Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2018-12-10
Yang, Dejian, Wang, Senzhang, Li, Chaozhuo, Zhang, Xiaoming, Li, Zhoujun.  2017.  From Properties to Links: Deep Network Embedding on Incomplete Graphs. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. :367–376.
As an effective way of learning node representations in networks, network embedding has attracted increasing research interests recently. Most existing approaches use shallow models and only work on static networks by extracting local or global topology information of each node as the algorithm input. It is challenging for such approaches to learn a desirable node representation on incomplete graphs with a large number of missing links or on dynamic graphs with new nodes joining in. It is even challenging for them to deeply fuse other types of data such as node properties into the learning process to help better represent the nodes with insufficient links. In this paper, we for the first time study the problem of network embedding on incomplete networks. We propose a Multi-View Correlation-learning based Deep Network Embedding method named MVC-DNE to incorporate both the network structure and the node properties for more effectively and efficiently perform network embedding on incomplete networks. Specifically, we consider the topology structure of the network and the node properties as two correlated views. The insight is that the learned representation vector of a node should reflect its characteristics in both views. Under a multi-view correlation learning based deep autoencoder framework, the structure view and property view embeddings are integrated and mutually reinforced through both self-view and cross-view learning. As MVC-DNE can learn a representation mapping function, it can directly generate the representation vectors for the new nodes without retraining the model. Thus it is especially more efficient than previous methods. Empirically, we evaluate MVC-DNE over three real network datasets on two data mining applications, and the results demonstrate that MVC-DNE significantly outperforms state-of-the-art methods.
2018-05-02
Pass, Rafael, Shi, Elaine.  2017.  FruitChains: A Fair Blockchain. Proceedings of the ACM Symposium on Principles of Distributed Computing. :315–324.
Nakamoto's famous blockchain protocol enables achieving consensus in a so-called permissionless setting—anyone can join (or leave) the protocol execution, and the protocol instructions do not depend on the identities of the players. His ingenious protocol prevents "sybil attacks" (where an adversary spawns any number of new players) by relying on computational puzzles (a.k.a. "moderately hard functions") introduced by Dwork and Naor (Crypto'92). Recent work by Garay et al (EuroCrypt'15) and Pass et al (manuscript, 2016) demonstrate that this protocol provably achieves consistency and liveness assuming a) honest players control a majority of the computational power in the network, b) the puzzle-hardness is appropriately set as a function of the maximum network delay and the total computational power of the network, and c) the computational puzzle is modeled as a random oracle. Assuming honest participation, however, is a strong assumption, especially in a setting where honest players are expected to perform a lot of work (to solve the computational puzzles). In Nakamoto's Bitcoin application of the blockchain protocol, players are incentivized to solve these puzzles by receiving rewards for every "block" (of transactions) they contribute to the blockchain. An elegant work by Eyal and Sirer (FinancialCrypt'14), strengthening and formalizing an earlier attack discussed on the Bitcoin forum, demonstrates that a coalition controlling even a minority fraction of the computational power in the network can gain (close to) 2 times its "fair share" of the rewards (and transaction fees) by deviating from the protocol instructions. In contrast, in a fair protocol, one would expect that players controlling a φ fraction of the computational resources to reap a φ fraction of the rewards. We present a new blockchain protocol—the FruitChain protocol—which satisfies the same consistency and liveness properties as Nakamoto's protocol (assuming an honest majority of the computing power), and additionally is δ-approximately fair: with overwhelming probability, any honest set of players controlling a φ fraction of computational power is guaranteed to get at least a fraction (1-δ)φ of the blocks (and thus rewards) in any Ω(κ/δ) length segment of the chain (where κ is the security parameter). Consequently, if this blockchain protocol is used as the ledger underlying a cryptocurrency system, where rewards and transaction fees are evenly distributed among the miners of blocks in a length κ segment of the chain, no coalition controlling less than a majority of the computing power can gain more than a factor (1+3δ) by deviating from the protocol (i.e., honest participation is an n/2-coalition-safe 3δ-Nash equilibrium). Finally, the FruitChain protocol enables decreasing the variance of mining rewards and as such significantly lessens (or even obliterates) the need for mining pools.
2018-12-10
Wahby, Riad S., Ji, Ye, Blumberg, Andrew J., shelat, abhi, Thaler, Justin, Walfish, Michael, Wies, Thomas.  2017.  Full Accounting for Verifiable Outsourcing. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2071–2086.
Systems for verifiable outsourcing incur costs for a prover, a verifier, and precomputation; outsourcing makes sense when the combination of these costs is cheaper than not outsourcing. Yet, when prior works impose quantitative thresholds to analyze whether outsourcing is justified, they generally ignore prover costs. Verifiable ASICs (VA)—in which the prover is a custom chip—is the other way around: its cost calculations ignore precomputation. This paper describes a new VA system, called Giraffe; charges Giraffe for all three costs; and identifies regimes where outsourcing is worthwhile. Giraffe's base is an interactive proof geared to data-parallel computation. Giraffe makes this protocol asymptotically optimal for the prover and improves the verifier's main bottleneck by almost 3x, both of which are of independent interest. Giraffe also develops a design template that produces hardware designs automatically for a wide range of parameters, introduces hardware primitives molded to the protocol's data flows, and incorporates program analyses that expand applicability. Giraffe wins even when outsourcing several tens of sub-computations, scales to 500x larger computations than prior work, and can profitably outsource parts of programs that are not worthwhile to outsource in full.
2018-09-28
Abdelbari, Hassan, Shafi, Kamran.  2017.  A Genetic Programming Ensemble Method for Learning Dynamical System Models. Proceedings of the 8th International Conference on Computer Modeling and Simulation. :47–51.
Modelling complex dynamical systems plays a crucial role to understand several phenomena in different domains such as physics, engineering, biology and social sciences. In this paper, a genetic programming ensemble method is proposed to learn complex dynamical systems' underlying mathematical models, represented as differential equations, from systems' time series observations. The proposed method relies on decomposing the modelling space based on given variable dependencies. An ensemble of learners is then applied in this decomposed space and their output is combined to generate the final model. Two examples of complex dynamical systems are used to test the performance of the proposed methodology where the standard genetic programming method has struggled to find matching model equations. The empirical results show the effectiveness of the proposed methodology in learning closely matching structure of almost all system equations.
2018-01-10
Xie, P., Feng, J., Cao, Z., Wang, J..  2017.  GeneWave: Fast authentication and key agreement on commodity mobile devices. 2017 IEEE 25th International Conference on Network Protocols (ICNP). :1–10.
Device-to-device (D2D) communication is widely used for mobile devices and Internet of Things (IoT). Authentication and key agreement are critical to build a secure channel between two devices. However, existing approaches often rely on a pre-built fingerprint database and suffer from low key generation rate. We present GeneWave, a fast device authentication and key agreement protocol for commodity mobile devices. GeneWave first achieves bidirectional initial authentication based on the physical response interval between two devices. To keep the accuracy of interval estimation, we eliminate time uncertainty on commodity devices through fast signal detection and redundancy time cancellation. Then we derive the initial acoustic channel response (ACR) for device authentication. We design a novel coding scheme for efficient key agreement while ensuring security. Therefore, two devices can authenticate each other and securely agree on a symmetric key. GeneWave requires neither special hardware nor pre-built fingerprint database, and thus it is easy-to-use on commercial mobile devices. We implement GeneWave on mobile devices (i.e., Nexus 5X and Nexus 6P) and evaluate its performance through extensive experiments. Experimental results show that GeneWave efficiently accomplish secure key agreement on commodity smartphones with a key generation rate 10x faster than the state-of-the-art approach.
2018-08-23
Yu, Chenhan D., Levitt, James, Reiz, Severin, Biros, George.  2017.  Geometry-oblivious FMM for Compressing Dense SPD Matrices. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. :53:1–53:14.
We present GOFMM (geometry-oblivious FMM), a novel method that creates a hierarchical low-rank approximation, or "compression," of an arbitrary dense symmetric positive definite (SPD) matrix. For many applications, GOFMM enables an approximate matrix-vector multiplication in N log N or even N time, where N is the matrix size. Compression requires N log N storage and work. In general, our scheme belongs to the family of hierarchical matrix approximation methods. In particular, it generalizes the fast multipole method (FMM) to a purely algebraic setting by only requiring the ability to sample matrix entries. Neither geometric information (i.e., point coordinates) nor knowledge of how the matrix entries have been generated is required, thus the term "geometry-oblivious." Also, we introduce a shared-memory parallel scheme for hierarchical matrix computations that reduces synchronization barriers. We present results on the Intel Knights Landing and Haswell architectures, and on the NVIDIA Pascal architecture for a variety of matrices.
2018-09-28
Ushijima-Mwesigwa, Hayato, Negre, Christian F. A., Mniszewski, Susan M..  2017.  Graph Partitioning Using Quantum Annealing on the D-Wave System. Proceedings of the Second International Workshop on Post Moores Era Supercomputing. :22–29.
Graph partitioning (GP) applications are ubiquitous throughout mathematics, computer science, chemistry, physics, bio-science, machine learning, and complex systems. Post Moore's era supercomputing has provided us an opportunity to explore new approaches for traditional graph algorithms on quantum computing architectures. In this work, we explore graph partitioning using quantum annealing on the D-Wave 2X machine. Motivated by a recently proposed graph-based electronic structure theory applied to quantum molecular dynamics (QMD) simulations, graph partitioning is used for reducing the calculation of the density matrix into smaller subsystems rendering the calculation more computationally efficient. Unconstrained graph partitioning as community clustering based on the modularity metric can be naturally mapped into the Hamiltonian of the quantum annealer. On the other hand, when constraints are imposed for partitioning into equal parts and minimizing the number of cut edges between parts, a quadratic unconstrained binary optimization (QUBO) reformulation is required. This reformulation may employ the graph complement to fit the problem in the Chimera graph of the quantum annealer. Partitioning into 2 parts and k parts concurrently for arbitrary k are demonstrated with benchmark graphs, random graphs, and small material system density matrix based graphs. Results for graph partitioning using quantum and hybrid classical-quantum approaches are shown to be comparable to current "state of the art" methods and sometimes better.
2018-01-10
Zinzindohoué, Jean-Karim, Bhargavan, Karthikeyan, Protzenko, Jonathan, Beurdouche, Benjamin.  2017.  HACL*: A Verified Modern Cryptographic Library. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1789–1806.
HACL* is a verified portable C cryptographic library that implements modern cryptographic primitives such as the ChaCha20 and Salsa20 encryption algorithms, Poly1305 and HMAC message authentication, SHA-256 and SHA-512 hash functions, the Curve25519 elliptic curve, and Ed25519 signatures. HACL* is written in the F* programming language and then compiled to readable C code. The F* source code for each cryptographic primitive is verified for memory safety, mitigations against timing side-channels, and functional correctness with respect to a succinct high-level specification of the primitive derived from its published standard. The translation from F* to C preserves these properties and the generated C code can itself be compiled via the CompCert verified C compiler or mainstream compilers like GCC or CLANG. When compiled with GCC on 64-bit platforms, our primitives are as fast as the fastest pure C implementations in OpenSSL and libsodium, significantly faster than the reference C code in TweetNaCl, and between 1.1x-5.7x slower than the fastest hand-optimized vectorized assembly code in SUPERCOP. HACL* implements the NaCl cryptographic API and can be used as a drop-in replacement for NaCl libraries like libsodium and TweetNaCl. HACL* provides the cryptographic components for a new mandatory ciphersuite in TLS 1.3 and is being developed as the main cryptographic provider for the miTLS verified implementation. Primitives from HACL* are also being integrated within Mozilla's NSS cryptographic library. Our results show that writing fast, verified, and usable C cryptographic libraries is now practical.
2018-06-11
Kintis, Panagiotis, Miramirkhani, Najmeh, Lever, Charles, Chen, Yizheng, Romero-Gómez, Rosa, Pitropakis, Nikolaos, Nikiforakis, Nick, Antonakakis, Manos.  2017.  Hiding in Plain Sight: A Longitudinal Study of Combosquatting Abuse. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :569–586.
Domain squatting is a common adversarial practice where attackers register domain names that are purposefully similar to popular domains. In this work, we study a specific type of domain squatting called "combosquatting," in which attackers register domains that combine a popular trademark with one or more phrases (e.g., betterfacebook[.]com, youtube-live[.]com). We perform the first large-scale, empirical study of combosquatting by analyzing more than 468 billion DNS records - collected from passive and active DNS data sources over almost six years. We find that almost 60% of abusive combosquatting domains live for more than 1,000 days, and even worse, we observe increased activity associated with combosquatting year over year. Moreover, we show that combosquatting is used to perform a spectrum of different types of abuse including phishing, social engineering, affiliate abuse, trademark abuse, and even advanced persistent threats. Our results suggest that combosquatting is a real problem that requires increased scrutiny by the security community.
2018-05-02
Tsuboi, Kazuaki, Suga, Satoshi, Kurihara, Satoshi.  2017.  Hierarchical Pattern Mining Based on Swarm Intelligence. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :47–48.
The behavior patterns in everyday life such as home, office, and commuting, and buying behavior model by day of the week, sea-son, location have hierarchies of various temporal granularity. Generally, in usual hierarchical data analysis, a basic hierarchical structure is given in advance. But it is difficult to estimate hierarchical structure beforehand for complex data. Therefore, in this study, we propose the algorithm to automatically extract both hierarchical structure and pattern from time series data using swarm intelligent method. We performed the initial operation test and confirmed that patterns can be extracted hierarchically.
2018-09-12
Alhafidh, B. M. H., Allen, W. H..  2017.  High Level Design of a Home Autonomous System Based on Cyber Physical System Modeling. 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW). :45–52.
The process used to build an autonomous smart home system using Cyber-Physical Systems (CPS) principles has received much attention by researchers and developers. However, there are many challenges during the design and implementation of such a system, such as Portability, Timing, Prediction, and Integrity. This paper presents a novel modeling methodology for a smart home system in the scope of CyberPhysical interface that attempts to overcome these issues. We discuss a high-level design approach that simulates the first three levels of a 5C architecture in CPS layers in a smart home environment. A detailed description of the model design, architecture, and a software implementation via NetLogo simulation have been presented in this paper.
2018-02-02
Liu, Zhe, Pöppelmann, Thomas, Oder, Tobias, Seo, Hwajeong, Roy, Sujoy Sinha, Güneysu, Tim, Großschädl, Johann, Kim, Howon, Verbauwhede, Ingrid.  2017.  High-Performance Ideal Lattice-Based Cryptography on 8-Bit AVR Microcontrollers. ACM Trans. Embed. Comput. Syst.. 16:117:1–117:24.
Over recent years lattice-based cryptography has received much attention due to versatile average-case problems like Ring-LWE or Ring-SIS that appear to be intractable by quantum computers. In this work, we evaluate and compare implementations of Ring-LWE encryption and the bimodal lattice signature scheme (BLISS) on an 8-bit Atmel ATxmega128 microcontroller. Our implementation of Ring-LWE encryption provides comprehensive protection against timing side-channels and takes 24.9ms for encryption and 6.7ms for decryption. To compute a BLISS signature, our software takes 317ms and 86ms for verification. These results underline the feasibility of lattice-based cryptography on constrained devices.
2018-05-02
Sharma, Mudita, Kazakov, Dimitar.  2017.  Hybridisation of Artificial Bee Colony Algorithm on Four Classes of Real-valued Optimisation Functions. Proceedings of the Genetic and Evolutionary Computation Conference Companion. :1439–1442.
Hybridisation of algorithms in evolutionary computation (EC) has been used by researchers to overcome drawbacks of population-based algorithms. The introduced algorithm called mutated Artificial Bee Colony algorithm, is a novel variant of standard Artificial Bee Colony algorithm (ABC) which successfully moves out of local optima. First, new parameters are found and tuned in ABC algorithm. Second, the mutation operator is employed which is responsible for bringing diversity into solution. Third, to avoid tuning 'limit' parameter and prevent abandoning good solutions, it is replaced by average fitness comparison of worst employed bee. Thus, proposed algorithm gives the global solution thus improving the exploration capability of ABC. The proposed algorithm is tested on four classes of problems. The results are compared with six other population-based algorithms, namely Genetic Algorithm (GA), Particle Swarm Optimsation (PSO), Differential Evolution (DE), standard Artificial Bee Colony algorithm (ABC) and its two variants- quick Artificial Bee Colony algorithm (qABC) and adaptive Artificial Bee Colony algorithm (aABC). Overall results show that mutated ABC is at par with aABC and better than above-mentioned algorithms. The novel algorithm is best suited to 3 of the 4 classes of functions under consideration. Functions belonging to UN class have shown near optimal solution.
2018-01-10
Cordeil, Maxime, Cunningham, Andrew, Dwyer, Tim, Thomas, Bruce H., Marriott, Kim.  2017.  ImAxes: Immersive Axes As Embodied Affordances for Interactive Multivariate Data Visualisation. Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. :71–83.
We introduce ImAxes immersive system for exploring multivariate data using fluid, modeless interaction. The basic interface element is an embodied data axis. The user can manipulate these axes like physical objects in the immersive environment and combine them into sophisticated visualisations. The type of visualisation that appears depends on the proximity and relative orientation of the axes with respect to one another, which we describe with a formal grammar. This straight-forward composability leads to a number of emergent visualisations and interactions, which we review, and then demonstrate with a detailed multivariate data analysis use case.
Hosseini, S., Swash, M. R., Sadka, A..  2017.  Immersive 360 Holoscopic 3D system design. 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN). :325–329.
3D imaging has been a hot research topic recently due to a high demand from various applications of security, health, autonomous vehicle and robotics. Yet Stereoscopic 3D imaging is limited due to its principles which mimics the human eye technique thus the camera separation baseline defines amount of 3D depth can be captured. Holoscopic 3D (H3D) Imaging is based on the “Fly's eye” technique that uses coherent replication of light to record a spatial image of a real scene using a microlens array (MLA) which gives the complete 3D parallax. H3D Imaging has been considered a promising 3D imaging technique which pursues the simple form of 3D acquisition using a single aperture camera therefore it is the most suited for scalable digitization, security and autonomous applications. This paper proposes 360-degree holoscopic 3D imaging system design for immersive 3D acquisition and stitching.
Schaefer, Gerald, Budnik, Mateusz, Krawczyk, Bartosz.  2017.  Immersive Browsing in an Image Sphere. Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication. :26:1–26:4.
In this paper, we present an immersive image database navigation system. Images are visualised in a spherical visualisation space and arranged, on a grid, by colour so that images of similar colour are located close to each other, while access to large image sets is possible through a hierarchical browsing structure. The user is wearing a 3-D head mounted display (HMD) and is immersed inside the image sphere. Navigation is performed by head movement using a 6-degree-of-freedom tracker integrated in the HMD in conjunction with a wiimote remote control.
2018-02-28
Lebrun, David, Bonaventure, Olivier.  2017.  Implementing IPv6 Segment Routing in the Linux Kernel. Proceedings of the Applied Networking Research Workshop. :35–41.
IPv6 Segment Routing is a major IPv6 extension that provides a modern version of source routing that is currently being developed within the Internet Engineering Task Force (IETF). We propose the first open-source implementation of IPv6 Segment Routing in the Linux kernel. We first describe it in details and explain how it can be used on both endhosts and routers. We then evaluate and compare its performance with plain IPv6 packet forwarding in a lab environment. Our measurements indicate that the performance penalty of inserting IPv6 Segment Routing Headers or encapsulating packets is limited to less than 15%. On the other hand, the optional HMAC security feature of IPv6 Segment Routing is costly in a pure software implementation. Since our implementation has been included in the official Linux 4.10 kernel, we expect that it will be extended by other researchers for new use cases.
2018-02-02
Qiu, Lirong, Liu, Zhe, C. F. Pereira, Geovandro C., Seo, Hwajeong.  2017.  Implementing RSA for Sensor Nodes in Smart Cities. Personal Ubiquitous Comput.. 21:807–813.
In smart city construction, wireless sensor networks (WSNs) are normally deployed to collect and transmit real-time data. The nodes of the WSN are embedded facility that integrated sensors and data processing modules. For security and privacy concerns, cryptography methods are required for data protection. However, the Rivest-Shamir-Adleman (RSA) cryptosystem, known as the the most popular and deployed public key algorithm, is still hardly implemented on embedded devices because of the intense computation required from its inherent arithmetic operations. Even though, different methods have being proposed for more efficient RSA implementations such as utilizing the Chinese remainder theorem, various modular exponentiation methods, and optimized modular arithmetic methods. In this paper, we propose an efficient multiplication for long integers on the sensor nodes equipped with 16-bit microcontrollers. Combined with this efficient multiplication, we obtain a faster Montgomery multiplication. The combined optimized Montgomery multiplication, the Chinese remainder theorem, and the m-ary exponentiation method allowed for execution times of less than 44.6 × 106 clock cycles for RSA decryption, a new speed record for the RSA implementation on MSP430 microcontrollers.
2017-12-20
Cao, C., Zhang, H., Lu, T., Gulliver, T. A..  2017.  An improved cooperative jamming strategy for PHY security in a multi-hop communications system. 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM). :1–4.
In this paper, an improved cooperative jamming (CJ) strategy is developed for physical layer (PHY) security in a multi-hop wireless communication system which employs beamforming in the last hop. Users are assigned to independent groups based on the merger-and-split rule in a coalition game. The secrecy capacity for a valid coalition is a non-convex optimization problem which cannot easily be solved. Therefore, restrictions are added to transform this into a convex problem, and this is solved to obtain a suboptimal closed-form solution for the secrecy capacity. Simulation results are presented which show that the proposed strategy outperforms other methods such as non-cooperation, relay cooperation, and previous CJ approaches in terms of the secrecy capacity. Further, it is shown that the proposed multi-hop solution is suitable for long distance communication systems.
2018-09-28
Wu, Zuowei, Li, Taoshen.  2017.  An Improved Fully Homomorphic Encryption Scheme Under the Cloud Environment. Proceedings of the 12th Chinese Conference on Computer Supported Cooperative Work and Social Computing. :251–252.
In order to improve the efficiency of the existing homomorphic encryption method, based on the DGHV scheme, an improved fully homomorphic scheme over the integer is proposed. Under the premise of ensuring data owner and user data security, the scheme supports the addition and multiplication operations of ciphertext, and ensures faster execution efficiency and meets the security requirements of cloud computing. Security analysis shows that our scheme is safe. Performance assessment demonstrates that our scheme can more efficiently implement data than DGHV scheme.
2018-08-23
Giotsas, Vasileios, Richter, Philipp, Smaragdakis, Georgios, Feldmann, Anja, Dietzel, Christoph, Berger, Arthur.  2017.  Inferring BGP Blackholing Activity in the Internet. Proceedings of the 2017 Internet Measurement Conference. :1–14.
The Border Gateway Protocol (BGP) has been used for decades as the de facto protocol to exchange reachability information among networks in the Internet. However, little is known about how this protocol is used to restrict reachability to selected destinations, e.g., that are under attack. While such a feature, BGP blackholing, has been available for some time, we lack a systematic study of its Internet-wide adoption, practices, and network efficacy, as well as the profile of blackholed destinations. In this paper, we develop and evaluate a methodology to automatically detect BGP blackholing activity in the wild. We apply our method to both public and private BGP datasets. We find that hundreds of networks, including large transit providers, as well as about 50 Internet exchange points (IXPs) offer blackholing service to their customers, peers, and members. Between 2014–2017, the number of blackholed prefixes increased by a factor of 6, peaking at 5K concurrently blackholed prefixes by up to 400 Autonomous Systems. We assess the effect of blackholing on the data plane using both targeted active measurements as well as passive datasets, finding that blackholing is indeed highly effective in dropping traffic before it reaches its destination, though it also discards legitimate traffic. We augment our findings with an analysis of the target IP addresses of blackholing. Our tools and insights are relevant for operators considering offering or using BGP blackholing services as well as for researchers studying DDoS mitigation in the Internet.
2018-01-10
Aono, K., Chakrabartty, S., Yamasaki, T..  2017.  Infrasonic scene fingerprinting for authenticating speaker location. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :361–365.
Ambient infrasound with frequency ranges well below 20 Hz is known to carry robust navigation cues that can be exploited to authenticate the location of a speaker. Unfortunately, many of the mobile devices like smartphones have been optimized to work in the human auditory range, thereby suppressing information in the infrasonic region. In this paper, we show that these ultra-low frequency cues can still be extracted from a standard smartphone recording by using acceleration-based cepstral features. To validate our claim, we have collected smartphone recordings from more than 30 different scenes and used the cues for scene fingerprinting. We report scene recognition rates in excess of 90% and a feature set analysis reveals the importance of the infrasonic signatures towards achieving the state-of-the-art recognition performance.
2017-12-20
Zakharchenko, M. V., Korchynskii, V. V., Kildishev, V. I..  2017.  Integrated methods of information security in telecommunication systems. 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). :1–4.
The importance of the task of countering the means of unauthorized access is to preserve the integrity of restricted access information circulating in computer networks determines the relevance of investigating perspective methods of cryptographic transformations, which are characterized by high speed and reliability of encryption. The methods of information security in the telecommunication system were researched based on integration of encryption processes and noise-immune coding. The method for data encryption based on generic polynomials of cyclic codes, gamut of the dynamic chaos sequence, and timer coding was proposed. The expediency of using timer coding for increasing the cryptographic strength of the encryption system and compensating for the redundancy of the verification elements was substantiated. The method for cryptographic transformation of data based on the gamma sequence was developed, which is formed by combining numbers from different sources of dynamical chaos generators. The efficiency criterion was introduced for the integrated information transformation method.
Meng, X., Zhao, Z., Li, R., Zhang, H..  2017.  An intelligent honeynet architecture based on software defined security. 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
Honeynet is deployed to trap attackers and learn their behavior patterns and motivations. Conventional honeynet is implemented by dedicated hardware and software. It suffers from inflexibility, high CAPEX and OPEX. There have been several virtualized honeynet architectures to solve those problems. But they lack a standard operating environment and common architecture for dynamic scheduling and adaptive resource allocation. Software Defined Security (SDS) framework has a centralized control mechanism and intelligent decision making ability for different security functions. In this paper, we present a new intelligent honeynet architecture based on SDS framework. It implements security functions over Network Function Virtualization Infrastructure (NFVI). Under uniform and intelligent control, security functional modules can be dynamically deployed and collaborated to complete different tasks. It migrates resources according to the workloads of each honeypot and power off unused modules. Simulation results show that intelligent honeynet has a better performance in conserving resources and reducing energy consumption. The new architecture can fit the needs of future honeynet development and deployment.
2018-09-28
Malloy, Matthew, Barford, Paul, Alp, Enis Ceyhun, Koller, Jonathan, Jewell, Adria.  2017.  Internet Device Graphs. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1913–1921.
Internet device graphs identify relationships between user-centric internet connected devices such as desktops, laptops, smartphones, tablets, gaming consoles, TV's, etc. The ability to create such graphs is compelling for online advertising, content customization, recommendation systems, security, and operations. We begin by describing an algorithm for generating a device graph based on IP-colocation, and then apply the algorithm to a corpus of over 2.5 trillion internet events collected over the period of six weeks in the United States. The resulting graph exhibits immense scale with greater than 7.3 billion edges (pair-wise relationships) between more than 1.2 billion nodes (devices), accounting for the vast majority of internet connected devices in the US. Next, we apply community detection algorithms to the graph resulting in a partitioning of internet devices into 100 million small communities representing physical households. We validate this partition with a unique ground truth dataset. We report on the characteristics of the graph and the communities. Lastly, we discuss the important issues of ethics and privacy that must be considered when creating and studying device graphs, and suggest further opportunities for device graph enrichment and application.