehensive risk management approach that considers all risks, including information security and privacy risks. The Model can be used with a variety of risk management standards and guidelines including the International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) 27000 family of standards and the suite of National Institute of Standards and Technology (NIST) Special Publications (SPs). The Model can also be used with systems and software engineering frameworks. The need for criticality analysis within information security emerged as systems have become more complex and supply chains used to create software, hardware, and services have become extended, geographically distributed, and vast

2020-11-04
Rajamäki, J., Nevmerzhitskaya, J., Virág, C..  2018.  Cybersecurity education and training in hospitals: Proactive resilience educational framework (Prosilience EF). 2018 IEEE Global Engineering Education Conference (EDUCON). :2042—2046.

Healthcare is a vital component of every nation's critical infrastructure, yet it is one of the most vulnerable sector for cyber-attacks. To enforce the knowledge on information security processes and data protection procedures, educational and training schemes should be establishedfor information technology (IT) staff working in healthcare settings. However, only training IT staff is not enough, as many of cybersecurity threats are caused by human errors or lack of awareness. Current awareness and training schemes are often implemented in silos, concentrating on one aspect of cybersecurity at a time. Proactive Resilience Educational Framework (Prosilience EF) provides a holistic cyber resilience and security framework for developing and delivering a multilateral educational and training scheme based on a proactive approach to cybersecurity. The framework is built on the principle that education and training must be interactive, guided, meaningful and directly relevant to the user' operational environment. The framework addresses capacity mapping, cyber resilience level measuring, utilizing available and mapping missing resources, adaptive learning technologies and dynamic content delivery. Prosilience EF launches an iterative process of awareness and training development with relevant stakeholders (end users - hospitals, healthcare authorities, cybersecurity training providers, industry members), evaluating the framework via joint exercises/workshops andfurther developing the framework.

2019-11-18
Lu, Zhaojun, Wang, Qian, Qu, Gang, Liu, Zhenglin.  2018.  BARS: A Blockchain-Based Anonymous Reputation System for Trust Management in VANETs. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :98–103.
The public key infrastructure (PKI) based authentication protocol provides the basic security services for vehicular ad-hoc networks (VANETs). However, trust and privacy are still open issues due to the unique characteristics of vehicles. It is crucial for VANETs to prevent internal vehicles from broadcasting forged messages while simultaneously protecting the privacy of each vehicle against tracking attacks. In this paper, we propose a blockchain-based anonymous reputation system (BARS) to break the linkability between real identities and public keys to preserve privacy. The certificate and revocation transparency is implemented efficiently using two blockchains. We design a trust model to improve the trustworthiness of messages relying on the reputation of the sender based on both direct historical interactions and indirect opinions about the sender. Experiments are conducted to evaluate BARS in terms of security and performance and the results show that BARS is able to establish distributed trust management, while protecting the privacy of vehicles.
2019-12-10
Tian, Yun, Xu, Wenbo, Qin, Jing, Zhao, Xiaofan.  2018.  Compressive Detection of Random Signals from Sparsely Corrupted Measurements. 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC). :389-393.

Compressed sensing (CS) integrates sampling and compression into a single step to reduce the processed data amount. However, the CS reconstruction generally suffers from high complexity. To solve this problem, compressive signal processing (CSP) is recently proposed to implement some signal processing tasks directly in the compressive domain without reconstruction. Among various CSP techniques, compressive detection achieves the signal detection based on the CS measurements. This paper investigates the compressive detection problem of random signals when the measurements are corrupted. Different from the current studies that only consider the dense noise, our study considers both the dense noise and sparse error. The theoretical performance is derived, and simulations are provided to verify the derived theoretical results.

2019-11-11
Subahi, Alanoud, Theodorakopoulos, George.  2018.  Ensuring Compliance of IoT Devices with Their Privacy Policy Agreement. 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud). :100–107.
In the past few years, Internet of Things (IoT) devices have emerged and spread everywhere. Many researchers have been motivated to study the security issues of IoT devices due to the sensitive information they carry about their owners. Privacy is not simply about encryption and access authorization, but also about what kind of information is transmitted, how it used and to whom it will be shared with. Thus, IoT manufacturers should be compelled to issue Privacy Policy Agreements for their respective devices as well as ensure that the actual behavior of the IoT device complies with the issued privacy policy. In this paper, we implement a test bed for ensuring compliance of Internet of Things data disclosure to the corresponding privacy policy. The fundamental approach used in the test bed is to capture the data traffic between the IoT device and the cloud, between the IoT device and its application on the smart-phone, and between the IoT application and the cloud and analyze those packets for various features. We test 11 IoT manufacturers and the results reveal that half of those IoT manufacturers do not have an adequate privacy policy specifically for their IoT devices. In addition, we prove that the action of two IoT devices does not comply with what they stated in their privacy policy agreement.
2020-01-02
Hagan, Matthew, Kang, BooJoong, McLaughlin, Kieran, Sezer, Sakir.  2018.  Peer Based Tracking Using Multi-Tuple Indexing for Network Traffic Analysis and Malware Detection. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–5.

Traditional firewalls, Intrusion Detection Systems(IDS) and network analytics tools extensively use the `flow' connection concept, consisting of five `tuples' of source and destination IP, ports and protocol type, for classification and management of network activities. By analysing flows, information can be obtained from TCP/IP fields and packet content to give an understanding of what is being transferred within a single connection. As networks have evolved to incorporate more connections and greater bandwidth, particularly from ``always on'' IoT devices and video and data streaming, so too have malicious network threats, whose communication methods have increased in sophistication. As a result, the concept of the 5 tuple flow in isolation is unable to detect such threats and malicious behaviours. This is due to factors such as the length of time and data required to understand the network traffic behaviour, which cannot be accomplished by observing a single connection. To alleviate this issue, this paper proposes the use of additional, two tuple and single tuple flow types to associate multiple 5 tuple communications, with generated metadata used to profile individual connnection behaviour. This proposed approach enables advanced linking of different connections and behaviours, developing a clearer picture as to what network activities have been taking place over a prolonged period of time. To demonstrate the capability of this approach, an expert system rule set has been developed to detect the presence of a multi-peered ZeuS botnet, which communicates by making multiple connections with multiple hosts, thus undetectable to standard IDS systems observing 5 tuple flow types in isolation. Finally, as the solution is rule based, this implementation operates in realtime and does not require post-processing and analytics of other research solutions. This paper aims to demonstrate possible applications for next generation firewalls and methods to acquire additional information from network traffic.

2019-03-28
He, Z., Pan, S., Lin, D..  2018.  PMDA: Privacy-Preserving Multi-Functional Data Aggregation Without TTP in Smart Grid. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1107-1114.

In the smart grid, residents' electricity usage needs to be periodically measured and reported for the purpose of better energy management. At the same time, real-time collection of residents' electricity consumption may unfavorably incur privacy leakage, which has motivated the research on privacy-preserving aggregation of electricity readings. Most previous studies either rely on a trusted third party (TTP) or suffer from expensive computation. In this paper, we first reveal the privacy flaws of a very recent scheme pursing privacy preservation without relying on the TTP. By presenting concrete attacks, we show that this scheme has failed to meet the design goals. Then, for better privacy protection, we construct a new scheme called PMDA, which utilizes Shamir's secret sharing to allow smart meters to negotiate aggregation parameters in the absence of a TTP. Using only lightweight cryptography, PMDA efficiently supports multi-functional aggregation of the electricity readings, and simultaneously preserves residents' privacy. Theoretical analysis is provided with regard to PMDA's security and efficiency. Moreover, experimental data obtained from a prototype indicates that our proposal is efficient and feasible for practical deployment.