Biblio

Found 2356 results

Filters: Keyword is privacy  [Clear All Filters]
2019-03-06
AbdAllah, E. G., Zulkernine, M., Hassanein, H. S..  2018.  A Security Framework for ICN Traffic Management. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :78-85.

Information Centric Networking (ICN) changed the communication model from host-based to content-based to cope with the high volume of traffic due to the rapidly increasing number of users, data objects, devices, and applications. ICN communication model requires new security solutions that will be integrated with ICN architectures. In this paper, we present a security framework to manage ICN traffic by detecting, preventing, and responding to ICN attacks. The framework consists of three components: availability, access control, and privacy. The availability component ensures that contents are available for legitimate users. The access control component allows only legitimate users to get restrictedaccess contents. The privacy component prevents attackers from knowing content popularities or user requests. We also show our specific solutions as examples of the framework components.

2018-11-14
Adams, S., Carter, B., Fleming, C., Beling, P. A..  2018.  Selecting System Specific Cybersecurity Attack Patterns Using Topic Modeling. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :490–497.

One challenge for cybersecurity experts is deciding which type of attack would be successful against the system they wish to protect. Often, this challenge is addressed in an ad hoc fashion and is highly dependent upon the skill and knowledge base of the expert. In this study, we present a method for automatically ranking attack patterns in the Common Attack Pattern Enumeration and Classification (CAPEC) database for a given system. This ranking method is intended to produce suggested attacks to be evaluated by a cybersecurity expert and not a definitive ranking of the "best" attacks. The proposed method uses topic modeling to extract hidden topics from the textual description of each attack pattern and learn the parameters of a topic model. The posterior distribution of topics for the system is estimated using the model and any provided text. Attack patterns are ranked by measuring the distance between each attack topic distribution and the topic distribution of the system using KL divergence.

2019-03-11
Habib, S. M., Alexopoulos, N., Islam, M. M., Heider, J., Marsh, S., Müehlhäeuser, M..  2018.  Trust4App: Automating Trustworthiness Assessment of Mobile Applications. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :124–135.

Smartphones have become ubiquitous in our everyday lives, providing diverse functionalities via millions of applications (apps) that are readily available. To achieve these functionalities, apps need to access and utilize potentially sensitive data, stored in the user's device. This can pose a serious threat to users' security and privacy, when considering malicious or underskilled developers. While application marketplaces, like Google Play store and Apple App store, provide factors like ratings, user reviews, and number of downloads to distinguish benign from risky apps, studies have shown that these metrics are not adequately effective. The security and privacy health of an application should also be considered to generate a more reliable and transparent trustworthiness score. In order to automate the trustworthiness assessment of mobile applications, we introduce the Trust4App framework, which not only considers the publicly available factors mentioned above, but also takes into account the Security and Privacy (S&P) health of an application. Additionally, it considers the S&P posture of a user, and provides an holistic personalized trustworthiness score. While existing automatic trustworthiness frameworks only consider trustworthiness indicators (e.g. permission usage, privacy leaks) individually, Trust4App is, to the best of our knowledge, the first framework to combine these indicators. We also implement a proof-of-concept realization of our framework and demonstrate that Trust4App provides a more comprehensive, intuitive and actionable trustworthiness assessment compared to existing approaches.

2020-11-23
Haddad, G. El, Aïmeur, E., Hage, H..  2018.  Understanding Trust, Privacy and Financial Fears in Online Payment. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :28–36.
In online payment, customers must transmit their personal and financial information through the website to conclude their purchase and pay the services or items selected. They may face possible fears from online transactions raised by their risk perception about financial or privacy loss. They may have concerns over the payment decision with the possible negative behaviors such as shopping cart abandonment. Therefore, customers have three major players that need to be addressed in online payment: the online seller, the payment page, and their own perception. However, few studies have explored these three players in an online purchasing environment. In this paper, we focus on the customer concerns and examine the antecedents of trust, payment security perception as well as their joint effect on two fundamentally important customers' aspects privacy concerns and financial fear perception. A total of 392 individuals participated in an online survey. The results highlight the importance, of the seller website's components (such as ease of use, security signs, and quality information) and their impact on the perceived payment security as well as their impact on customer's trust and financial fear perception. The objective of our study is to design a research model that explains the factors contributing to an online payment decision.
2019-06-10
Kim, H. M., Song, H. M., Seo, J. W., Kim, H. K..  2018.  Andro-Simnet: Android Malware Family Classification Using Social Network Analysis. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1-8.

While the rapid adaptation of mobile devices changes our daily life more conveniently, the threat derived from malware is also increased. There are lots of research to detect malware to protect mobile devices, but most of them adopt only signature-based malware detection method that can be easily bypassed by polymorphic and metamorphic malware. To detect malware and its variants, it is essential to adopt behavior-based detection for efficient malware classification. This paper presents a system that classifies malware by using common behavioral characteristics along with malware families. We measure the similarity between malware families with carefully chosen features commonly appeared in the same family. With the proposed similarity measure, we can classify malware by malware's attack behavior pattern and tactical characteristics. Also, we apply community detection algorithm to increase the modularity within each malware family network aggregation. To maintain high classification accuracy, we propose a process to derive the optimal weights of the selected features in the proposed similarity measure. During this process, we find out which features are significant for representing the similarity between malware samples. Finally, we provide an intuitive graph visualization of malware samples which is helpful to understand the distribution and likeness of the malware networks. In the experiment, the proposed system achieved 97% accuracy for malware classification and 95% accuracy for prediction by K-fold cross-validation using the real malware dataset.

2019-12-16
Cerf, Sophie, Robu, Bogdan, Marchand, Nicolas, Mokhtar, Sonia Ben, Bouchenak, Sara.  2018.  A Control-Theoretic Approach for Location Privacy in Mobile Applications. 2018 IEEE Conference on Control Technology and Applications (CCTA). :1488-1493.

The prevalent use of mobile applications using location information to improve the quality of their service has arisen privacy issues, particularly regarding the extraction of user's points on interest. Many studies in the literature focus on presenting algorithms that allow to protect the user of such applications. However, these solutions often require a high level of expertise to be understood and tuned properly. In this paper, the first control-based approach of this problem is presented. The protection algorithm is considered as the ``physical'' plant and its parameters as control signals that enable to guarantee privacy despite user's mobility pattern. The following of the paper presents the first control formulation of POI-related privacy measure, as well as dynamic modeling and a simple yet efficient PI control strategy. The evaluation using simulated mobility records shows the relevance and efficiency of the presented approach.

2019-06-10
Jiang, H., Turki, T., Wang, J. T. L..  2018.  DLGraph: Malware Detection Using Deep Learning and Graph Embedding. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). :1029-1033.

In this paper we present a new approach, named DLGraph, for malware detection using deep learning and graph embedding. DLGraph employs two stacked denoising autoencoders (SDAs) for representation learning, taking into consideration computer programs' function-call graphs and Windows application programming interface (API) calls. Given a program, we first use a graph embedding technique that maps the program's function-call graph to a vector in a low-dimensional feature space. One SDA in our deep learning model is used to learn a latent representation of the embedded vector of the function-call graph. The other SDA in our model is used to learn a latent representation of the given program's Windows API calls. The two learned latent representations are then merged to form a combined feature vector. Finally, we use softmax regression to classify the combined feature vector for predicting whether the given program is malware or not. Experimental results based on different datasets demonstrate the effectiveness of the proposed approach and its superiority over a related method.

2020-01-07
P.G., Swathi, Rajesh, Sreeja.  2018.  Double Encryption Using TEA and DNA. 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET). :1-5.
Information security has become a major challenge in data transmission. Data transmitted through the network is vulnerable to many passive and active attacks. Cryptographic algorithms provide security against the data intruders and provide secure network communication. In this method, two algorithms TEA and DNA are combined to form a new algorithm called DETD (Double Encryption using TEA and DNA). The algorithm mainly deals with encryption and decryption time of a given input text. Here, both the encryption and decryption time are compared with the other two algorithms and the results are recorded. This algorithm also aims to provide data security by increasing the levels of encryption.
2020-04-24
Rahman, Lamiya, Adan, Jannatul, Nahid-AI-Masood, Deeba, Shohana Rahman.  2018.  Performance Analysis of Floating Buoy Point Absorber and Oscillating Surge Wave Energy Converters in Onshore and Offshore Locations. 2018 10th International Conference on Electrical and Computer Engineering (ICECE). :233—236.

The aim of this paper is to explore the performance of two well-known wave energy converters (WECs) namely Floating Buoy Point Absorber (FBPA) and Oscillating Surge (OS) in onshore and offshore locations. To achieve clean energy targets by reducing greenhouse gas emissions, integration of renewable energy resources is continuously increasing all around the world. In addition to widespread renewable energy source such as wind and solar photovoltaic (PV), wave energy extracted from ocean is becoming more tangible day by day. In the literature, a number of WEC devices are reported. However, further investigations are still needed to better understand the behaviors of FBPA WEC and OS WEC under irregular wave conditions in onshore and offshore locations. Note that being surrounded by Bay of Bengal, Bangladesh has huge scope of utilizing wave power. To this end, FBPA WEC and OS WEC are simulated using the typical onshore and offshore wave height and wave period of the coastal area of Bangladesh. Afterwards, performances of the aforementioned two WECs are compared by analyzing their power output.

2020-10-29
El-Zoghby, Ayman M., Mosharafa, Ahmed, Azer, Marianne A..  2018.  Anonymous Routing Protocols in MANETs, a Security Comparative Analysis. 2018 14th International Computer Engineering Conference (ICENCO). :254—259.

A Mobile Ad Hoc Network (MANET) is considered a type of network which is wireless and has no fixed infrastructure composed of a set if nodes in self organized fashion which are randomly, frequently and unpredictably mobile. MANETs can be applied in both military and civil environments ones because of its numerous applications. This is due to their special characteristics and self-configuration capability. This is due to its dynamic nature, lack of fixed infrastructure, and the no need of being centrally managed; a special type of routing protocols such as Anonymous routing protocols are needed to hide the identifiable information of communicating parties, while preserving the communication secrecy. This paper provides an examination of a comprehensive list of anonymous routing protocols in MANET, focusing their security and performance capabilities.

2019-06-10
Eziama, E., Jaimes, L. M. S., James, A., Nwizege, K. S., Balador, A., Tepe, K..  2018.  Machine Learning-Based Recommendation Trust Model for Machine-to-Machine Communication. 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). :1-6.

The Machine Type Communication Devices (MTCDs) are usually based on Internet Protocol (IP), which can cause billions of connected objects to be part of the Internet. The enormous amount of data coming from these devices are quite heterogeneous in nature, which can lead to security issues, such as injection attacks, ballot stuffing, and bad mouthing. Consequently, this work considers machine learning trust evaluation as an effective and accurate option for solving the issues associate with security threats. In this paper, a comparative analysis is carried out with five different machine learning approaches: Naive Bayes (NB), Decision Tree (DT), Linear and Radial Support Vector Machine (SVM), KNearest Neighbor (KNN), and Random Forest (RF). As a critical element of the research, the recommendations consider different Machine-to-Machine (M2M) communication nodes with regard to their ability to identify malicious and honest information. To validate the performances of these models, two trust computation measures were used: Receiver Operating Characteristics (ROCs), Precision and Recall. The malicious data was formulated in Matlab. A scenario was created where 50% of the information were modified to be malicious. The malicious nodes were varied in the ranges of 10%, 20%, 30%, 40%, and the results were carefully analyzed.

Kim, C. H., Kabanga, E. K., Kang, S..  2018.  Classifying Malware Using Convolutional Gated Neural Network. 2018 20th International Conference on Advanced Communication Technology (ICACT). :40-44.

Malware or Malicious Software, are an important threat to information technology society. Deep Neural Network has been recently achieving a great performance for the tasks of malware detection and classification. In this paper, we propose a convolutional gated recurrent neural network model that is capable of classifying malware to their respective families. The model is applied to a set of malware divided into 9 different families and that have been proposed during the Microsoft Malware Classification Challenge in 2015. The model shows an accuracy of 92.6% on the available dataset.

Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D. B., Wang, Y., Iqbal, F..  2018.  Malware Classification with Deep Convolutional Neural Networks. 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS). :1-5.

In this paper, we propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses a serious security threat to financial institutions, businesses and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples so that their behavior can be analyzed. Machine learning approaches are becoming popular for classifying malware, however, most of the existing machine learning methods for malware classification use shallow learning algorithms (e.g. SVM). Recently, Convolutional Neural Networks (CNN), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Motivated by this success, we propose a CNN-based architecture to classify malware samples. We convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, Malimg and Microsoft malware, demonstrate that our method achieves better than the state-of-the-art performance. The proposed method achieves 98.52% and 99.97% accuracy on the Malimg and Microsoft datasets respectively.

2020-01-07
Hammami, Hamza, Brahmi, Hanen, Ben Yahia, Sadok.  2018.  Secured Outsourcing towards a Cloud Computing Environment Based on DNA Cryptography. 2018 International Conference on Information Networking (ICOIN). :31-36.

Cloud computing denotes an IT infrastructure where data and software are stored and processed remotely in a data center of a cloud provider, which are accessible via an Internet service. This new paradigm is increasingly reaching the ears of companies and has revolutionized the marketplace of today owing to several factors, in particular its cost-effective architectures covering transmission, storage and intensive data computing. However, like any new technology, the cloud computing technology brings new problems of security, which represents the main restrain on turning to this paradigm. For this reason, users are reluctant to resort to the cloud because of security and protection of private data as well as lack of trust in cloud service providers. The work in this paper allows the readers to familiarize themselves with the field of security in the cloud computing paradigm while suggesting our contribution in this context. The security schema we propose allowing a distant user to ensure a completely secure migration of all their data anywhere in the cloud through DNA cryptography. Carried out experiments showed that our security solution outperforms its competitors in terms of integrity and confidentiality of data.

2019-11-12
Dreier, Jannik, Hirschi, Lucca, Radomirovic, Sasa, Sasse, Ralf.  2018.  Automated Unbounded Verification of Stateful Cryptographic Protocols with Exclusive OR. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). :359-373.

Exclusive-or (XOR) operations are common in cryptographic protocols, in particular in RFID protocols and electronic payment protocols. Although there are numerous applications, due to the inherent complexity of faithful models of XOR, there is only limited tool support for the verification of cryptographic protocols using XOR. The Tamarin prover is a state-of-the-art verification tool for cryptographic protocols in the symbolic model. In this paper, we improve the underlying theory and the tool to deal with an equational theory modeling XOR operations. The XOR theory can be freely combined with all equational theories previously supported, including user-defined equational theories. This makes Tamarin the first tool to support simultaneously this large set of equational theories, protocols with global mutable state, an unbounded number of sessions, and complex security properties including observational equivalence. We demonstrate the effectiveness of our approach by analyzing several protocols that rely on XOR, in particular multiple RFID-protocols, where we can identify attacks as well as provide proofs.

2019-03-04
Aborisade, O., Anwar, M..  2018.  Classification for Authorship of Tweets by Comparing Logistic Regression and Naive Bayes Classifiers. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :269–276.

At a time when all it takes to open a Twitter account is a mobile phone, the act of authenticating information encountered on social media becomes very complex, especially when we lack measures to verify digital identities in the first place. Because the platform supports anonymity, fake news generated by dubious sources have been observed to travel much faster and farther than real news. Hence, we need valid measures to identify authors of misinformation to avert these consequences. Researchers propose different authorship attribution techniques to approach this kind of problem. However, because tweets are made up of only 280 characters, finding a suitable authorship attribution technique is a challenge. This research aims to classify authors of tweets by comparing machine learning methods like logistic regression and naive Bayes. The processes of this application are fetching of tweets, pre-processing, feature extraction, and developing a machine learning model for classification. This paper illustrates the text classification for authorship process using machine learning techniques. In total, there were 46,895 tweets used as both training and testing data, and unique features specific to Twitter were extracted. Several steps were done in the pre-processing phase, including removal of short texts, removal of stop-words and punctuations, tokenizing and stemming of texts as well. This approach transforms the pre-processed data into a set of feature vector in Python. Logistic regression and naive Bayes algorithms were applied to the set of feature vectors for the training and testing of the classifier. The logistic regression based classifier gave the highest accuracy of 91.1% compared to the naive Bayes classifier with 89.8%.

2020-09-28
Gallo, Pierluigi, Pongnumkul, Suporn, Quoc Nguyen, Uy.  2018.  BlockSee: Blockchain for IoT Video Surveillance in Smart Cities. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.
The growing demand for safety in urban environments is supported by monitoring using video surveillance. The need to analyze multiple video-flows from different cameras deployed around the city by heterogeneous owners introduces vulnerabilities and privacy issues. Video frames, timestamps, and camera settings can be digitally manipulated by malicious users; the positions of cameras, their orientation and their mechanical settings can be physically manipulated. Digital and physical manipulations may have several effects, including the change of the observed scene and the potential violation of neighbors' privacy. To face these risks, we introduce BlockSee, a blockchain-based video surveillance system that jointly provides validation and immutability to camera settings and surveillance videos, making them readily available to authorized users in case of events. The encouraging results obtained with BlockSee pave the way to new distributed city-wide monitoring systems.
2020-04-24
Luo, Xuesong, Wang, Shaoping.  2018.  Multi-work Condition Modeling and Performance Analysis of Linear Oscillating Actuators. 2018 IEEE International Conference on Prognostics and Health Management (ICPHM). :1—7.

Linear oscillating actuators are emerging electrical motors applied to direct-drive electromechanical systems. They merit high efficiency and quick dynamical property due to the unique structure of spring oscillator. Resonant principle is the base of their high performance, which however, is easily influenced by various load, complex environment and mechanical failure. This paper studies the modeling of linear oscillating actuators in multi-work condition. Three kinds of load are considered in performance evaluation model. Simulations are conducted at different frequencies to obtain the actuator behavior, especially at non-resonance frequencies. A method of constant impedance angle is proposed to search the best working points in sorts of conditions. Eventually, analytical results reflect that the resonant parameter would drift with load, while linear oscillating actuators exhibits robustness in efficiency performance. Several evaluating parameters are concluded to assess the actuator health status.

2020-10-26
Zhang, Kewang, Zahng, Qiong.  2018.  Preserve Location Privacy for Cyber-Physical Systems with Addresses Hashing at Data Link Layer. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1028–1032.
Due to their low complexity and robustness in nature, wireless sensor networks are a key component in cyber-physical system. The integration of wireless sensor network in cyber-physical system provides immense benefits in distributed controlled environment. However, the open nature of the wireless medium makes resource-constrained WSN vulnerable to unauthorized interception and detection. Privacy is becoming one of the major issues that jeopardize the successful deployment of WSN. In this paper, we propose a scheme named HASHA to provide location privacy. Different from previous approaches, HASHA protect nodes' location privacy at data link layer. It is well known that payload at data link layer frame is well protected through cryptosystem, but addresses at data link layer leaves unprotected. The adversaries can identify nodes in the network easily by capturing frames and check the source and destination addresses. If both addresses are well protected and unknown to the adversaries, they cannot identify nodes of the targeted networks, rendering it very difficult to launch traffic analysis and locate subjects. Simulation and analytical results demonstrate that our scheme provides stronger privacy protection and requires much less energy.
2020-09-28
Hale, Matthew, Jones, Austin, Leahy, Kevin.  2018.  Privacy in Feedback: The Differentially Private LQG. 2018 Annual American Control Conference (ACC). :3386–3391.
Information communicated within cyber-physical systems (CPSs) is often used in determining the physical states of such systems, and malicious adversaries may intercept these communications in order to infer future states of a CPS or its components. Accordingly, there arises a need to protect the state values of a system. Recently, the notion of differential privacy has been used to protect state trajectories in dynamical systems, and it is this notion of privacy that we use here to protect the state trajectories of CPSs. We incorporate a cloud computer to coordinate the agents comprising the CPSs of interest, and the cloud offers the ability to remotely coordinate many agents, rapidly perform computations, and broadcast the results, making it a natural fit for systems with many interacting agents or components. Striving for broad applicability, we solve infinite-horizon linear-quadratic-regulator (LQR) problems, and each agent protects its own state trajectory by adding noise to its states before they are sent to the cloud. The cloud then uses these state values to generate optimal inputs for the agents. As a result, private data are fed into feedback loops at each iteration, and each noisy term affects every future state of every agent. In this paper, we show that the differentially private LQR problem can be related to the well-studied linear-quadratic-Gaussian (LQG) problem, and we provide bounds on how agents' privacy requirements affect the cloud's ability to generate optimal feedback control values for the agents. These results are illustrated in numerical simulations.
2018-11-14
Zhao, W., Qiang, L., Zou, H., Zhang, A., Li, J..  2018.  Privacy-Preserving and Unforgeable Searchable Encrypted Audit Logs for Cloud Storage. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :29–34.

Audit logs are widely used in information systems nowadays. In cloud computing and cloud storage environment, audit logs are required to be encrypted and outsourced on remote servers to protect the confidentiality of data and the privacy of users. The searchable encrypted audit logs support a search on the encrypted audit logs. In this paper, we propose a privacy-preserving and unforgeable searchable encrypted audit log scheme based on PEKS. Only the trusted data owner can generate encrypted audit logs containing access permissions for users. The semi-honest server verifies the audit logs in a searchable encryption way before granting the operation rights to users and storing the audit logs. The data owner can perform a fine-grained conjunctive query on the stored audit logs, and accept only the valid audit logs. The scheme is immune to the collusion tamper or fabrication conducted by server and user. Concrete implementations of the scheme is put forward in detail. The correct of the scheme is proved, and the security properties, such as privacy-preserving, searchability, verifiability and unforgeability are analyzed. Further evaluation of computation load shows that the design is of considerable efficiency.

2019-05-20
[Anonymous].  2018.  Breaking the Circuit-Size Barrier in Secret Sharing. STOC 2018.

{We study secret sharing schemes for general (non-threshold) access structures. A general secret sharing scheme for n parties is associated to a monotone function F:\0,1\n$\rightarrowłbrace$0,1\}. In such a scheme, a dealer distributes shares of a secret s among n parties. Any subset of parties T {$\subseteq$} [n] should be able to put together their shares and reconstruct the secret s if F(T)=1, and should have no information about s if F(T)=0. One of the major long-standing questions in information-theoretic cryptography is to minimize the (total) size of the shares in a secret-sharing scheme for arbitrary monotone functions F. There is a large gap between lower and upper bounds for secret sharing. The best known scheme for general F has shares of size 2n-o(n), but the best lower bound is {$Ømega$}(n2/logn). Indeed, the exponential share size is a direct result of the fact that in all known secret-sharing schemes, the share size grows with the size of a circuit (or formula, or monotone span program) for F. Indeed, several researchers have suggested the existence of a representation size barrier which implies that the right answer is closer to the upper bound, namely, 2n-o(n). In this work, we overcome this barrier by constructing a secret sharing scheme for any access structure with shares of size 20.994n and a linear secret sharing scheme for any access structure with shares of size 20.999n. As a contribution of independent interest, we also construct a secret sharing scheme with shares of size 2Õ({$\surd$}n) for 2n n/2 monotone access structures, out of a total of 2n n/2{$\cdot$} (1+O(logn/n)) of them. Our construction builds on recent works that construct better protocols for the conditional disclosure of secrets (CDS) problem.

2019-06-10
Jiang, J., Yin, Q., Shi, Z., Li, M..  2018.  Comprehensive Behavior Profiling Model for Malware Classification. 2018 IEEE Symposium on Computers and Communications (ISCC). :00129-00135.

In view of the great threat posed by malware and the rapid growing trend about malware variants, it is necessary to determine the category of new samples accurately for further analysis and taking appropriate countermeasures. The network behavior based classification methods have become more popular now. However, the behavior profiling models they used usually only depict partial network behavior of samples or require specific traffic selection in advance, which may lead to adverse effects on categorizing advanced malware with complex activities. In this paper, to overcome the shortages of traditional models, we raise a comprehensive behavior model for profiling the behavior of malware network activities. And we also propose a corresponding malware classification method which can extract and compare the major behavior of samples. The experimental and comparison results not only demonstrate our method can categorize samples accurately in both criteria, but also prove the advantage of our profiling model to two other approaches in accuracy performance, especially under scenario based criteria.

2019-03-28
Costantino, G., Marra, A. La, Martinelli, F., Mori, P., Saracino, A..  2018.  Privacy Preserving Distributed Computation of Private Attributes for Collaborative Privacy Aware Usage Control Systems. 2018 IEEE International Conference on Smart Computing (SMARTCOMP). :315-320.

Collaborative smart services provide functionalities which exploit data collected from different sources to provide benefits to a community of users. Such data, however, might be privacy sensitive and their disclosure has to be avoided. In this paper, we present a distributed multi-tier framework intended for smart-environment management, based on usage control for policy evaluation and enforcement on devices belonging to different collaborating entities. The proposed framework exploits secure multi-party computation to evaluate policy conditions without disclosing actual value of evaluated attributes, to preserve privacy. As reference example, a smart-grid use case is presented.

2020-11-04
Peruma, A., Malachowsky, S., Krutz, D..  2018.  Providing an Experiential Cybersecurity Learning Experience through Mobile Security Labs. 2018 IEEE/ACM 1st International Workshop on Security Awareness from Design to Deployment (SEAD). :51—54.

The reality of today's computing landscape already suffers from a shortage of cybersecurity professionals, and this gap only expected to grow. We need to generate interest in this STEM topic early in our student's careers and provide teachers the resources they need to succeed in addressing this gap. To address this shortfall we present Practical LAbs in Security for Mobile Applications (PLASMA), a public set of educational security labs to enable instruction in creation of secure Android apps. These labs include example vulnerable applications, information about each vulnerability, steps for how to repair the vulnerabilities, and information about how to confirm that the vulnerability has been properly repaired. Our goal is for instructors to use these activities in their mobile, security, and general computing courses ranging from secondary school to university settings. Another goal of this project is to foster interest in security and computing through demonstrating its importance. Initial feedback demonstrates the labs' positive effects in enhancing student interest in cybersecurity and acclaim from instructors. All project activities may be found on the project website: http://www.TeachingMobileSecurity.com