Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2019-04-01
Usuzaki, S., Aburada, K., Yamaba, H., Katayama, T., Mukunoki, M., Park, M., Okazaki, N..  2018.  Interactive Video CAPTCHA for Better Resistance to Automated Attack. 2018 Eleventh International Conference on Mobile Computing and Ubiquitous Network (ICMU). :1–2.
A “Completely Automated Public Turing Test to Tell Computers and Humans Apart” (CAPTCHA) widely used online services so that prevents bots from automatic getting a large of accounts. Interactive video type CAPTCHAs that attempt to detect this attack by using delay time due to communication relays have been proposed. However, these approaches remain insufficiently resistant to bots. We propose a CAPTCHA that combines resistant to automated and relay attacks. In our CAPTCHA, the users recognize a moving object (target object) from among a number of randomly appearing decoy objects and tracks the target with mouse cursor. The users pass the test when they were able to track the target for a certain time. Since the target object moves quickly, the delay makes it difficult for a remote solver to break the CAPTCHA during a relay attack. It is also difficult for a bot to track the target using image processing because it has same looks of the decoys. We evaluated our CAPTCHA's resistance to relay and automated attacks. Our results show that, if our CAPTHCA's parameters are set suitable value, a relay attack cannot be established economically and false acceptance rate with bot could be reduced to 0.01% without affecting human success rate.
2019-11-25
Benamira, Elias, Merazka, Fatiha, Kurt, Gunes Karabulut.  2018.  Joint Channel Coding and Cooperative Network Coding on PSK Constellations in Wireless Networks. 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT). :132–137.
In this paper, we consider the application of Reed-Solomon (RS) channel coding for joint error correction and cooperative network coding on non-binary phase shift keying (PSK) modulated signals. The relay first decodes the RS channel coded messages received each in a time slot from all sources before applying network coding (NC) by the use of bit-level exclusive OR (XOR) operation. The network coded resulting message is then channel encoded before its transmission to the next relay or to the destination according to the network configuration. This scenario shows superior performance in comparison with the case where the relay does not perform channel coding/decoding. For different orders of PSK modulation and different wireless configurations, simulation results demonstrate the improvements resulting from the use of RS channel codes in terms of symbol error rate (SER) versus signal-to-noise ratio (SNR).
2019-03-06
Hess, S., Satam, P., Ditzler, G., Hariri, S..  2018.  Malicious HTML File Prediction: A Detection and Classification Perspective with Noisy Data. 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA). :1-7.

Cybersecurity plays a critical role in protecting sensitive information and the structural integrity of networked systems. As networked systems continue to expand in numbers as well as in complexity, so does the threat of malicious activity and the necessity for advanced cybersecurity solutions. Furthermore, both the quantity and quality of available data on malicious content as well as the fact that malicious activity continuously evolves makes automated protection systems for this type of environment particularly challenging. Not only is the data quality a concern, but the volume of the data can be quite small for some of the classes. This creates a class imbalance in the data used to train a classifier; however, many classifiers are not well equipped to deal with class imbalance. One such example is detecting malicious HMTL files from static features. Unfortunately, collecting malicious HMTL files is extremely difficult and can be quite noisy from HTML files being mislabeled. This paper evaluates a specific application that is afflicted by these modern cybersecurity challenges: detection of malicious HTML files. Previous work presented a general framework for malicious HTML file classification that we modify in this work to use a $\chi$2 feature selection technique and synthetic minority oversampling technique (SMOTE). We experiment with different classifiers (i.e., AdaBoost, Gentle-Boost, RobustBoost, RusBoost, and Random Forest) and a pure detection model (i.e., Isolation Forest). We benchmark the different classifiers using SMOTE on a real dataset that contains a limited number of malicious files (40) with respect to the normal files (7,263). It was found that the modified framework performed better than the previous framework's results. However, additional evidence was found to imply that algorithms which train on both the normal and malicious samples are likely overtraining to the malicious distribution. We demonstrate the likely overtraining by determining that a subset of the malicious files, while suspicious, did not come from a malicious source.

2019-04-01
Alibadi, S. H., Sadkhan, S. B..  2018.  A Proposed Security Evaluation Method for Bluetooth E0Based on Fuzzy Logic. 2018 International Conference on Advanced Science and Engineering (ICOASE). :324–329.

The security level is very important in Bluetooth, because the network or devices using secure communication, are susceptible to many attacks against the transmitted data received through eavesdropping. The cryptosystem designers needs to know the complexity of the designed Bluetooth E0. And what the advantages given by any development performed on any known Bluetooth E0Encryption method. The most important criteria can be used in evaluation method is considered as an important aspect. This paper introduce a proposed fuzzy logic technique to evaluate the complexity of Bluetooth E0Encryption system by choosing two parameters, which are entropy and correlation rate, as inputs to proposed fuzzy logic based Evaluator, which can be applied with MATLAB system.

2019-09-26
Berrueta, Eduardo, Morato, Daniel, Magana, Eduardo, Izal, Mikel.  2018.  Ransomware Encrypted Your Files but You Restored Them from Network Traffic. 2018 2nd Cyber Security in Networking Conference (CSNet). :1-7.

In a scenario where user files are stored in a network shared volume, a single computer infected by ransomware could encrypt the whole set of shared files, with a large impact on user productivity. On the other hand, medium and large companies maintain hardware or software probes that monitor the traffic in critical network links, in order to evaluate service performance, detect security breaches, account for network or service usage, etc. In this paper we suggest using the monitoring capabilities in one of these tools in order to keep a trace of the traffic between the users and the file server. Once the ransomware is detected, the lost files can be recovered from the traffic trace. This includes any user modifications posterior to the last snapshot of periodic backups. The paper explains the problems faced by the monitoring tool, which is neither the client nor the server of the file sharing operations. It also describes the data structures in order to process the actions of users that could be simultaneously working on the same file. A proof of concept software implementation was capable of successfully recovering the files encrypted by 18 different ransomware families.

2019-02-08
Zou, Z., Wang, D., Yang, H., Hou, Y., Yang, Y., Xu, W..  2018.  Research on Risk Assessment Technology of Industrial Control System Based on Attack Graph. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :2420-2423.

In order to evaluate the network security risks and implement effective defenses in industrial control system, a risk assessment method for industrial control systems based on attack graphs is proposed. Use the concept of network security elements to translate network attacks into network state migration problems and build an industrial control network attack graph model. In view of the current subjective evaluation of expert experience, the atomic attack probability assignment method and the CVSS evaluation system were introduced to evaluate the security status of the industrial control system. Finally, taking the centralized control system of the thermal power plant as the experimental background, the case analysis is performed. The experimental results show that the method can comprehensively analyze the potential safety hazards in the industrial control system and provide basis for the safety management personnel to take effective defense measures.

2020-04-06
Demir, Mehmet özgÜn, Kurty, GÜne Karabulut, Dartmannz, Guido, Ascheidx, Gerd, Pusane, Ali Emre.  2018.  Security Analysis of Forward Error Correction Codes in Relay Aided Networks. 2018 Global Information Infrastructure and Networking Symposium (GIIS). :1–5.

Network security and data confidentiality of transmitted information are among the non-functional requirements of industrial wireless sensor networks (IWSNs) in addition to latency, reliability and energy efficiency requirements. Physical layer security techniques are promising solutions to assist cryptographic methods in the presence of an eavesdropper in IWSN setups. In this paper, we propose a physical layer security scheme, which is based on both insertion of an random error vector to forward error correction (FEC) codewords and transmission over decentralized relay nodes. Reed-Solomon and Golay codes are selected as FEC coding schemes and the security performance of the proposed model is evaluated with the aid of decoding error probability of an eavesdropper. The results show that security level is highly based on the location of the eavesdropper and secure communication can be achieved when some of channels between eavesdropper and relay nodes are significantly noisier.

2019-11-04
Harrison, William L., Allwein, Gerard.  2018.  Semantics-Directed Prototyping of Hardware Runtime Monitors. 2018 International Symposium on Rapid System Prototyping (RSP). :42-48.

Building memory protection mechanisms into embedded hardware is attractive because it has the potential to neutralize a host of software-based attacks with relatively small performance overhead. A hardware monitor, being at the lowest level of the system stack, is more difficult to bypass than a software monitor and hardware-based protections are also potentially more fine-grained than is possible in software: an individual instruction executing on a processor may entail multiple memory accesses, all of which may be tracked in hardware. Finally, hardware-based protection can be performed without the necessity of altering application binaries. This article presents a proof-of-concept codesign of a small embedded processor with a hardware monitor protecting against ROP-style code reuse attacks. While the case study is small, it indicates, we argue, an approach to rapid-prototyping runtime monitors in hardware that is quick, flexible, and extensible as well as being amenable to formal verification.

2019-12-02
Wright, James G., Wolthusen, Stephen D..  2018.  Stealthy Injection Attacks Against IEC61850's GOOSE Messaging Service. 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1–6.
IEC61850 and IEC62351 combined provide a set of security promises for the communications channels that are used to run a substation automation system (SAS), that use IEC61850 based technologies. However, one area that is largely untouched by these security promises is the generic object oriented substation events (GOOSE) messaging service. GOOSE is designed to multicast commands and data across a substation within hard real time quality of service (QoS) requirements. This means that GOOSE is unable to implement the required security technologies as the added latency to any message would violate the QoS.
2019-03-04
[Anonymous].  2018.  A Systems Approach to Indicators of Compromise Utilizing Graph Theory. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.
It is common to record indicators of compromise (IoC) in order to describe a particular breach and to attempt to attribute a breach to a specific threat actor. However, many network security breaches actually involve multiple diverse modalities using a variety of attack vectors. Measuring and recording IoC's in isolation does not provide an accurate view of the actual incident, and thus does not facilitate attribution. A system's approach that describes the entire intrusion as an IoC would be more effective. Graph theory has been utilized to model complex systems of varying types and this provides a mathematical tool for modeling systems indicators of compromise. This current paper describes the applications of graph theory to creating systems-based indicators of compromise. A complete methodology is presented for developing systems IoC's that fully describe a complex network intrusion.
2019-02-13
Ammar, M., Washha, M., Crispo, B..  2018.  WISE: Lightweight Intelligent Swarm Attestation Scheme for IoT (The Verifier’s Perspective). 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.
The growing pervasiveness of Internet of Things (IoT) expands the attack surface by connecting more and more attractive attack targets, i.e. embedded devices, to the Internet. One key component in securing these devices is software integrity checking, which typically attained with Remote Attestation (RA). RA is realized as an interactive protocol, whereby a trusted party, verifier, verifies the software integrity of a potentially compromised remote device, prover. In the vast majority of IoT applications, smart devices operate in swarms, thus triggering the need for efficient swarm attestation schemes.In this paper, we present WISE, the first intelligent swarm attestation protocol that aims to minimize the communication overhead while preserving an adequate level of security. WISE depends on a resource-efficient smart broadcast authentication scheme where devices are organized in fine-grained multi-clusters, and whenever needed, the most likely compromised devices are attested. The candidate devices are selected intelligently taking into account the attestation history and the diverse characteristics (and constraints) of each device in the swarm. We show that WISE is very suitable for resource-constrained embedded devices, highly efficient and scalable in heterogenous IoT networks, and offers an adjustable level of security.
2019-12-18
Dincalp, Uygar, Güzel, Mehmet Serdar, Sevine, Omer, Bostanci, Erkan, Askerzade, Iman.  2018.  Anomaly Based Distributed Denial of Service Attack Detection and Prevention with Machine Learning. 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). :1-4.

Everyday., the DoS/DDoS attacks are increasing all over the world and the ways attackers are using changing continuously. This increase and variety on the attacks are affecting the governments, institutions, organizations and corporations in a bad way. Every successful attack is causing them to lose money and lose reputation in return. This paper presents an introduction to a method which can show what the attack and where the attack based on. This is tried to be achieved with using clustering algorithm DBSCAN on network traffic because of the change and variety in attack vectors.

2019-09-26
Liu, Y., Zhang, J., Gao, Q..  2018.  A Blockchain-Based Secure Cloud Files Sharing Scheme with Fine-Grained Access Control. 2018 International Conference on Networking and Network Applications (NaNA). :277-283.

As cloud services greatly facilitate file sharing online, there's been a growing awareness of the security challenges brought by outsourcing data to a third party. Traditionally, the centralized management of cloud service provider brings about safety issues because the third party is only semi-trusted by clients. Besides, it causes trouble for sharing online data conveniently. In this paper, the blockchain technology is utilized for decentralized safety administration and provide more user-friendly service. Apart from that, Ciphertext-Policy Attribute Based Encryption is introduced as an effective tool to realize fine-grained data access control of the stored files. Meanwhile, the security analysis proves the confidentiality and integrity of the data stored in the cloud server. Finally, we evaluate the performance of computation overhead of our system.

2020-07-16
Ding, Yueming, Li, Kuan, Meng, Zhaoxian.  2018.  CPS Optimal Control for Interconnected Power Grid Based on Model Predictive Control. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1—9.

The CPS standard can be more objective to evaluate the effect of control behavior in each control area on the interconnected power grid. The CPS standard is derived from statistical methods emphasizing the long-term control performance of AGC, which is beneficial to the frequency control of the power grid by mutual support between the various power grids in the case of an accident. Moreover, CPS standard reduces the wear of the equipment caused by the frequent adjustment of the AGC unit. The key is to adjust the AGC control strategy to meet the performance of CPS standard. This paper proposed a dynamic optimal CPS control methodology for interconnected power systems based on model predictive control which can achieve optimal control under the premise of meeting the CPS standard. The effectiveness of the control strategy is verified by simulation examples.

2019-05-01
Ren, W., Yardley, T., Nahrstedt, K..  2018.  EDMAND: Edge-Based Multi-Level Anomaly Detection for SCADA Networks. 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1-7.

Supervisory Control and Data Acquisition (SCADA) systems play a critical role in the operation of large-scale distributed industrial systems. There are many vulnerabilities in SCADA systems and inadvertent events or malicious attacks from outside as well as inside could lead to catastrophic consequences. Network-based intrusion detection is a preferred approach to provide security analysis for SCADA systems due to its less intrusive nature. Data in SCADA network traffic can be generally divided into transport, operation, and content levels. Most existing solutions only focus on monitoring and event detection of one or two levels of data, which is not enough to detect and reason about attacks in all three levels. In this paper, we develop a novel edge-based multi-level anomaly detection framework for SCADA networks named EDMAND. EDMAND monitors all three levels of network traffic data and applies appropriate anomaly detection methods based on the distinct characteristics of data. Alerts are generated, aggregated, prioritized before sent back to control centers. A prototype of the framework is built to evaluate the detection ability and time overhead of it.

2019-02-22
Gauthier, F., Keynes, N., Allen, N., Corney, D., Krishnan, P..  2018.  Scalable Static Analysis to Detect Security Vulnerabilities: Challenges and Solutions. 2018 IEEE Cybersecurity Development (SecDev). :134-134.

Parfait [1] is a static analysis tool originally developed to find implementation defects in C/C++ systems code. Parfait's focus is on proving both high precision (low false positives) as well as scaling to systems with millions of lines of code (typically requiring 10 minutes of analysis time per million lines). Parfait has since been extended to detect security vulnerabilities in applications code, supporting the Java EE and PL/SQL server stack. In this abstract we describe some of the challenges we encountered in this process including some of the differences seen between the applications code being analysed, our solutions that enable us to analyse a variety of applications, and a summary of the challenges that remain.

2021-02-08
Nikouei, S. Y., Chen, Y., Faughnan, T. R..  2018.  Smart Surveillance as an Edge Service for Real-Time Human Detection and Tracking. 2018 IEEE/ACM Symposium on Edge Computing (SEC). :336—337.

Monitoring for security and well-being in highly populated areas is a critical issue for city administrators, policy makers and urban planners. As an essential part of many dynamic and critical data-driven tasks, situational awareness (SAW) provides decision-makers a deeper insight of the meaning of urban surveillance. Thus, surveillance measures are increasingly needed. However, traditional surveillance platforms are not scalable when more cameras are added to the network. In this work, a smart surveillance as an edge service has been proposed. To accomplish the object detection, identification, and tracking tasks at the edge-fog layers, two novel lightweight algorithms are proposed for detection and tracking respectively. A prototype has been built to validate the feasibility of the idea, and the test results are very encouraging.

2019-01-21
Han, Dianqi, Chen, Yimin, Li, Tao, Zhang, Rui, Zhang, Yaochao, Hedgpeth, Terri.  2018.  Proximity-Proof: Secure and Usable Mobile Two-Factor Authentication. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :401–415.

Mobile two-factor authentication (2FA) has become commonplace along with the popularity of mobile devices. Current mobile 2FA solutions all require some form of user effort which may seriously affect the experience of mobile users, especially senior citizens or those with disability such as visually impaired users. In this paper, we propose Proximity-Proof, a secure and usable mobile 2FA system without involving user interactions. Proximity-Proof automatically transmits a user's 2FA response via inaudible OFDM-modulated acoustic signals to the login browser. We propose a novel technique to extract individual speaker and microphone fingerprints of a mobile device to defend against the powerful man-in-the-middle (MiM) attack. In addition, Proximity-Proof explores two-way acoustic ranging to thwart the co-located attack. To the best of our knowledge, Proximity-Proof is the first mobile 2FA scheme resilient to the MiM and co-located attacks. We empirically analyze that Proximity-Proof is at least as secure as existing mobile 2FA solutions while being highly usable. We also prototype Proximity-Proof and confirm its high security, usability, and efficiency through comprehensive user experiments.

2019-01-31
Wong, Sunny, Woepse, Anne.  2018.  Software Development Challenges with Air-Gap Isolation. Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. :815–820.

While existing research has explored the trade-off between security and performance, these efforts primarily focus on software consumers and often overlook the effectiveness and productivity of software producers. In this paper, we highlight an established security practice, air-gap isolation, and some challenges it uniquely instigates. To better understand and start quantifying the impacts of air-gap isolation on software development productivity, we conducted a survey at a commercial software company: Analytical Graphics, Inc. Based on our insights of dealing with air-gap isolation daily, we suggest some possible directions for future research. Our goal is to bring attention to this neglected area of research and to start a discussion in the SE community about the struggles faced by many commercial and governmental organizations.

2019-02-22
Bakour, K., Ünver, H. M., Ghanem, R..  2018.  The Android Malware Static Analysis: Techniques, Limitations, and Open Challenges. 2018 3rd International Conference on Computer Science and Engineering (UBMK). :586-593.

This paper aims to explain static analysis techniques in detail, and to highlight the weaknesses and challenges which face it. To this end, more than 80 static analysis-based framework have been studied, and in their light, the process of detecting malicious applications has been divided into four phases that were explained in a schematic manner. Also, the features that is used in static analysis were discussed in detail by dividing it into four categories namely, Manifest-based features, code-based features, semantic features and app's metadata-based features. Also, the challenges facing methods based on static analysis were discussed in detail. Finally, a case study was conducted to test the strength of some known commercial antivirus and one of the stat-of-art academic static analysis frameworks against obfuscation techniques used by developers of malicious applications. The results showed a significant impact on the performance of the most tested antiviruses and frameworks, which is reflecting the urgent need for more accurately tools.

2019-03-04
Kannavara, R., Vangore, J., Roberts, W., Lindholm, M., Shrivastav, P..  2018.  Automating Threat Intelligence for SDL. 2018 IEEE Cybersecurity Development (SecDev). :137–137.
Threat intelligence is very important in order to execute a well-informed Security Development Lifecycle (SDL). Although there are many readily available solutions supporting tactical threat intelligence focusing on enterprise Information Technology (IT) infrastructure, the lack of threat intelligence solutions focusing on SDL is a known gap which is acknowledged by the security community. To address this shortcoming, we present a solution to automate the process of mining open source threat information sources to deliver product specific threat indicators designed to strategically inform the SDL while continuously monitoring for disclosures of relevant potential vulnerabilities during product design, development, and beyond deployment.
2019-06-10
Nathezhtha, T., Yaidehi, V..  2018.  Cloud Insider Attack Detection Using Machine Learning. 2018 International Conference on Recent Trends in Advance Computing (ICRTAC). :60-65.

Security has always been a major issue in cloud. Data sources are the most valuable and vulnerable information which is aimed by attackers to steal. If data is lost, then the privacy and security of every cloud user are compromised. Even though a cloud network is secured externally, the threat of an internal attacker exists. Internal attackers compromise a vulnerable user node and get access to a system. They are connected to the cloud network internally and launch attacks pretending to be trusted users. Machine learning approaches are widely used for cloud security issues. The existing machine learning based security approaches classify a node as a misbehaving node based on short-term behavioral data. These systems do not differentiate whether a misbehaving node is a malicious node or a broken node. To address this problem, this paper proposes an Improvised Long Short-Term Memory (ILSTM) model which learns the behavior of a user and automatically trains itself and stores the behavioral data. The model can easily classify the user behavior as normal or abnormal. The proposed ILSTM not only identifies an anomaly node but also finds whether a misbehaving node is a broken node or a new user node or a compromised node using the calculated trust factor. The proposed model not only detects the attack accurately but also reduces the false alarm in the cloud network.

2020-05-11
Nikolov, Dimitar, Kordev, Iliyan, Stefanova, Stela.  2018.  Concept for network intrusion detection system based on recurrent neural network classifier. 2018 IEEE XXVII International Scientific Conference Electronics - ET. :1–4.
This paper presents the effects of problem based learning project on a high-school student in Technology school “Electronic systems” associated with Technical University Sofia. The problem is creating an intrusion detection system for Apache HTTP Server with duration 6 months. The intrusion detection system is based on a recurrent neural network classifier namely long-short term memory units.
2020-04-06
Wang, Zhi-Hao, Kung, Yu-Fan, Hendrick, Cheng, Po-Jen, Wang, Chih-Min, Jong, Gwo-Jia.  2018.  Enhance Wireless Security System Using Butterfly Network Coding Algorithm. 2018 International Conference on Applied Information Technology and Innovation (ICAITI). :135–138.
The traditional security system requires a lot of manpower, and the wireless security system has been developed to reduce costs. However, for wireless systems, stability and reliability are important system indicators. In order to effectively improve these two indicators, we have imported butterfly network coding algorithm into the wireless sensing network. Because this algorithm enables each node to play multiple roles, such as routing, encoding, decoding, sending and receiving, it can also improve the throughput of network transmission, and effectively improve the stability and reliability of the wireless security system. This paper used the Wi-Fi module to implement the butterfly network coding algorithm, and is actually installed in the building. The basis for transmission and reception of all nodes in the network is received signal strength indication (RSSI). On the other hand, this is an IoT system for security monitoring.
2020-06-15
Puteaux, Pauline, Puech, William.  2018.  Noisy Encrypted Image Correction based on Shannon Entropy Measurement in Pixel Blocks of Very Small Size. 2018 26th European Signal Processing Conference (EUSIPCO). :161–165.
Many techniques have been presented to protect image content confidentiality. The owner of an image encrypts it using a key and transmits the encrypted image across a network. If the recipient is authorized to access the original content of the image, he can reconstruct it losslessly. However, if during the transmission the encrypted image is noised, some parts of the image can not be deciphered. In order to localize and correct these errors, we propose an approach based on the local Shannon entropy measurement. We first analyze this measure as a function of the block-size. We provide then a full description of our blind error localization and removal process. Experimental results show that the proposed approach, based on local entropy, can be used in practice to correct noisy encrypted images, even with blocks of very small size.